首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The National Reference Laboratory for classical swine fever (CSF) virus in the Netherlands examined more than two million samples for CSF virus or serum antibody during the CSF epizootic of 1997–1998. The immense amount of samples and the prevalence of border disease (BD) virus and bovine viral diarrhoea (BVD) virus infections in Dutch pig herds necessitated the diagnostic efforts of the laboratory to be focused on generating CSF specific test results throughout the eradication campaign.

Detection of 82% of the 429 outbreaks was achieved through the combined use of a direct immunofluorescence and peroxidase assay (FAT/IPA) with samples (tonsils) collected from clinically-suspected pigs. This suggests that in the majority of the outbreaks, the pigs had clinical signs that were recognised by the farmer and/or veterinarians, indicating the presence of CSF virus in a pig herd. A positive diagnosis of 74% of all the tissue samples (tonsils) collected at infected pig holdings was established by FAT. More than 140,000 heparinised blood samples were examined by virus isolation, resulting in the detection of 4.5% of the infected herds. CSF virus was isolated in approximately 29% of all the blood samples collected from pigs at infected or suspected farms.

Several serological surveys — each done within a different framework — led to the detection of 13.5% of the total number of outbreaks. The detection of CSF virus antibody in serum was carried out by semi-automated blocking ELISA. Approximately 28.5% of the sera which reacted in the ELISA were classified as CSF virus-neutralising antibody positive and 26.5% as positive for other pestiviruses following the virus neutralisation test (VNT).

We concluded that two of the CSF laboratory diagnostic methods described were determinative in the eradication campaign: first, the FAT for the screening of diseased pigs; and second, the ELISA and VNT when millions of predominantly healthy pigs needed to be screened for the presence of CSF serum antibody. Decision-making on the basis of results generated by either method can, however, be seriously hindered when samples are examined from pig herds with a high prevalence of non-CSF pestiviruses.  相似文献   


2.
The 1997/1998 epizootic of classical swine fever (CSF) in an area with high pig density in the Netherlands is described. The epizootic, which numbered 429 outbreaks, was controlled and finally eradicated after 14 months without resorting to vaccination. A further almost 1300 herds (1.1 million pigs) at close proximity of confirmed outbreaks were preventively culled because of the risk of having been infected. The pros and cons of this so-called "pre-emptive slaughter" are discussed.The long-lasting movement restrictions caused severe overcrowding especially in breeding farms. For reasons of animal welfare 6.5 million weaners and adult pigs had to be killed and destroyed, whereas another 2.6 million 3-17 days old piglets were euthanised to save long-term destruction capacity. The presumed routes of infection and factors influencing the epizootic are explained, as well as the various methods to bring the epizootic to a halt. The strategy for detecting outbreaks in an early stage, and the type of samples to be collected for laboratory diagnosis are emphasised from the general point of application. The direct costs of the epizootic, losses of exports not included, are estimated at US$ 2 billion.  相似文献   

3.
The 1997-1998 epidemic of classical swine fever in the Netherlands   总被引:9,自引:0,他引:9  
In 1997, the pig husbandry in the Netherlands was struck by a severe epidemic of classical swine fever (CSF). During this epidemic 429 CSF-infected herds were depopulated and approximately 1300 herds were slaughtered pre-emptively. In addition millions of pigs of herds not CSF-infected were killed for welfare reasons (over crowding or overweight). In this paper, we describe the course of the epidemic and the measures that were taken to control it.The first outbreak was detected on 4 February 1997 in the pig dense south-eastern part of the Netherlands. We estimate that CSF virus (CSFV) had already been present in the country by that time for 5-7 weeks and that the virus had been introduced into approximately 39 herds before the eradication campaign started. This campaign consisted of stamping-out infected herds, movement restrictions and efforts to diagnose infected herds as soon as possible. However, despite these measures the rate at which new outbreaks were detected continued to rise. The epidemic faded out only upon the implementation of additional measures such as rapid pre-emptive slaughter of herds in contact with or located near infected herds, increased hygienic measures, biweekly screening of all herds by veterinary practitioners, and reduction of the transportation movements for welfare reasons. The last infected herd was depopulated on 6 March 1998.  相似文献   

4.
The objective of this paper is to describe the severe epidemic of classical swine fever (CSF) in The Netherlands in 1997–1998 under a policy of non-vaccination, intensive surveillance, pre-emptive slaughter and stamping out in an area which has one of the highest pig and herd densities in Europe.

