首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Experimental investigations in an atmospheric boundary layer wind tunnel were carried out in order to study both the influence of the windward edge structure and the stand density on the flow characteristics near the canopy top of forest edges. For the edge structure investigation, two different types of forest edges were used. The taper angle was varied three times for both edge types, and all tapered edges were combined with both dense and sparse forest stands. In addition, a configuration was investigated where the airflow in the trunk space of the dense forest was blocked completely by an impermeable wall. In order to study the influence of stand density, forest stands were varied three times by removing whole rows of the originally dense model forest. The measurements show that a forest edge induces strong disturbances in the flow field at the near-edge region leading to an increased momentum transfer and to an increased wind loading on trees. The region of significant disturbances extends to a distance of about eight tree heights. Both edge density and taper angle determine the amount of volume influx through the edge, which seems to be primarily responsible for the flow field properties near the canopy top. It was found that for sparse forest stands, sloping tapered edges reduce the wind velocities nearest to the canopy. It could also be shown that the positive skewness of the near-canopy longitudinal velocity distribution is diminished with decreasing taper angle indicating that higher wind velocity fluctuations are reduced.  相似文献   

2.
Demand for goat (Capra hircus) meat in the southeastern USA is steadily increasing as a result of preferences exhibited by ethnic communities. Feeding systems that include fodder trees can be developed to take advantage of the natural preference of goats for browse. Data were collected for 2 years on a 5-year old stand of Robinia pseudoacacia L. to evaluate growth characteristics for goat browse and to develop allometric relationships in a randomized complete block design (intra-row spacing 0.5 or 1 m and coppice height 0.25 or 0.50 m) replicated six times. Allometric equations were derived from destructive harvests of 68 trees. Main branch size was not affected by intra-row spacing when trees were coppiced at 0.25 m; however, when coppiced at 0.5 m, trees spaced at 1 m had more and larger branches (P < 0.05) than trees spaced at 0.5 m. Intra-row spacing did not influence tree herbage biomass when trees were spaced at 0.5 m whereas trees coppiced at 0.25 m and spaced at 1 m produced less woody and herbaceous biomass than trees spaced at 0.5 m (P < 0.05). A strong relationship (P < 0.0001) was found between tree herbage biomass and the number of main branches greater than 0.01 m (r 2 = 0.80). The results, based on growth characteristics and tree herbage biomass production, suggest that Robinia pseudoacacia L. would be an excellent candidate as a silvopastoral component in the southeastern USA.  相似文献   

3.
The effect of spacing on growth and tree bole quality was examined in a seven year old Bilinga (Nauclea diderrichii Merril.) stand. Four spacings ranging from 2.5 m to 5.0 m, were planted in a complete randomozed block design with three replications. Survival rate was significantly affected by spacing only at age 7. Diameter at breast height (DBH), crown ratio and number of knotty trees increased with wider spacing, while basal area and number of dead limbs increased inversely with spacing. Spacing did not seem to have any significant effect on total height growth. Trends in this study confirm some commonly held beliefs about spacing's effect on tree growth and quality. The results are still of limited application due to the juvenile age of the stand.  相似文献   

4.
《Southern Forests》2013,75(2):91-98
The choice of spacing among trees for operational plantations is typically based on one or more experimental plantations that test for the response of tree and stand growth to a range of tree-to-tree distances. The most common design for spacing experiments entails rectangular plots that test different distances between rows, and between trees within rows, and with replication of plots covering one to several hectares within a single stand. Other designs may offer more information with simpler layouts, and we examined the insights that could be obtained from a Nelder (fan-shape) design, where spacing among trees varies with the radial distance from a central point. The response of Eucalyptus dunnii seed-origin trees to spacing was essentially similar between a classic plot design replicated in four blocks (tree spacing from 4.5 to 9.2 m2 tree?1, covering 1.4 ha of land), and a Nelder design (tree spacing from 2.1 to 44.0 m2 tree?1, covering 0.6 ha of land). The Nelder design showed slightly higher volume increment through 10 years of stand development than the block design (for the range of overlap in spacing), but the treatment effect of spacing was essentially identical between the designs at the level of both trees and stands. A second Nelder experiment used clonal-origin trees from six clones, testing for differences in responses to spacing among clones. In all three spacing experiments and for all clones, individual-tree growth was greatest at the widest spacing and stand-level growth was highest at the tightest spacing. These trends were much clearer across the wider range of spacing tested in the Nelder plots (228 to 4 760 trees ha?1) than in the narrower range of spacing tested in the block design (1 111 to 2 222 trees ha?1). Current annual increment reached a higher, earlier peak at narrow spacing. At 8.5 years, the light use efficiency (stem volume growth per unit of light intercepted) was about twice as great for trees at narrow spacing than at wider spacing. Overall, the Nelder designs provided the same information on responses to spacing as the classic block design. The simplicity and small size of Nelder designs provide valuable insights for basic decisions on spacing for operational plantations, particularly when forestry extends into new geographic areas, new genotypes, and new silvicultural techniques.  相似文献   

