首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The effect of feeding frequency (one, three, and continuous feeding), feed ration (0.2, 0.5, 0.8% of total fish biomass), and feeding per se on the oxygen consumption (OC, mg O2 kg−1 h−1) and ammonia excretion (AE, mg TAN kg−1 h−1) of juvenile tench (body weight 15–19 g) and variations in these parameters in daily cycles were examined. Fish metabolism was studied in a recirculating system (rearing tanks of 0.2 m3, water temperature 23 °C). It was found that oxygen consumption and ammonia excretion depended significantly on feed ration. An increase of feed ration from 0.2 to 0.8% of fish biomass caused an increase of OC and AE from 126.80 mg O2 kg−1 h−1 and 1.95 mg TAN kg−1 h−1 to 187.35 mg O2 kg−1 h−1 and 8.80 mg TAN kg−1 h−1 (p<0.05). There was no dependence between feeding frequency and the mean rate of oxygen consumption. However, the relationship between feeding frequency and ammonia excretion by juvenile tench was statistically significant (p<0.05). Feeding frequency significantly affected daily fluctuations of AE and OC. It was found that diurnal variations in metabolic rates were strictly related to tench feeding, and the daily variations of AE were significantly higher than OC.  相似文献   

2.
The effect of stocking density on the survival and growth of pikeperch, Sander lucioperca (L.), larvae was examined in two consecutive experiments. In experiment I, 4-day-old larvae [body wet weight (BW): 0.5 mg; total body length (TL): 5.6 mm] were reared in 200-l cylindro-conical tanks in a closed, recirculating system (20 ± 0.5°C) at three stocking densities (25, 50 and 100 larvae l−1) and fed a mixed feed (Artemia nauplii and Lansy A2 artificial feed) for 14 consecutive days. At densities of 25 and 100 larvae l−1, growth rate and survival ranged from 2.7 to 1.9 mg day−1 and from 79.2 to 72.3%, and fish biomass gain ranged from 0.6 to 2.0 g l−1, respectively. There were two periods of increased larval mortality: the first was at beginning of exogenous feeding and the second during swim bladder inflation. In experiment II, 18-day-old larvae (BW: 35 mg; TL: 15.6 mm) obtained from experiment I were reared under culture conditions similar to those of experiment I, but at lower stocking densities (6, 10 and 15 larvae l−1). The fish were fed exclusively with artificial feed (trout starter) for 21 consecutive days. At densities of 6 and 15 larvae l−1, the growth rate and fish biomass gain ranged from 28.8 to 23.1 mg day−1 and from 2.0 to 3.3 g l−1, respectively. The highest survival (56.5%) was achieved at a density of 6 larvae l−1. Mortality at all densities was mainly caused by cannibalism II type behaviour (27–35% of total). In both experiments, growth and survival were negatively correlated and fish biomass gain positively correlated with stocking densities. The present study suggests that the initial stocking density of pikeperch larvae reared in a recirculating system can be 100 individuals l−1 for the 4- to 18-day period post-hatch and 15 individuals l−1 for the post-19-day period.  相似文献   

3.
Bacillus circulans PB7, isolated from the intestine of Catla catla, was evaluated for use as a probiotic supplement in the feeds for the fingerlings of Catla catla. The effect of supplement on the growth performance, feed utilization efficiency, and immune response was evaluated. Catla fingerlings (ave. wt. 6.48 ± 0.43 g) were fed diets supplemented with 2 × 104 (feed C1), 2 × 105 (feed C2), and 2 × 106 (feed C3) B. circulans PB 7 cells per 100 g feed for 60 days at 5% of the body weight per day in two equal instalments in triplicate treatments. The control feed (CC) was not supplemented with the B. circulans. All the feeds were isocaloric and isonitrogenous. Fish fed with feed C2 displayed better growth, significantly (P ≤ 0.05) highest RNA/DNA ratio, a lower feed conversion ratio (FCR), and a higher protein efficiency ratio (PER) than the other experimental diets. Highest carcass protein and lipid was also observed in the fish fed C2 feed compared to the others. Significantly (P ≤ 0.05), highest protease was recorded in fish fed feed C2 (47.9 ± 0.016) and lowest in fish fed feed C3 (32.10 ± 0.009), where α-amylase activity did not differ significantly (P ≤ 0.05) beyond the lowest inclusion level. ALP, ACP, GOT, and GPT in the liver of Catla catla were the highest (P ≤ 0.05) in fish fed C2 feed. The highest TSP, albumin, and globulin was observed in fish treated with C2 feed after 60 days feeding trial, but the lowest glucose level was observed in the same treatment. After the feeding trial, the non-specific immunity levels and disease resistance of fish were also studied. Phagocytic ratio, phagocytic index, and leucocrit value were the highest in fish fed feed C2. After the feeding trial, the fish were challenged for 10 days by bath exposure to Aeromonas hydrophila (AH1) (105c.f.u. ml−1 for 1 h, and, after 7 days, 107c.f.u. ml−1 for 1 h). Highest survival percentage was observed in fish fed with feed C2 compared with only 6.66% in the controls, which indicated the effectiveness of B. circulans PB 7 in reducing disease caused by A. hydrophila.  相似文献   