The primary outbreak was detected on 4 February 1997 on a mixed sow and finishing pig herd. A total of 429 outbreaks was observed during the epidemic, and approximately 700 000 pigs from these herds were slaughtered. Among these outbreaks were two artificial insemination centres, which resulted in a CSF-suspect declaration of 1680 pig herds (mainly located in the southern part of The Netherlands). The time between introduction of CSF virus (CSFV) into the country and diagnosis of CSF in the primary outbreak was estimated to be approximately 6 weeks. It is presumed that CSFV was spread from The Netherlands to Italy and Spain via shipment of infected piglets in the beginning of February 1997, before the establishment of a total stand-still of transportation. In June 1997, CSFV is presumed to be introduced into Belgium from The Netherlands.

Pre-emptive slaughter of herds that had been in contact with infected herds or were located in close vicinity of infected herds, was carried out around the first two outbreaks. However, this policy was not further exercised till mid-April 1997, when pre-emptive slaughter became a standard operational procedure for the rest of the epidemic. In total, 1286 pig herds were pre-emptively slaughtered. (approximately 1.1 million pigs). A total of 44 outbreaks (10%) was detected via pre-emptive slaughter.

When there were clinical signs, the observed symptoms in infected herds were mainly atypical: fever, apathy, ataxia or a combination of these signs. In 322 out of 429 outbreaks (75%), detection was bases on clinical signs observed: 32% was detected by the farmer, 25% by the veterinary practitioner, 10% of the outbreaks by tracing teams and 8% by screening teams of the veterinary authorities. In 76% of the outbreaks detected by clinical signs, the farmer reported to have seen clinical symptoms for less than 1 week before diagnosis, in 22% for 1–4 weeks before diagnosis, and in 4 herds (1%) the farmer reported to have seen clinical symptoms for more than 4 weeks before diagnosis.

Transportation lorries played a major role in the transmission of CSFV before the primary outbreak was diagnosed. It is estimated that approximately 39 herds were already infected before the first measures of the eradication campaign came into force.

After the first measures to stop the spread of CSFV had been implemented, the distribution of the most likely routes of transmission markedly changed. In most outbreaks, a neighbourhood infection was indicated.

Basically, there were two reasons for this catastrophe. Firstly, there was the extent of the period between introduction of the virus in the region and detection of the first outbreak. As a result, CSFV had opportunities to spread from one herd to another during this period. Secondly, the measures initially taken did not prove sufficient in the swine- and herd-dense region involved.  相似文献   


5.
The performance of pathological findings as a diagnostic tool for the detection of classical swine fever (CSF) outbreaks during the 1997/1998 CSF-epidemic in The Netherlands was evaluated by constructing and analysing receiver operating characteristic (ROC) curves. This was done at the individual pig level and at the submission level (a group of pigs from the same herd submitted together for post-mortem investigation). At post-mortem examination, the tonsils, spleen, ileo-caecal valve and renal pelvis were sampled, sent to the reference laboratory, and tested by means of a CSF-specific fluorescent antibody test in combination with a confirmatory test. This resulted in an infection status at the individual pig level. The infection status and pathological findings of 1072 individual pigs from a total of 230 infected herds were included in this analysis. We also included submissions of pigs from herds that were sent to post-mortem examination because of a clinically CSF-suspect situation but afterwards were concluded to be from non-infected herds. Infection status and pathological findings of 1224 individual pigs from a total of 241 non-infected herds were included in the analysis. Pneumonia, pleuritis, chronic bronchitis, pulmonary oedema, chronic gastric ulceration, dry faecal contents in the colon, conjunctivitis, haemorrhages in the renal pelvis, renal haemorrhages, splenic enlargement, haemorrhages in the urinary bladder, haemorrhagic and enlarged lymph nodes were the most frequently recorded pathological findings during a post-mortem examination of pigs submitted in a CSF-suspect clinical situation. However, some of these pathological findings (e.g. pneumonia, pleuritis) were almost evenly distributed in infected and in non-infected pigs, resulting in a high sensitivity combined with a low specificity. The area under the ROC curve of pathological findings at the individual pig level and at the submission level was 0.720 and 0.782, respectively, which was significantly (P<0.0001) larger than the area under the random ROC curve. It was concluded that, although gross pathology is a legitimate test, its quantitative contribution to the detection of CSF is limited.  相似文献   