5.
Wind damage to forests is an important ecological disturbance factor. At the same time, it can have serious economic consequences due to a reduction in timber production. Current models for predicting the risk of wind damage are useful, but generally only focus on the “mean” tree within uniform stands. This paper presents measurements made of wind loading on trees of different sizes within four forest stands of different structure and management history, but all well-acclimated to current wind conditions. Each tree demonstrated a linear relationship between the maximum hourly turning moment and the square of the average hourly wind speed at the canopy top; we defined this ratio (the gradient of the line M max vs. u 2) as the turning moment coefficient (T C). T C was correlated with tree size, in a relationship that differed little between the four forest sites despite the differences between the stands. The relationship between T C and individual tree competition within each stand was investigated, using both distance-independent and distance-dependent competition indices. All sites showed decreasing T C with increasing competition. However, the relationships differed between sites and would also be expected to change through time for a single site. The distance-dependent indices offered no improvement over the simpler, non-spatial indices that required only a diameter distribution. We suggest how, subject to further work, the results presented could be applied to calculate the risk of wind damage to trees of different sizes within a forest stand, and how the risk of wind damage to individual trees might change in response to thinning.  相似文献   

6.
The effects of initial spacing and tree class on the basic density of Norway spruce were evaluated in a stand on a fertile site in southwestern Sweden. The basic density at 0 and 4 m above ground level was significantly higher for trees planted with an initial spacing of 1.5 m than for trees planted with wider initial spacings. A decrease in initial square spacing from 2.5 m to 1.5 m had little effect, of small practical importance, on the basic density. The density at 0 and 4 m above ground was significantly higher for the suppressed trees than for the intermediate and dominant ones, and for the intermediate trees compared with the dominant trees. Differences in basic density appeared to be due mainly to differences in growth‐ring width. Basic density decreased outwards from the pith to the bark at 1.3 and 4 m above ground.  相似文献   

7.
《Southern Forests》2013,75(4):311-318
Average wood density of 38-year-old Cariniana legalis (Mart.) Kuntze, a Brazilian native forest species, was found to increase with faster growth and lower stocking, while decreasing from pith to bark. A complete randomised block design was planted with five blocks. Ten trees were harvested in each of three spacing treatments. We hypothesised that the stand stemwood production would not significantly differ depending on tree spacing. However, tree growth would be higher in the wider spacing and wood density would be higher in the narrower spacing. The diameter growth of trees was higher at 3 m × 2.5 m than at 3 m × 2 m and 3 m × 1.5 m. Nevertheless, this higher individual tree growth at 3 m × 2.5 m did not compensate for the greater tree stock density at 3 m × 1.5 m with stand stemwood production at 38 years of 530 m3 ha?1 and 649 m3 ha?1, respectively. These results suggest that C. legalis, which can produce up to 17 m3 ha?1 y?1 of medium-to high-density timber – about 800 kg m?3 – is a promising native species for forest plantations in Brazil.  相似文献   

8.
Forest planning needs to assess various risks that may cause economic or other losses to forest owners. This study aimed at developing a wind risk assessment method, which considers the occurrence and directional distribution of strong winds, and the effect of snow loads and support by neighbouring trees on the expected wind damage. For this purpose, regression models were developed for predicting the critical wind speeds needed to uproot Scots pine, Norway spruce and birch trees at the downwind stand edges in Finnish conditions under unfrozen soil conditions, based on the characteristics of both downwind and upwind stand, and additional snow load on tree crowns. Furthermore, a risk index was developed for the forest landscape, based on the critical wind speeds of stands, occurrence of strong winds and their directional distribution, and the prevailing snow loading in the region. Thereafter, the mean risk index was used as an objective variable in heuristic optimization in forest planning to demonstrate how the optimal cuttings and the spatial layout of the landscape may change depending on the wind and snow conditions and the support that trees provide to each other. Our results show that the directional distribution of strong winds shape the optimal forest landscape structure markedly. Consideration of snow loading in the calculation of critical wind speeds increased the mean risk clearly and produced slightly more aggregated landscape structures in terms of tree height. The consideration of support that neighbouring trees provide to each other had minor effects. To conclude, the consideration of risk of wind induced damages in forest planning calculations clearly affects the selected cutting strategies and impacts the spatial layout of the landscape.  相似文献   

