首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We summarize the foundational elements of a new area of research we call soundscape ecology. The study of sound in landscapes is based on an understanding of how sound, from various sources—biological, geophysical and anthropogenic—can be used to understand coupled natural-human dynamics across different spatial and temporal scales. Useful terms, such as soundscapes, biophony, geophony and anthrophony, are introduced and defined. The intellectual foundations of soundscape ecology are described—those of spatial ecology, bioacoustics, urban environmental acoustics and acoustic ecology. We argue that soundscape ecology differs from the humanities driven focus of acoustic ecology although soundscape ecology will likely need its rich vocabulary and conservation ethic. An integrative framework is presented that describes how climate, land transformations, biodiversity patterns, timing of life history events and human activities create the dynamic soundscape. We also summarize what is currently known about factors that control temporal soundscape dynamics and variability across spatial gradients. Several different phonic interactions (e.g., how anthrophony affects biophony) are also described. Soundscape ecology tools that will be needed are also discussed along with the several ways in which soundscapes need to be managed. This summary article helps frame the other more application-oriented papers that appear in this special issue.  相似文献   

2.
The shared landscape: what does aesthetics have to do with ecology?   总被引:4,自引:0,他引:4  
This collaborative essay grows out of a debate about the relationship between aesthetics and ecology and the possibility of an “ecological aesthetic” that affects landscape planning, design, and management. We describe our common understandings and unresolved questions about this relationship, including the importance of aesthetics in understanding and affecting landscape change and the ways in which aesthetics and ecology may have either complementary or contradictory implications for a landscape. To help understand these issues, we first outline a conceptual model of the aesthetics–ecology relationship. We posit that: 1. While human and environmental phenomena occur at widely varying scales, humans engage with environmental phenomena at a particular scale: that of human experience of our landscape surroundings. That is the human “perceptible realm.” 2. Interactions within this realm give rise to aesthetic experiences, which can lead to changes affecting humans and the landscape, and thus ecosystems. 3. Context affects aesthetic experience of landscapes. Context includes both effects of different landscape types (wild, agricultural, cultural, and metropolitan landscapes) and effects of different personal–social situational activities or concerns. We argue that some contexts elicit aesthetic experiences that have traditionally been called “scenic beauty,” while other contexts elicit different aesthetic experiences, such as perceived care, attachment, and identity. Last, we discuss how interventions through landscape planning, design, and management; or through enhanced knowledge might establish desirable relationships between aesthetics and ecology, and we examine the controversial characteristics of such ecological aesthetics. While these interventions may help sustain beneficial landscape patterns and practices, they are inherently normative, and we consider their ethical implications.  相似文献   

3.
Landscape ecology studies have demonstrated that past modifications of the landscape frequently influence its structure, highlighting the utility of integrating historical perspectives from the fields of historical ecology and environmental history. Yet questions remain for historically-informed landscape ecology, especially the relative influence of social factors, compared to biophysical factors, on long-term land-cover change. Moreover, methods are needed to more effectively link history to ecology, specifically to illuminate the underlying political, economic, and cultural forces that influence heterogeneous human drivers of land-cover change. In northern Wisconsin, USA, we assess the magnitude of human historical forces, relative to biophysical factors, on land-cover change of a landscape dominated by eastern white pine (Pinus strobus L.) forest before Euro-American settlement. First, we characterize land-cover transitions of pine-dominant sites over three intervals (1860–1931; 1931–1951; 1951–1987). Transition analysis shows that white pine was replaced by secondary successional forest communities and agricultural land-covers. Second, we assess the relative influence of a socio-historical variable (“on-/off-Indian reservation”), soil texture (clay and sand), and elevation on land-cover transition. On the Lake Superior clay plain, models that combine socio-historical and biophysical variables best explain long-term land-cover change. The socio-historical variable dominates: the magnitude and rate of land-cover change differs among regions exposed to contrasting human histories. Third, we developed an integrative environmental history-landscape ecology approach, thereby facilitating linkage of observed land-cover transitions to broader political, economic, and cultural forces. These results are relevant to other landscape investigations that integrate history and ecology.  相似文献   