4.
The impact of feeding, fish size (body weight from 18.5 to 56.5 g) and water temperature (20 and 23 °C) on oxygen consumption (OC, mg O2 kg–1 h–1) and ammonia excretion (AE, mg TAN kg–1 h–1) was studied in Eurasian perch held in recirculation systems. OC for both fed and feed-deprived (3 days) fish was higher at 23 °C (278.5 and 150.1 mg O2 kg–1 h–1) than at 20 °C (249.3 and 135.0 mg O2 kg–1 h–1; P < 0.01). AEs for both fed and feed-deprived fish were also significantly higher at 23 °C than at 20 °C (P < 0.001). Water temperature and fish size had a significant impact on the oxygen:feed ratio (OFR, kg O2 kg–1 feed fed day–1) and ammonia:feed ratio (AFR, kg TAN kg–1 feed fed day–1; P < 0.001). Their average values at temperatures of 20 and 23 °C were 0.17 and 0.19 kg O2 kg–1 feed fed day–1 and 0.009 and 0.011 kg TAN kg–1 feed fed day–1, respectively.  相似文献   

5.
This study describes the digestible protein (DP) and digestible energy (DE) utilization in juvenile mulloway, and determined the requirements for maintenance. This was achieved by feeding triplicate groups of fish weighing 40 or 129 g held at two temperatures (20 or 26°C), on a commercial diet (21.4 g DP mJ DE−1) at four different ration levels ranging from 0.25% of its initial body weight to apparent satiation over 8 weeks. Weight gain and protein and energy retention increased linearly with increasing feed intake. However, energy retention efficiency (ERE) and protein retention efficiency (PRE) responses were curvilinear with optimal values, depending on fish size, approaching or occurring at satiated feeding levels. Maximum predicted PRE was affected by body size, but not temperature; PRE values were 0.50 and 0.50 for small mulloway, and 0.41 and 0.43 for large mulloway, at 20 and 26°C respectively. ERE demonstrated a similar response, with values of 0.42 and 0.43 for small, and 0.32 and 0.34 for large mulloway at 20 and 26°C respectively. Utilization efficiencies for growth based on linear regression for DP (0.58) and DE (0.60) were independent of fish size and temperature. The partial utilization efficiencies of DE for protein (k p) and lipid (k l) deposition estimated using a factorial multiple regression approach were 0.49 and 0.75 respectively. Maintenance requirements estimated using linear regression were independent of temperature for DP (0.47 g DP kg−0.7 day−1) while maintenance requirements for DE increased with increasing temperature (44.2–49.6 kJ DE kg−0.8 day−1). Relative feed intake was greatest for small mulloway fed to satiation at 26°C and this corresponded to a greater increase in growth. Large mulloway fed to satiation ate significantly more at 26°C, but did not perform better than the corresponding satiated group held at 20°C. Mulloway should be fed to satiation to maximize growth potential if diets contain 21.4 g DP mJ DE−1.  相似文献   