6.
In Germany, eleven outbreaks of CSF in domestic pig holdings were reported in 2002. They occurred exclusively in regions where CSF virus circulated in the wild boar population. In ten cases the phylogenetic analysis revealed that the isolates from domestic pigs and wild boar had identical sequences in the 5' non-translated region (5'NTR). However, in one case a subtype was isolated which was slightly different from the virus subtype found in the wild boar population of that region. This case is decribed in detail. The epidemiological significance of different diagnostic methods is discussed, in particular the genetic typing of CSF virus isolates.  相似文献   

7.
Between March and July 1997, a devastating outbreak of foot-and-mouth disease (FMD), serotype O, occurred in pigs in Taiwan. A total of 6,147 pig farms with more than 4 million pigs were infected, and 37.7 per cent of the pigs in Taiwan either died (0.18 million pigs) or were killed (3.85 million pigs). The epidemic reached its peak during the fifth week after it was first recognised. During the eighth and ninth weeks, a two-dose blanket vaccination programme was instituted which led to a large reduction in new outbreaks. Except for two cities, the whole of Taiwan was declared an FMD-infected zone. During the four months in which new farm outbreaks occurred, 21.7 per cent of the pigs on infected farms showed clinical signs, and there was an overall mortality of 3.95 per cent. During the early stages of the epidemic, the incubation period was as short as 24 hours and the case fatality rates for suckling piglets reached 100 per cent. The financial cost of the epidemic was estimated at US$ 378.6 million, including indemnities, vaccines, carcase disposal plus environmental protection, miscellaneous expenses, and loss of market value. Owing to the ban on exports of pork to Japan, it is estimated that the total economic cost to Taiwan's pig industry will be about US$ 1.6 billion.  相似文献   

8.
Several routes contribute to the spread of classical swine fever (CSF) during outbreaks of this disease. However, for many infected herds in recent epidemics, no route of virus introduction could be indentified. To obtain more insight into the relative importance of secretions and excretions in transmission of CSF virus, a model was developed. This model quantified the daily transmission probabilities from one infectious pig to one susceptible pig, using quantitative data on: (a) virus excretion by infected pigs, (b) survival of virus in the environment and (c) virus dose needed to infect susceptible pigs. Furthermore, the model predicted the relative contribution of secretions and excretions to this daily probability of infection of a susceptible pig. Three virus strains that differed in virulence were evaluated with the model: the highly virulent strain Brescia, the moderately virulent strain Paderborn and the low virulent strain Zoelen. Results suggest that it is highly probable that susceptible pigs in contact with Brescia or Paderborn infected pigs will be infected. For a pig in contact with a Zoelen infected pig, infection is less likely. When contact with blood is excluded, the predicted overall probability of infection was only 0.08 over the entire infectious period. The three strains differed in the relative contribution of secretions and excretions to transmission, although blood had a high probability of causing infection of a susceptible pig when in contact with a pig infected with any strain. This supports the statement that during outbreaks, control measures should ideally be based on the characteristics of the specific virus strain involved, which implies the development of strain-specific measures.  相似文献   