4.
We argue that soundscapes possess both ecological and social value and that they should be considered natural resources worthy of management and conservation. In this paper we bring together diverse bodies of literature that identify the human and ecological benefits provided by soundscapes. Sense of place, cultural significance, interactions with landscape perceptions, and wildlife wellbeing are a few of the values ascribed to soundscapes. The values and benefits of soundscapes are motivation to advance soundscape conservation and management. Given that soundscape conservation is new, we present a summary of conservation principles that need to be considered in soundscape conservation planning. These include the need to set goals, identify targets, assess condition, identify and manage threats, and conduct monitoring of the soundscape. We also argue that soundscape conservation needs to consider the soundscape within the larger mosaic of the landscape that is occupied by humans—a perspective provided by landscape ecology. We describe several different kinds of soundscapes that need to be conserved, such as natural quiet, sensitive, threatened, and unique soundscapes, and the ways that conservation planning can protect these for the future.  相似文献   

5.
Wu  Jianguo  Hobbs  Richard 《Landscape Ecology》2002,17(4):355-365
Landscape ecology has made tremendous progress in recent decades, but as a rapidly developing discipline it is faced with new problems and challenges. To identify the key issues and research priorities in landscape ecology, a special session entitled “Top 10 List for Landscape Ecology in the 21st Century” was organized at the 16th Annual Symposium of the US Regional Association of International Association of Landscape Ecology, held at Arizona State University (Tempe, Arizona, USA) during April 25–29, 2001. A group of leading landscape ecologists were invited to present their views. This paper is intended to be a synthesis, but not necessarily a consensus, of the special session. We have organized the diverse and wide-ranging perspectives into six general key issues and 10 priority research topics. The key issues are: (1) interdisciplinarity or transdisciplinarity, (2) integration between basic research and applications,(3) Conceptual and theoretical development, (4) education and training, (5)international scholarly communication and collaborations, and (6) outreach and communication with the public and decision makers. The top 10 research topics are: (1) ecological flows in landscape mosaics, (2) causes, processes, and consequences of land use and land cover change, (3) nonlinear dynamics and landscape complexity, (4) scaling, (5) methodological development, (6) relating landscape metrics to ecological processes, (7) integrating humans and their activities into landscape ecology, (8) optimization of landscape pattern, (9)landscape sustainability, and (10) data acquisition and accuracy assessment. We emphasize that, although this synthesis was based on the presentations at the“Top 10 List” session, it is not a document that has been agreed upon by each and every participant. Rather, we believe that it is reflective of the broad-scale vision of the collective as to where landscape ecology is now and where it may be going in future. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In landscape ecology, the importance of map extent and resolution on the value of landscape indices is widely discussed, but the information content of the map, mostly derived from remote sensing images, is not. In this study, we sought (1) to understand the influence of changes in maps’ spatial and spectral resolution of agricultural landscape elements, taking hedgerow networks as a case study, and (2) to explore how predictions of species distribution might be affected by maps’ resolutions, taking two carabid species as a case study. To do so, we compared maps from different remote sensors, derived two landscape characterization variables from the maps related to patterns known to drive ecological processes, and analyzed their predictive power on biological data distribution to assess the information content of these maps. The results show that (1) the use of several methods, including landscape metrics, was useful to assess map validity; (2) the spatial resolution of satellite images is not the only important factor; changes in spectral resolution significantly alter maps; (3) the relevant definition of “hedgerow” to construct functional maps is species and process specific; thus the different maps are not either good or bad, but rather provide complementary information; (4) the more a species responds to network structure and over small areas, the less the different maps can be substitutable one to another.  相似文献   