6.
An 8 weeks growth study was conducted to estimate the optimal feeding rate for juvenile grass carp (3.08±0.03 g, mean ± SD). Fish were fed with a casein purified diet (360 g protein, 56 g lipid and 3000 kcal total energy/kg dry diet) at six feeding rates: 1.0, 1.5, 2.0, 2.5, 3.0, 3.5% body weight per day (BW d−1). Each feeding rate was randomly assigned to three tanks of fish with 30 fish per tank (50W × 50H × 100L, cm). Fish were maintained in recirculating systems at a water temperature of 24.97±2.23 °C and were fed four times per day. After 2 weeks, fish fed on 3.5% BW d−1 could not finish the diet and this treatment was cut-off. Analysis of variance showed that growth performance was significantly (p<0.05) affected by different feeding rates. The nutrient compositions of whole body, muscle and liver were also significantly different among treatments. The body weight gain (WG), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER), apparent digestibility coefficiency (ADC), retention of protein (PR), mesenteric fat index, body moisture and protein content were significantly (p<0.05) affected by feeding rate. The WG, SGR and digestion rate were highest at 2% BW d−1, although the FE and PER decreased with increasing feeding rate. Broken line analysis on specific growth rate indicated that the optimum feeding rate of juvenile grass carp is 1.97% body weight day−1.  相似文献   

7.
The value of defatted soybean meal as a protein source for sea bream fingerlings (15.2±4.4 g on average) growing to market size (300–350 g) was evaluated by feeding extruded isonitrogenous and isoenergetic diets (46% protein and 22 MJ kg−1) containing 20%, 30%, 40% and 50% soybean meal considering two phases. On day 87, the fish weight ranged between 66 and 81 g. The specific growth rate (SGR) of sea bream fed 50% soybean was lower (1.73% day−1) than that of fish fed 20% (1.87% day−1) and 30% (1.93% day−1), but the food conversion ratio (FCR) was not significantly affected, and a quadratic significant trend was observed for the feed intake (FI) in relation to the dietary soybean level. At the end of the second phase on day 309, fish weight was between 303 and 349 g, but SGR and FCR were similar for all diets, and ranged between 0.64 and 0.69% day−1, and 1.95 and 2.10% day−1 respectively. The final biometric parameters were not affected by the diets, although the levels of some free amino acids in the muscle were affected. Sensory differences were detected by panellists in fish fed diet 20% as compared those fed diet 50%, which had a less marine flavour and was less juicy. The global growth results suggest the possibility of feeding sea bream weighing less than 80 g with 30% soybean meal, and for fish weighing more than 80 g, a 50% dietary soybean meal can be used until the fish reach commercial weight, with no negative effects on growth or feed efficiency. Nevertheless, when sensory analysis and economic aspects are considered, the maximum inclusion level of soybean was 20–22%.  相似文献   

8.
Atlantic salmon with body weight of 493 g were fed 6 graded levels of methionine in diets based on plant proteins for a period of 85 days with the aim to test whether methionine intake affected growth, nutrient accretion and hepatic sulphur metabolism. A negative control based on a mixture of plant proteins with low fish meal inclusion (5%) containing 1.64 g methionine 16 g− 1 N was added five levels of dl-methionine resulting in dose levels from 1.64 to 2.98 g methionine 16 g− 1 N. A control feed based on fish meal (26%) and plant proteins (44.9%) containing 2.30 g methionine 16 g− 1 N was used as a control for growth performance. Feed intake and thus growth was generally lower in fish fed the plant protein based diets, while digestibility of amino acids was higher in fish fed the test diets as compared to those fed the fish meal based positive control diet. However, no significant differences in either feed intake or growth were present in fish fed either of the test diets containing graded levels of methionine. Neither carcass protein or lipid retention was affected by methionine intake as confirmed by the unaffected mRNA levels of growth hormone-insulin-like growth factor in hepatic and muscle tissues. Hepatic size as well as transsulfuration was significantly affected by methionine intake. Thus it is concluded that nutrient accretion was not the main effect of methionine intake (ranging from 35 to 90 mg fish− 1 day− 1). Rather methionine is essential to secure high synthesis of activated methyl groups for methylation reactions ensuring a healthy fish not developing increased liver size. Intakes exceeding 60 to 70 mg methionine daily in the fast growing seawater period results in increased transsulfuration analysed as increased hepatic taurine production keeping the hepatic free methionine constant at all intakes.  相似文献   