9.
Knowledge of the sensitivity of diagnostic tests for infectious diseases under field conditions can be used to design a surveillance program that increases the effectiveness of the control policy. In this study, the sensitivity of tests for the detection of classical swine fever (CSF) virus (CSFV) under field conditions was estimated without knowledge of the true disease status of the animals tested. During the CSF epidemic of 1997-1998 in The Netherlands, tonsil samples from pigs of CSF suspect farms were collected for laboratory diagnosis of CSE These specimens were tested in a fluorescence antibody test (FAT1) for the presence of CSFV antigen. When at least 1 specimen in a particular sample series from a farm was positive, this farm was declared CSFV infected. Specimens of that series, either FAT1 negative (98) or FAT1 positive (127), were subsequently tested again (FAT2). After that, a suspension was made of the remaining tissue, and this suspension was evaluated with a virus isolation test. In total, 225 tonsil specimens were examined. A statistical model was formulated, and the sensitivity of the 3 tests and the prevalence of positive specimens in the sample were estimated by the method of maximum likelihood. The sensitivity of the FAT1, the test that was used for confirmation of CSFV infection in a pig herd, was approximately 78% (95% confidence interval [CI] = 62-92%). The effectiveness of the selection process of animals on the farm by the veterinarian was estimated to be 77% (64-87%). The sensitivity of the combination of FAT1 and FAT2 (60%) indicates that at least 5 animals should be selected on a CSF-suspect farm to gain a detection probability for CSFV of 99%.  相似文献   

10.
Classical swine fever (CSF) is a globally significant disease of swine caused by classical swine fever virus. The virus affects the wild boars and pigs of all age groups, leading to acute, chronic, late-onset or in-apparent course of the disease. The disease causes great economic loss to the piggery industry due to mortality, stunted growth, poor reproductive performance, and by impeding the international trade of pig and pig products. In India, CSF outbreaks are reported from most of the states wherever pig rearing is practiced and more frequently from northeast states. In spite of the highly devastating nature and frequent outbreaks, CSF remained underestimated and neglected for decades in India. The country requires rapid and sensitive diagnostic tests for an early detection of infection to limit the spread of the disease. Also, effective prophylactics are required to help in control and eradication of the disease for the development of the piggery industry. This review looks into the economic impact; epidemiology of CSF highlighting the temporal and spatial occurrence of outbreaks in the last two decades, circulation, and emergence of the virus genotypes in and around the country; and the constraints in the disease control, with the aim to update the knowledge of current status of the disease in India. The article also emphasizes the importance of the disease and the need to develop rapid specific diagnostics and effective measures to eradicate the disease.  相似文献   

11.
Outbreaks of Classical Swine Fever (CSF) occurred in spring 2006 in Germany close to the Dutch border. On 6th April Dutch pig farmers were given the possibility to submit blood samples directly via their veterinary practitioner to the National Reference Laboratory for CSF if their pigs had non-specific clinical symptoms or if pigs were being treated with antibiotics. The pig farm was not quarantined and was not visited by the veterinary authorities. Over a period of 9 weeks 156 pig farmers submitted whole blood samples via 50 different veterinary practices. All samples tested negative in the PCR test. These pig farmers and veterinary practitioners were asked to respond to a postal questionnaire with questions regarding their experience with this new diagnostic possibility, the distribution of the costs involved, a comparison with other instruments, such as official notification or use of a leukocyte count test, and their knowledge of clinical signs of CSF. 65 pig farmers (42%) and 33 veterinary practices (66%) returned the questionnaire. The main results indicated that pig farmers (72%) would use this type of exclusion diagnostics sooner than that they would approach the veterinary authorities (practitioners: 86%). Moreover the respondents considered the fact that the farm was not quarantined immediately to be an advantage (pig farmers, 79%; practitioners, 88%). 32 percent of the pig farmers were not aware that they were required to submit blood samples if pigs were being treated with antibiotics (practitioners: 11%). The majority of pig farmers and practitioners were not satisfied with the current distribution of the costs involved: in their opinion the costs of the PCR test, the costs of the veterinary practitioner and the costs for shipping the samples to the reference laboratory should be paid out of the Animal Health Fund (50% government and 50% industry) or by the government. If the current distribution of the costs is not changed, a large proportion of the pig farmers indicated that they would not use this form of exclusion diagnostics for CSF in the future. Pig farmers appeared to have a rather limited knowledge of the clinical signs of CSF: 33% of the pig farmers could mention maximally three clinical signs of CSF, and 7% could not mention a single clinical sign of CSF and said they were entirely dependent on the practitioners' ability to judge a CSF-suspect situation.  相似文献   