7.
The modifiable areal unit problem and implications for landscape ecology   总被引:28,自引:2,他引:26  
Landscape ecologists often deal with aggregated data and multiscaled spatial phenomena. Recognizing the sensitivity of the results of spatial analyses to the definition of units for which data are collected is critical to characterizing landscapes with minimal bias and avoidance of spurious relationships. We introduce and examine the effect of data aggregation on analysis of landscape structure as exemplified through what has become known, in the statistical and geographical literature, as theModifiable Areal Unit Problem (MAUP). The MAUP applies to two separate, but interrelated, problems with spatial data analysis. The first is the “scale problem”, where the same set of areal data is aggregated into several sets of larger areal units, with each combination leading to different data values and inferences. The second aspect of the MAUP is the “zoning problem”, where a given set of areal units is recombined into zones that are of the same size but located differently, again resulting in variation in data values and, consequently, different conclusions. We conduct a series of spatial autocorrelation analyses based on NDVI (Normalized Difference Vegetation Index) to demonstrate how the MAUP may affect the results of landscape analysis. We conclude with a discussion of the broader-scale implications for the MAUP in landscape ecology and suggest approaches for dealing with this issue.  相似文献   

8.
As the world population continues to grow and as global urbanization continues to unfold, our ecosystems and landscapes will be increasingly domesticated and designed. Developing and maintaining sustainable landscapes have become one of the most challenging and imperative tasks for scientists and stakeholders of all sorts. To accomplish this task, landscape ecology and landscape architecture can and must play a critical role. Landscape architects intentionally modify and create landscapes, and their imprints and influences are pervasive and profound, far beyond the physical limits of the designed landscapes. As an interdisciplinary and transdisciplinary enterprise that integrates the science and art of studying and influencing the relationship between spatial pattern and ecological processes, the theory, methods, and applications of landscape ecology are directly relevant to sustainability. However, neither landscape ecology nor landscape architecture is likely to achieve its expected goal if they are not truly integrated to produce a sustainable landscape architecture. In this paper, we argue that the ancient Chinese philosophy of “unity of man with nature” and its associated design principles can provide useful guidelines for this integration as well as for the development of a sustainable landscape architecture. We discuss several principles and models of Chinese landscape architecture, including “unity of man with nature” philosophy, “peach blossom spring” ideal, “world-in-a-pot” model, and Feng–Shui theory, and their implications for developing a sustainable landscape architecture. Although differences in the philosophical roots and design traditions between Eastern and Western landscape architecture will continue to exist, interactions and integration between the two will continue to increase under the theme of sustainability. To promote the translation of scientific knowledge into practice, we urge landscape ecologists to work proactively with landscape architects to integrate pattern–process–scale and holistic perspectives into the design and planning of landscapes.  相似文献   

9.
10.
This paper documents the analyses that were conducted with regards to investigating an appropriate Minimum Mapping Unit (MMU) to be used to capture the potential changes in vegetation patterns for a 10,924 square km restoration project being conducted in south Florida, USA. Spatial landscape and class metrics that were shown to change predictably with increasing grain size were adopted from previous studies and applied to a multi-scale analysis. Specifically, this study examines the effects of changing grain size on landscape metrics, utilizing empirical data from a real landscape encompassing 234,913 ha of south Florida’s Everglades. The objective was to identify critical thresholds within landscape metrics, which can be used to provide insight in determining an appropriate MMU for vegetation mapping. Results from this study demonstrate that vegetation heterogeneity will exhibit dissimilar patterns when investigating the loss of information within landscape and class metrics, as grain size is increased. These results also support previous findings that suggest that landscape metric “scalograms” (the response curves of landscape metrics to changing grain size), are more likely to be successful for linking landscape pattern to ecological processes as both pattern and process in ecological systems often operate on multiple scales. This study also incorporates an economic cost for various grain dependant vegetation mapping scales. A final selection of the 50 × 50 m grain size for mapping vegetation was based on this study’s investigation of the “scalograms”, the costs, and a composite best professional judgment of seasoned scientists having extensive experience within these ecosystems.  相似文献   

11.
In this paper we present an introduction to the physical characteristics of sound, basic recording principles as well as several ways to analyze digital sound files using spectrogram analysis. This paper is designed to be a “primer” which we hope will encourage landscape ecologists to study soundscapes. This primer uses data from a long-term study that are analyzed using common software tools. The paper presents these analyses as exercises. Spectrogram analyses are presented here introducing indices familiar to ecologists (e.g., Shannon’s diversity, evenness, dominance) and GIS experts (patch analysis). A supplemental online tutorial provides detailed instructions with step by step directions for these exercises. We discuss specific terms when working with digital sound analysis, comment on the state of the art in acoustic analysis and present recommendations for future research.  相似文献   