9.
The effects of initial tree spacing on wood density at breast height were examined for 22-year-old Japanese larch (Larix kaempferi). The experiment involved the use of three plots with different initial tree spacing densities (300, 500, and 1000 trees/ha). For five trees selected from each plot, the total tree height, diameter at breast height, height to the base of the live crown, and crown diameter were measured. Ring width and wood density for individual growth rings were determined by X-ray densitometry. A mixed-effects model was applied for fitting the radial variation in wood density in relation to initial spacing. Models having various mean and covariance structures were tested in devising an appropriate wood density model. The model, consisting of the mean structure with quadratic age effects and heterogeneous first-order autoregressive covariance, was able to describe the radial variation in wood density. Closer spacing of trees (1000 trees/ha) resulted in a faster increase in wood density from the pith outward than for more widely spaced trees, indicating that initial tree spacing may influence the age of transition from juvenile to mature wood.  相似文献   

10.
The effects of stand density on increment and branch properties were studied in three spacing experiments of Norway spruce [Picea abies (L.) Karst.]. The stand densities ranged from 350 stems ha−1, regarded as open-grown trees, up to 1,600 stems ha−1, corresponding to the density recommended for forestry practice. Properties of all the branches were measured from the stem apex downwards. The study material included a total of 5,661 branches from 45 trees. Increasing stand density resulted in a decrease in radial increment as well as shorter and narrower crowns, but it had no effect on height increment. The average number of spike knots per tree was 0.87, 0.27, and 0.33 in densities of 350, 700 and 1,600 ha−1, respectively. Additionally, in the widely spaced stands of 350 stems ha−1, the fraction of trees having spike knots was high (over 50%). At a density of 1,600 ha−1, the sample trees had somewhat less branches in a whorl compared with the more widely spaced plots. The most pronounced effect of stand density was the increase in branch diameter with decreasing stand density. At a density of 350 ha−1, the maximum branch diameter of all the sample trees exceeded the diameter limit of quality class B in the European quality requirements for round wood. The results give some indication that trees subjected to severe competition would produce smaller branches per unit of crown projection area. However, the possibilities for reducing branch dimensions relative to stem and crown size through competition appear quite restricted.  相似文献   

11.

The main objective of this case study was to explore the possible influence of forest management on the levels and distribution of biomass and carbon (C) in even-aged stands of Norway spruce [Picea abies (L.) Karst.] in Denmark. Data originated from a long-term thinning experiment and an adjacent spacing experiment at stand ages of 58 and 41 years, respectively. Biomass of 16 trees from different thinning and spacing treatments was measured or partly estimated, and soils were sampled for determination of C stocks. All trees in each plot were measured for stem diameter and some for total height, to allow for scaling-up results to stand-level estimates. For trees of similar size, foliage biomass tended to be higher in the spacing experiment, which was located on slightly more fertile land. Foliage biomass increased with increasing thinning grade, but the effect could not be separated from that of tree size. At stand level, foliage biomass tended to increase with increasing spacing as well as with increasing thinning grade. For branchwood, stems and roots (including below-ground stump), the biomass increased with increasing tree size and stand volume at tree and stand level, respectively, but no differences between stands, spacings or thinning grades were observed, apart from that expressed by tree size or stand volume. At stand level, C stocks of all biomass compartments decreased with increasing thinning grade, while the distribution between compartments was hardly influenced. The ratio between above-ground and stem biomass was about 1.21 at stand level, while the ratio between below- and above-ground biomass was about 0.17. Thinning influenced the C stock of the forest floor and mineral soil oppositely, resulting in no effect of thinning on total soil C.  相似文献   

12.
To estimate the wind force that causes windthrow damage to a tree, the drag coefficients of actual-sized trees were evaluated by a field test method. In this method, wind velocity and stem deflection were monitored simultaneously. The wind force acting on a tree crown was calculated from stem deflection; stem stiffness was evaluated by conducting tree-bending tests. The results of tests conducted on three poplar trees showed that drag coefficient decreased with an increase in wind velocity. Although the variation in the drag coefficient was large at low wind velocity because of the vibrating behavior of the stem subjected to variable wind force, the variation at wind velocities above 10 m/s was small. The average drag coefficient at a wind velocity of 30 m/s was estimated by the curve-fitting of a power function to the wind velocity-drag coefficient relationship to be 0.102, which was smaller than that of actual-sized conifers studied in previous wind tunnel experiments. The drag coefficients of these crown areas in the defoliation season were smaller than those measured in the leafy season.  相似文献   