9.
ABSTRACT

A 24-week feeding trial was conducted in concrete tanks with Nile tilapia, Oreochromis niloticus (L.) with an average initial weight and length of 50.87 ± 6.03 g and 14.4 ± 0.45 cm, respectively, to examine the effect of two protein sources and two feeding frequencies on growth performance, production traits, and body composition. Twelve 4 m3 concrete tanks (2 × 2 × 1.25 m, long, width, and height) were each stocked with 100 fish and fed diets containing either fish meal protein or soybean meal protein at two feeding frequency of two times daily or four times daily (2 × 2 × 3 factorial experiment). The results revealed that there was no significant effect of dietary protein sources on growth rate, whereas there was a significant increase in growth rate with increasing feeding frequency (P < 0.05). The same trend was also observed for mean body weight (g), production rate (kg/m3), specific growth rate (SGR % day?1). The best final mean body weight (g), specific growth rate (SGR % day?1), and production rate (kg/m3) were recorded in groups of fish fed with feeding frequency four times daily. Whole fish moisture, protein, fat, and ash contents were significantly influenced (P ≤ 0.05) by protein sources and feeding frequency, except protein not influenced with feeding frequency. Energy was significantly (P < 0.05) influenced by feeding frequency, but not by dietary protein sources. Economic evaluation indicated that soybean meal (Diet B) at four times feeding daily was the most cost-effective and affordable feed strategy for farmers. We conclude that a soybean diet fed four times daily is recommended for adult Nile tilapia reared in concrete tanks.  相似文献   

10.
In this study, we have investigated the effects of Porphyridium cruentum (Rodophyta) as a natural pigment source and astaxanthin and β-carotene as synthetic pigment sources on the skin colour of cichlid fish (Cichlasoma severum sp., Heckel 1840), which are generally light orange with white patches and becomes shiny orange in the reproductive phase. The fish were fed diets containing 50 mg kg−1 astaxanthin and β-carotene, and P. cruentum powder. The amount of both natural and synthetic pigment sources given as feed was 50 mg kg−1, and the experiment was continued for 50 days. Total carotenoid content of the fish was determined spectrophotometrically at the end of the experiment. As a result, while a visible change of colour in the skin of the fish fed on the feed containing astaxanthin was observed with 0.34 ± 0.2 mg g−1 of pigment accumulation, a relatively small change of colour was observed in the skin of other fish that were fed on the feed containing P. cruentum and β-carotene with 0.22 ± 0.2 mg g−1 and 0.26 ± 0.1 mg g−1 of pigment accumulations, respectively. Therefore, it was determined that these pigment sources have an effect on the colour of cichlid fish.  相似文献   

11.
This study evaluated the growth (first phase) and feeding responses (second phase) of juvenile mutton snapper fed four isonitrogenous and isoenergetic diets with increasing levels of soy protein concentrate (SPC) in substitution to fish meal (FM). The FM was replaced by SPC at 0% (basal diet, SPC000), 33% (SPC130), 57% (SPC214) and 77% (SPC300). After 95 days of rearing, fish fed SPC300 attained a significantly lower body weight (54.9 ± 13.2 g) compared with those fed diets SPC000, SPC130 and SPC214 (76.5 ± 14.0 g, 73.9 ± 13.8 g and 70.5 ± 14.0 g respectively). Fish yield increased significantly from 891 ± 36 g m?3 for fish fed SPC300 to an average of 1099 ± 111 g m?3 for other diets. A maximum fish body weight gain of 0.60 ± 0.05 g day?1 and a maximum specific growth rate of 1.47 ± 0.07% day?1 were achieved for SPC000. Behavioural assays conducted during 10 days revealed the loss in fish growth with diets containing higher levels of SPC was due to a decline in feed intake. Low feed intake driven by a poor feed palatability appeared to have been a major obstacle against higher inputs of SPC in diets for mutton snapper.  相似文献   