12.
Tradable biodiversity credit systems provide flexible means to resolve conflicts between development and conservation land-use options for habitats occupied by threatened or endangered species. We describe an approach to incorporate the influence of habitat fragmentation into the conservation value of tradable credits. Habitat fragmentation decreases gene flow, increases rates of genetic drift and inbreeding, and increases probabilities of patch extinction. Importantly, tradable credit systems will change the level of fragmentation over time for small and/or declining populations. We apply landscape equivalency analysis (LEA), a generalizable, landscape-scale accounting system that assigns conservation value to habitat patches based on patch contributions to abundance and genetic variance at landscape scales. By evaluating habitat trades using two models that vary the relationship between dispersal behaviors and landscape patterns, we show that LEA provides a novel method for limiting access to habitat at the landscape-scale, recognizing that the appropriate amount of migration needed to supplement patch recruitment and to offset drift and inbreeding will vary as landscape pattern changes over time. We also found that decisions based on probabilities of persistence alone would ignore changes in migration, genetic drift, and patch extinction that result from habitat trades. The general principle of LEA is that habitat patches traded should make at least equivalent contributions to rates of recruitment and migration estimated at a landscape scale. Traditional approaches for assessing the “take” and “jeopardy” standards under the Endangered Species Act based on changes in abundance and probability of persistence may be inadequate to prevent trades that increase fragmentation.  相似文献   

13.
Natural landscapes are increasingly subjected to anthropogenic pressure and fragmentation resulting in reduced ecological condition. In this study we examined the relationship between ecological condition and the soundscape in fragmented forest remnants of south-east Queensland, Australia. The region is noted for its high biodiversity value and increased pressure associated with habitat fragmentation and urbanisation. Ten sites defined by a distinct open eucalypt forest community dominated by spotted gum (Corymbia citriodora ssp. variegata) were stratified based on patch size and patch connectivity. Each site underwent a series of detailed vegetation condition and landscape assessments, together with bird surveys and acoustic analysis using relative soundscape power. Univariate and multivariate analyses indicated that the measurement of relative soundscape power reflects ecological condition and bird species richness, and is dependent on the extent of landscape fragmentation. We conclude that acoustic monitoring technologies provide a cost effective tool for measuring ecological condition, especially in conjunction with established field observations and recordings.  相似文献   

14.
Landscape spatial organization (LSO) strongly impacts many environmental issues. Modelling agricultural landscapes and describing meaningful landscape patterns are thus regarded as key-issues for designing sustainable landscapes. Agricultural landscapes are mostly designed by farmers. Their decisions dealing with crop choices and crop allocation to land can be generic and result in landscape regularities, which determine LSO. This paper comes within the emerging discipline called “landscape agronomy”, aiming at studying the organization of farming practices at the landscape scale. We here aim at articulating the farm and the landscape scales for landscape modelling. To do so, we develop an original approach consisting in the combination of two methods used separately so far: the identification of explicit farmer decision rules through on-farm surveys methods and the identification of landscape stochastic regularities through data-mining. We applied this approach to the Niort plain landscape in France. Results show that generic farmer decision rules dealing with sunflower or maize area and location within landscapes are consistent with spatiotemporal regularities identified at the landscape scale. It results in a segmentation of the landscape, based on both its spatial and temporal organization and partly explained by generic farmer decision rules. This consistency between results points out that the two modelling methods aid one another for land-use modelling at landscape scale and for understanding the driving forces of its spatial organization. Despite some remaining challenges, our study in landscape agronomy accounts for both spatial and temporal dimensions of crop allocation: it allows the drawing of new spatial patterns coherent with land-use dynamics at the landscape scale, which improves the links to the scale of ecological processes and therefore contributes to landscape ecology.  相似文献   