13.
Abstract

Using data from nine spacing experiments of Norway spruce (Picea abies (L.) Karst.) in Norway, covering wide ranges of site index and initial spacing, this study evaluated stand basal area and volume responses to initial spacing and examined whether these responses varied by stand ages or site quality. We developed nonlinear regression models that described the standing basal area or volume responses to initial spacing along with site index and stand ages. The results show that closer spacings produced higher standing basal area and volume than wider spacings. The response curves are highly nonlinear in younger stands and become nearly linear in mid-rotation stands, indicating stronger responses at younger ages and weaker responses as age increases. Furthermore, for young stands, spacing effects are stronger at closer than at wider spacings. The basal area and volume responses to initial spacing tend to be similar across site indices. However, the interaction of site index and stand age on spacing responses makes it difficult to isolate the effect of site index on spacing responses. Mortality is higher and begins earlier at closer spacings than wider. The mean diameter of the largest 100, 400, 600, and 800 trees ha?1 increased with spacing in three out of the nine experiments. Dominant height did not vary by initial spacing for any of the experiments. The findings suggest that the extra volume production in stands of closer initial spacing is restricted to early stand development.  相似文献   

14.
The growth and structural development of Scots pine (Pinus sylvestris L.) trees growing at different spacing was simulated using a model based on the dry matter production per needle biomass unit and its allocation to needles, branches and stem. Special emphasis was given to the effect of stand density on the growth of the crown system and its implications on branchiness and timber quality. The simulations showed that the needle biomass culminates considerably earlier than the branch biomass with a time lag inversely related to the stand density. The lengths of living and dead crown were also inversely related to stand density. The resulting differences in branchiness were especially obvious in the early development of the tree stands. In the long run these differences tend to disappear, indicating equal external branchiness independently of the initial spacing for mature stands of Scots pine. The internal branchiness, however, was particularly sensitive to the initial spacing.  相似文献   

15.
The occurrence of pitch pockets in a stand of Picea abies [L.] Karst, was studied, focusing on variations in amount, number and size of pitch pockets within trees and between trees from the centre and the border part of a stand. Pitch pockets were more abundant in the border part, which had a lower site index and was also more exposed to the wind. The highest frequency of pitch pockets was noted for sawn faces near the pith of the tree from around the half tree height. The size of pitch pockets on sawn faces is described by two exponential functions. In both parts of the stand there was a similar increase of pitch pocket length with increasing distance from the pith, but generally trees in the border part had longer pitch pockets. In order to determine the relative amount of pitch pockets accurately at different distances from the pith and to explain the variation within and between trees, further analyses are necessary.  相似文献   

16.
Model computations were made on the critical combination of snow loading and windspeed for snow damage of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and birch sp. (Betula sp.) at the newly formed stand edge with varying tree height and stem taper using the model developed by H. Peltola, S. Kellomäki and H. Väisänen (1996, HWIND: A Mechanistic Model for Wind and Snow Damage of Scotts Pine, Norway Spruce and Birch sp.) for the mechanism of wind and snow damage. In the computations, the total turning moment arising from the wind and snow load and from the bending of stem and crown was calculated along with the breaking stress of the stem and root anchorage. Windspeed variation within the crown and the vertical distribution of snow, stem and crown weight were also taken into account.According to computations, the critical combination of snow and wind loading for stem breakage and uprooting of trees was caused mainly by accumulation of snow on tree crowns, rather than by wind, which did, however, increase the risk of damage. The risk of damage increased along with stem taper decrease or tree height increase for all tree species studied. However, Scots pine and Norway spruce were found much more susceptible to snow damage than birch, which (being leafless) had much less crown area for snow attachment and wind loading.The trees most likely to suffer stem breakage were slightly tapering Scots pines and Norway spruces with tapers of 1:120 for varying tree heights of 12–20 m under short-term snow loading of 60 kg m−2, i.e. they would have suffered stem breakage under windspeeds of less than 9 m s−1 above the tree canopy top. Respectively, even Scots pine and Norway spruce with tapers of 1:100 were at risk of stem breakage through sustained snow loading of 60 kg m−2. In addition, even snow loads of 20–40 kg m−2 were found big enough to cause stem breakage of these trees with stem tapers of 1:120 during sustained snow loading. Correspondingly, similar pines and spruces with stem tapers of 1:120 were found to even more liable to be uprooted during conditions of unfrozen soil than of having their stem broken by short-term snow loading of 20–60 kg m−2, i.e. less windspeed was needed to cause uprooting. However, pines and spruces with tapers of 1:80 were not at risk for stem breakage and uprooting. This was because snow would have more probably been dislodged from the tree crowns by windspeeds greater than 9 ms−1 which are needed to worsen the damage. Nor would very slender birch without leaves have suffered stem breakage or uprooting under any circumstances with windspeeds of less than 9 ms−1.  相似文献   