12.
Six experimental diets were fed to rainbow trout to examine the effect of fish hydrolysate and ultra filtered fish hydrolysate on growth performance, feed utilization and growth regulation using diets low in dietary fish meal inclusion. One diet contained a high level of plant protein sources (90.6% of total dietary protein) and a low level of fish meal (9.4% of dietary protein). Two diets contained different levels of hydrolysate in exchange for the plant protein sources, reducing the plant protein level to 73.9% and 57.2%, respectively. Two further diets were identical in composition except that the hydrolysate was ultra filtered to remove low molecular weight compounds. A moderate level of fish meal was used in the sixth diet which had a dietary plant protein level of 57.0%. All diets were made equal in protein, lipid, energy and lysine. The feeding trial lasted for 90 days and for the fastest growing group, fed moderate level of fish meal, the fish increased in weight from 149 g at start to a final weight of 443 g. All groups showed significant differences in growth and feed utilizations. Specific growth rates were; 0.30% day− 1 for the plant protein diet, 0.98% day− 1 for the high hydrolysate diet, 0.72% day− 1 for the group containing the high level of ultra filtered hydrolysate, and 1.21% day− 1 for the moderate fish meal diet. Feed efficiencies (g fish weight gain per g feed intake) were found to be 0.57 for plant protein diet, 0.97 for high level of hydrolysate, 0.83 for ultra filtered hydrolysate and 1.03 for the moderate fish meal diet. Half dietary inclusions of hydrolysate and ultra filtered hydrolysate revealed values between the plant protein diets and high levels of these ingredients, respectively. Feed consumption in percentage of average fish weight per day, correlated with the feed efficiency for all groups. PER, PPV and BV correlated with the differences in growth. Protein digestibilities were equal for all groups, while the moderate fish meal diet showed higher lipid and energy digestibilities than the plant protein diets. Although some of the differences may be due to growth inhibitors in plant resources other explanations may be relevant. Plasma growth hormone (GH) levels were significantly higher in fish fed the plant protein diet than fish fed the fish meal or high hydrolysate diet, which is most likely a result of their poor feeding status. Plasma IGF-I levels were not affected by diet. Comparisons of groups with similar inclusion of plant ingredients, and thus equal level of growth inhibitors, show that in removing small molecular weight compounds from fish hydrolysate, the growth and feed efficiency were significantly reduced. Some of these small compounds in fish hydrolysate thus seem to be essential for biological performance. Further, as fish meal revealed the best performance, fish muscle protein is not the only nutrient that makes fish meal an essential ingredient in aqua feed for carnivorous fish. This information is important in the work to find replacement of fish meal in a sustainable growing global aquaculture industry.  相似文献   

13.
After artificial reproduction of tench, larvae must be maintained indoors, and studies on rearing conditions are needed, focussing on the reduction of labour and costs. Three experiments on larvae (5th day post-hatch) were conducted for 25 days using Artemia nauplii as the sole food in order to determine basic feeding and density conditions during the first rearing period. Tench were maintained in 25 l fibreglass tanks, supplied with an artesian water flow throughout of 0.2 l min−1. Water temperature was 22.5 ± 1°C, and the photoperiod was natural. Larvae fed on a restricted amount of nauplii reached high survival rates, even with the minimum of 50 nauplii larva−1 day−1. This amount of food may be sufficient at least for the first 25 days of exogenous feeding if fast growth is not the priority, and high densities can be maintained with good survival rates (over 90% up to 160 larvae l−1 and 77% with 320 larvae l−1). When food was supplied in excess once a day, high survival rates were achieved (91–97%), without differences among the densities tested. Animals at a density of 100 l−1 reached the highest length (15.57 mm) and individual weight (46.8 mg). This growth is greater than those reported in studies feeding several times a day. It could be deduced that, while live food remains available for tench, it is not necessary to feed so frequently. Considering the relationship among the initial number of animals, final survival and growth and ration supplied, the new data reported here are useful to establish suitable stocking densities under both culture and experimental conditions.  相似文献   

14.
An 8-week feeding experiment was conducted to investigate the effects of different dietary macronutrient level and feeding frequency on the growth, feed utilization, and body composition of juvenile rockfish. Triplicate groups of fish (body weight of 4.1 g) were fed the experimental diets containing either high levels of carbohydrate (HC, 35%), lipid (HL, 13%), or protein (HP, 55%) at different feeding frequencies (twice daily, once daily, and once every 2 days). Weight gain was affected by feeding frequency but not by dietary composition. Weight gain of fish fed the diets once every 2 days was significantly (P < 0.05) lower than that of other groups. Daily feed intake and energy intake were affected by both dietary composition and feeding frequency. Daily feed intake of fish fed the HC diet was significantly (P < 0.05) higher than that of fish fed the HL and HP diets at the same feeding frequency. Feed efficiency and protein efficiency ratio were affected by both dietary composition and feeding frequency and decreased with increasing feeding frequency in the same dietary composition. Feed efficiency and protein efficiency ratio of fish fed the HC diet were significantly (P < 0.05) lower than those of fish fed the HL diet at the same feeding frequency. Whole-body lipid content of fish fed the HL diet was significantly (P < 0.05) higher than that of fish fed the HC and HP diets at the same feeding frequency. These results indicate that an increase of dietary lipid level compared with dietary carbohydrate level may have the advantage of a protein-sparing effect at same feeding frequency, and a once-daily feeding regime is more effective than twice daily or one feeding every 2 days to improve growth performance of juvenile rockfish grown from 4 to 21 g.  相似文献   