15.
Understanding the driving forces behind the distribution of threatened species is critical to set priorities for conservation measures and spatial planning. We examined the distribution of a globally threatened bird, the corncrake (Crex crex), in the lowland floodplains of the Rhine River, which provide an important breeding habitat for the species. We related corncrake distribution to landscape characteristics (area, shape, texture, diversity) at three spatial scales: distinct floodplain units (“floodplain scale”), circular zones around individual observations (“home range scale”), and individual patches (“patch scale”) using logistic regression. Potential intrinsic spatial patterns in the corncrake data were accounted for by including geographic coordinates and an autocovariate as predictors in the regression analysis. The autocovariate was the most important predictor of corncrake occurrence, probably reflecting the strong conspecific attraction that is characteristic of the species. Significant landscape predictors mainly pertained to area characteristics at the patch scale and the home range scale; the probability of corncrake occurrence increased with potential habitat area, patch area, and nature reserve area. The median potential habitat patch size associated with corncrake occurrence was 11.3 ha; 90% of the corncrake records were associated with patches at least 2.2 ha in size. These results indicate that the corncrake is an area-sensitive species, possibly governed by the males’ tendency to reside near other males while maintaining distinct territories. Our results imply that corncrake habitat conservation schemes should focus on the preservation of sufficient potential habitat area and that existing management measures, like delayed mowing, should be implemented in relatively large, preferably contiguous areas.  相似文献   

16.
Patch-based landscape metrics can be biased by the boundaries and the extent of a reporting unit if the boundaries fragment patches. We call this the “boundary problem”. The effective mesh size m eff is a convenient method to quantify landscape fragmentation, that is based on the probability that two points chosen randomly in a region will be connected, e.g., not be separated by roads, railroads, or urban development. The cutting-out (CUT) procedure, used in the original computation of m eff, suffers from the boundary problem because the boundaries of the reporting units are considered to be additional barriers. Therefore, m eff will be underestimated, particularly if reporting units are embedded within the broader landscape. In this paper, we present a solution to overcome this limitation by a new method called “cross-boundary connections” (CBC) procedure. It attributes the connections between two points that are located in different reporting units to both reporting units. We systematically compare the CBC procedure to the CUT procedure and show that the boundary problem is intrinsic to the CUT procedure, while the CBC procedure is independent of the size and administrative boundaries of reporting units. In addition, we elucidate the superior performance of the new procedure in the case study of South Tyrol where m eff is being used for sustainability reporting on the level of municipalities. The new CBC procedure eliminates the bias due to the boundaries and the size of reporting units in measuring landscape fragmentation through m eff.  相似文献   

17.
Landscape ecology as a foundation for sustainable conservation   总被引:2,自引:1,他引:1  
Landscape ecology and conservation share a common focus on places, but they differ in their perspectives about what is important about those places, and the integration of landscape ecology into conservation is far from complete. I consider four ways in which landscape ecology can contribute to conservation. First, protected areas that are established for conservation are not stand-alone isolates. They exist in the context of broader landscape mosaics, which may encourage or discourage movements of individuals into and out of an area. Second, the landscape surroundings of a preserve may contain threats to the biodiversity within the preserve, many of them consequences of human activities. In combination, these relationships with the surroundings may make the “effective area” of a preserve different from that shown on a map. Third, the scale of an administrative area or of management action may not coincide with the scales of populations, disturbances, or ecological processes, creating challenges to both landscape ecology and conservation. Finally, landscapes encompass people and their activities; sustainability of conservation requires consideration of the tradeoffs between human uses and the biodiversity values of a landscape. I illustrate these four themes with a case study of the management of prairie dogs (Cynomys ludovicianus) in the Great Plains of North America, where the tensions between conservation and human land uses are particularly high. Ecologists and conservationists consider prairie dogs as keystone species in these grassland ecosystems and primary targets for conservation, but many private landowners regard them as varmints that consume valuable livestock forage and degrade rangeland condition. Effective conservation of functioning grasslands must include prairie dogs, and this in turn requires that the issues be addressed in terms of the biological, social, and cultural features of entire landscapes. Important as they are, areas protected for conservation cannot by themselves stem the tide of global biodiversity loss. The perspective must be broadened to include the landscapes where people live and work, recognizing the dynamic nature of landscapes and the factors driving land-use change. Landscape ecologists must work together to overcome the cultural differences between their disciplines, and between academic science and conservation practice and management. It can, and must, be done.  相似文献   