17.
Wind is the major abiotic risk factor in Finnish forests. Therefore, tools that help managers to assess the risk of wind damage are required. This study developed simple regression models for predicting the critical wind speed needed to uproot Scots pine, Norway spruce and birch trees at the stand edges in Finnish conditions, using the characteristics of the retained forest both downwind and upwind stands as predictors. Using information on the prevailing wind conditions in the region, the critical wind speeds were converted into probabilities of wind damage, from which a mean risk index was calculated. The mean risk index was used as an objective variable in heuristic optimisation. The results of minimizing the mean risk index were compared to other objective variables such as minimal height differences between adjacent stands. The residuals of the regression models of critical wind speeds were small, especially in Scots pine and birch. Increasing tree height of the downwind stand or area of the upwind stand (gap size) decreased the critical wind speed regardless of tree species, whereas increases in the dbh/height ratio of the downwind stand increased the critical wind speed. The shelter effect of upwind stand height was stronger in Norway spruce than in other tree species, whereas the effect of tree height of the downwind stand was larger in Scots pine and birch. Minimization of the mean risk of wind damage within forest landscapes led to smooth and non-fragmented landscape structures in terms of tree height. Incorporating even-flow constraints into the planning model led to a slight increase in the mean risk of wind damage. Of the surrogate methods for risk assessment minimization of height differences between adjacent stands performed well but not equally well as minimization of the mean risk index.  相似文献   

18.
Variation in the number and diversity of bark beetles in spaced mature lodgepole pine stands in the East Kootenay region of British Columbia was analyzed in relation to location (site), spacing treatment and years following treatment. We analyzed the number of bark beetles and the number of bark beetle species that emerged from stumps or were captured in flight traps in the first five years following spacing. We also investigated the incidence of bark beetle attacks on the remaining trees and the mean dates of emergence from stumps and of capture in flight traps for the common species. Observations were made on three sites, each having three treatments: 4 m × 4 m spacing, 5 m × 5 m spacing, and an untreated control. The mean density of bark beetles emerged from stumps was different among sites and years but not between spacing treatments. There was no statistically significant variation in the number of bark beetle species captured in flight traps by site, spacing treatment, years, or spacing treatment and years. Significantly more bark beetles were captured in the 4 m × 4 m spacing treatment than in the control. The number of bark beetles captured was the highest in the first 2 years following treatment. Up to 26 species of bark beetles, excluding ambrosia beetles, were captured in flight barrier traps. There was no difference in species diversity by site or treatment indicating that species diversity in mature lodgepole pine is relatively stable over large areas. Of the 213 trees that sustained at least 10 attacks by bark beetles on the lower 2 m of the bole, 59.1% occurred in the spaced plots but only 18.2% of those were successful, versus 74.7% success in the infested trees in the control plots. The majority of infested trees contained Ips sp., Dendroctonus valens and D. murrayanae. Of the seven trees attacked by mountain pine beetle (D. ponderosae) only one tree was located in a spaced plot.  相似文献   

19.
Two models of interception loss have been tested against new field data obtained in widely-spaced stands of Sitka spruce trees. The Gash model and a modified version of the Rutter model, have been used with data from an automatic weather station, to predict interception loss using parameters obtained from observations made in 1988 and 1989. The predictions for an eight-week period during 1987 were compared with measurements of interception loss. Good agreement between observed and predicted interception loss was obtained with both models over the whole period. The modified Rutter model gave better predictions than the Gash model for individual storm events and performed better at the wider spacings. The sensitivity of both models to the major characteristics of the tree stand structure in agroforestry systems was also investigated and it was shown that interception loss was most sensitive to boundary layer conductance and free throughfall coefficient.  相似文献   

20.
Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号