15.
Feed intake and growth were studied in groups of turbot fed daily rations of 0.25%, 0.38% and 1% of body weight day–1 for 41 days. Then, all groups were fed 1% of body weight day–1 for the next 34 days. The two restricted rations resulted in reduced growth rates (30% and 60% of fully fed controls), and there was a tendency for increased growth heterogeneity (coefficient of variation increased from about 100% to about 150%) compared with controls on full rations. Nevertheless, restricted rations did not result in any increase in size heterogeneity with the passage of time: the coefficient of variation for weight changed little irrespective of feeding treatment. The turbot became hyperphagic and displayed compensatory growth after the change from restricted to excess feeding, with compensatory growth being most marked among the fish that had been subject to the most severe feed restriction. The results provided some evidence of increased variability in feeding and growth within groups of turbot fed restricted rations, possibly as a result of the establishment of weak feeding hierarchies. When feeding restrictions were lifted, the turbot that had reduced growth under feed restriction were able to completely compensate for lost growth.  相似文献   

16.
The effects of different ratios of dietary raw to pre-gelatinized starch on the growth performance, feed utilization and body composition of juvenile yellowfin seabream (Sparus latus) were evaluated during a 10-week growth trial. Five isonitrogenous, semi-purified diets containing 200 g kg−1 starch comprising different ratios of raw to pre-gelatinized starch [(in g kg−1)100:100 (diet 1), 150:50 (diet 2), 50:150 (diet 3), 200:0 (diet 4), 0:200 (diet 5), raw:pre-gelatinized] were prepared and fed to triplicate groups of juvenile S. latus. Our results showed that fish fed diet 4 (200 g kg−1 raw starch) had the highest weight gain and specific growth rate, followed by those fed diet 2, diet 1, diet 3 and diet 5. Feed efficiency, protein efficiency ratio and protein productive value in the fish on diets 4 and diet 2, respectively, were significantly higher than those on diets 3 and diet 5, respectively. Body and muscle compositions were unaffected by the different dietary raw to pre-gelatinized starch ratios. Values of hepatosomatic index, intraperitoneal fat ratio, viscerosomatic index and condition factor did not vary among experimental treatments. Plasma indices showed variations, but these were not relative to dietary treatments. In conclusion, the partial or total replacement of raw starch by pre-gelatinized starch in diets for yellowfin seabream did not improve its growth performance and feed utilization.  相似文献   

17.
An eight-week feeding trial has been conducted to determine the optimum ration for Indian major carp, Labeo rohita, fingerling (4.10 ± 0.30 cm, 0.55 ± 0.16 g) by feeding a purified diet (40% CP; 3.61 kcal g−1 GE) at six levels, 2, 4, 6, 8, 10, and 12% of body weight per day, at 0800 and 1600 h, in triplicate, to 20 fish per trough fitted with a water flow-through system. Highest weight gain, best feed conversion ratio (FCR), best specific growth rate (SGR%), and highest protein efficiency ratio (PER) were evident for rations of 6–8% body weight. Second-degree polynomial regression analysis for FCR, PER, protein, and energy retention data indicated the break-points occurred at 6.55, 6.75, 6.80, and 6.95% bw per day, respectively. Significant (P < 0.05) differences between body composition were observed for fish fed different rations. Maximum body protein content was recorded for 6% and 8% rations. A linear increase in body fat content was evident with increasing ration. Body moisture and ash content remained non-significantly (P > 0.05) low for higher rations, however. On the basis of these results it is recommended that feeding in the range 6.5–7.0% bw per day corresponding to 2.6–2.8 g protein and 23.49–25.31 kcal energy per 100 g of the diet per day is optimum for growth and efficient feed utilization of Labeo rohita. Results for 2–4% rations (0.8–1.6 g protein and 7.23–14.46 kcal energy) suggest these amounts approximate to the maintenance requirement of this fish.  相似文献   