18.
Landscape analysis and delineation of habitat patches should take into account organism-specific behavioral and perceptual responses to landscape structure because different organisms perceive and respond to landscape features over different ranges of spatial scales. The commonly used methods for delineating habitat based on rules of contiguity do not account for organism-specific responses to landscape patch structure and have undesirable properties, such as being dependent on the scale of base map used for analysis. This paper presents an improved patch delineation algorithm, “PatchMorph,” which can delineate patches across a range of spatial scales based on three organism-specific thresholds: (1) land cover density threshold, (2) habitat gap maximum thickness (gap threshold), and (3) habitat patch minimum thickness (spur threshold). This algorithm was tested on an “idealized” landscape with landscape gaps and spurs of known size, and delineated patches as expected. It was then applied to delineate patches from a neutral random fractal landscape, which showed that as the input gap and spur thickness thresholds were increased, the number of patches decreased from 59 (low thresholds) patches to 1 (high thresholds). The algorithm was then applied to model western yellow-billed cuckoo (Coccyzus americanus occidentalis) nesting habitat patches based on spur and gap thresholds specific to this organism. Both these analyses showed that fewer patches were delineated by PatchMorph than by rules of contiguity, and those patches were larger, had smoother edges, and had fewer gaps within the patches. This algorithm has many applications beyond those presented in this paper, including habitat suitability analysis, spatially explicit population modeling, and habitat connectivity analysis.  相似文献   

19.
We evaluated support for four alternate hypotheses explaining the distribution of breeding Brown-headed Cowbirds (Molothrus ater) in forests at varying distances from the forest edge in three Midwestern USA landscapes with varying amounts of forest fragmentation (core forest area ranged from 5 to 70%). We focused on breeding cowbirds’ use of forest because of the risk of nest parasitism to forest-dwelling hosts and to identify factors affecting breeding cowbird habitat selection. We compared distances of cowbird locations in the forest from the forest edge (“edge distances”) to distances of random forest locations in the entire landscape or within individual cowbird home ranges. We analyzed 1322 locations of 84 cowbirds across three landscapes. We found support for the landscape context hypothesis that breeding cowbird preference for forest edge varied with landscape context. Ninety percent of cowbird locations were within 150–350 m of forest edge, despite the overall availability of forest at greater distances from edge (as far as 500–1450 m) both within cowbird home ranges and the entire forested landscape. Cowbird preference for edge varied by landscape context largely due to differences in the availability of forest edge. In a highly fragmented forest cowbirds utilized the entire forest and likely viewed it as “all edge.” In less fragmented forests, cowbirds preferred edge. We consider how variation in cowbird edge preference might relate to patterns in host abundance, host diversity, and host quality because cowbird movements indicate they are capable of using forest farther from edges.  相似文献   

20.
Where large disturbances do not cause landscape-wide mortality and successional change, forested ecosystems should exhibit landscape metastability (landscape equilibrium) at a scale equal to the dominant patch size of disturbance and recovery within the landscape. We investigated this in a 16-ha contiguous plot of subtropical wet forest in Puerto Rico, the Luquillo Forest Dynamics Plot (LFDP), which experienced two major hurricanes during the 15-year study and has a land use history (logging and agriculture 40 or more years hence) that differs in intensity between two areas of the plot. Using he LFDP as our “landscape,” we studied the spatial pattern of community change through time (3–5 year intervals) by calculating community dissimilarity between tree censuses for two size classes of trees (1 to <10 cm DBH and ≥10 cm DBH) in quadrats ranging in size from 0.010–1 ha and for the entire landscape, i.e., plot or land use type. The point at which the decline in community dissimilarity with quadrat size showed maximum curvature identified the dominant patch size (i.e., point of metastability). For canopy trees ≥10 cm dbh, there was no evidence that the community experienced landscape-wide successional changes in either land use type, and we found a consistent patch size of community change around 0.1 ha (range 0.091–0.107). For the understory tree and shrub community (1 to <10 cm dbh) there was some evidence of landscape-wide community changes over time in response to hurricane damage, apparently driven by interactions with the dominant canopy species, whose composition varied with land use intensity, and their species-specific susceptibility to hurricane damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号