18.
Two experiments were conducted to investigate the effects of varying dietary protein (35–45%) and energy levels (17.34–19.44 kJ g−1) on the growth performance of milkfish (Chanos chanos) maintained under laboratory (experiment 1) and field conditions (Experiment 2) in inland saline groundwater. The results of experiment 1 (initial weight of fish: 0.25 g) revealed that, irrespective of the protein source (fish meal or processed full fat soybean), fish fed a diet containing 40% protein showed significantly (p<0.05) higher growth in terms of live weight gain and specific growth rate, low feed conversion ratio [1.71 (fish meal) and 1.58 (soybean)], high nutrient retention (gross protein retention: 28.59 and 31.05%; gross energy retention: 24.23 and 26.04%), apparent protein digestibility (81.74 and 85.91%) and digestive enzyme activity (specific protease and amylase). An observation on the postprandial excretion of metabolites (N–NH4 and o–PO4) indicated significantly (p<0.05) low levels of these metabolites in aquaria where the fish were fed 40% dietary protein irrespective of the protein source. The results of experiment 2 also indicate (initial weight of fish: 4.43 g) a significantly (p<0.05) higher growth performance (weight gain, biomass, specific growth rate, growth day−1 and fish production) in ponds where the fish were fed 40% dietary protein. Irrespective of the experimental conditions (laboratory/field), feeding the fish higher dietary protein levels (beyond 40%) not only repressed growth performance but also affected proximate composition by lowering protein accumulation and energy assimilation. An investigation on the effects of feeds on water quality parameters revealed that values for total alkalinity, NH4–N, NO3–N, turbidity, total dissolved solids and parameters indicative of productivity (chlorophyll a, net primary productivity and plankton population) increased significantly (p<0.05) from treatments 1–3 (35–40% protein) and declined thereafter, in treatment 4 (42% dietary protein), indicating that water quality characteristics correlated well with fish growth. The results suggest that in order to obtain a high-yield in milkfish culture system the fish should be fed supplementary diets containing appropriate (40%) protein levels, especially when the stocking rates are high.  相似文献   

19.
We investigated the usefulness of acceleration loggers in aquaculture by examining net-cage use and metabolic rates in red sea bream, Pagrus major. First, the fish’s metabolic rate (mg O2 kg−1 min−1) was measured with the logger in a swim tunnel at designated water velocities. We found that metabolic rate could be expressed by using a linear regression model of the activity rate index (unitless min−1) derived from acceleration data. Using this equation, the field metabolic rates of three fish in a net cage were monitored and were estimated at 14.1–15.0 kcal kg−1 day−1. The results suggested that 15–19% of energy from satiation feeding ration was consumed for metabolism and activity in the net cage. The loggers showed orderly net-cage use by the fish. Tagged individuals used the whole cage from surface to bottom, but individual fish that preferred the surface area rarely used the bottom, and vice versa. Metabolic rate increased significantly with distance of the fish from their preferred depths. The logger provided information on the physiological and behavioral responses of fish in a given breeding system, and its use should contribute to the design of practical aquaculture systems.  相似文献   

20.
The effects of ration levels on growth, conversion efficiencies and body composition of fingerling Heteropneustes fossilis (6.8 ± 0.04 cm, 5.0 ± 0.02 g) were studied by feeding isonitrogenous (40% crude protein) and isocaloric (19.06 MJ kg−1 gross energy) diets representing 1, 3, 5, 7 and 9% of the body weight (BW) day−1 to triplicate groups of fish . Growth performance of the fish fed at the various ration levels was evaluated on the basis of live weight gain percentage (LWG%), feed conversion ratio (FCR), specific growth rate percentage (SGR%), protein retention efficiency (PRE%) and energy retention efficiency (ERE%) data. Maximum LWG% and SGR were obtained at a feeding rate of 7% BW day−1, whereas best FCR (1.6), PRE% and ERE% were recorded at a feeding rate of 5% BW day−1. Maximum body protein was also obtained for the group receiving the diet representing 5% of their body weight. However, a linear increase in fat content was noted with the increase in ration levels up to 7% BW day−1. The SGR, FCR, PRE and ERE data were also analyzed using second-degree polynomial regression analysis to obtain more precise information on ration level, with the results showing that the optimal ration for these parameters was 6.8, 6.1, 5.9 and 6.2% BW day−1, respectively. Based on the above second-degree polynomial regression analysis, the optimum ration level for better growth, conversion efficiencies and body composition of fingerling H. fossilis was found to be in the range of 5.9–6.8% of the BW day−1, corresponding to 2.36–2.72 g protein and 88.20–101.66 MJ digestible energy kg−1 diet day−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号