12.
A stochastic simulation model to investigate the transmission of classical swine fever (CSF) virus within an infected farm is described. The model is structured according to the processes that occur within and between management groups (pig units or houses). It uses the individual pig as the unit of interest and estimates the number of animals in the states 'susceptible', 'infected', 'infectious', and 'removed' for each day of the disease incident. Probabilities are assigned to the transitions between states. The probability of a pig becoming infected is made dependent on the probability of contact between a susceptible and an infectious pig as well as the probability of transmission. The more pigs become infected in one unit, the more likely is subsequent spread to another management group on the farm. Ultimately, the probability that a shipment of pigs from the farm will include at least one infected pig can be estimated in order to identify high-risk movements during a CSF epidemic. The model results were compared with experimental data on CSF transmission within one pig unit (management group). It could be shown that the model was capable of reproducing the experimentally observed infection and mortality rates. To improve the input parameters and for further model validation, more experimental data and field data from CSF outbreaks are needed.  相似文献   

13.
In the course of the 1997-1998 CSF epidemic in the Netherlands, two semen collection centres (SCC) became infected. As an eradication strategy for an acute crisis situation, it was concluded that all semen of the boars at the SCCs collected and distributed in the risk period of 28 January to 7 March 1997 was potentially contaminated (suspect semen). As a consequence, a total of 1,680 pig herds, mainly located in the southern part of the Netherlands, were officially declared CSF suspect. The purpose of this study was to investigate whether infection of farms through contaminated semen played a significant role in the CSF epidemic. A total of 123 CSFV infected herds were identified, that had received suspect semen from one or both of the infected SCCs. In 87 out of these 123 infected herds, infection by way of artificial insemination (AI) could be excluded either according to the insemination information or the infection pattern observed. In only 21 herds, infection by way of AI was regarded as possible according to the insemination information and infection pattern. Owing to missing information, no conclusion could be drawn about the possibility of infection of 15 farms by way of AI. Thus, we conclude that at most 36 farms may have been infected through AI during the CSF epidemic in the Netherlands.  相似文献   

14.
In the Spring of 2009, a veterinarian reported suspected classical swine fever (CSF) on a multiplier pig farm in the southern part of The Netherlands (close to the Belgian border). Over a 5-week period there had been a number of sick sows and an excessively high percentage of stillborn and preterm piglets. Sick animals were treated with anti-inflammatory drugs and antibiotics, but did not respond as well as anticipated. A visiting specialist team from the Food Safety Authority could not exclude CSF as the cause of the clinical problems and sent blood samples to the reference laboratory in Lelystad for a PCR test on CSF antigen. Fortunately, test results obtained 6 hours later were negative for CSF, and the disease control measures were lifted. It later appeared that porcine reproductive and respiratory syndrome (PRRSV) might have been responsible for the problems. But what if CSF had caused the clinical problems? A CSF-transmission model was used to simulate CSF outbreaks dependent on the duration of the high-risk period (HRP). As the duration of the HRP increased, there was an exponential growth in the number of pig farms infected during this period. Simulations also showed that with a longer HRP, the virus spread over greater distances from the source herd. It was also investigated whether a possible CSF outbreak could be detected on the basis of an increased mortality and hence increased number of cadavers sent to a rendering plant. However, the calculated mortality incidence was not sensitive enough to serve as an alarm signal. It is recommended that CSF-exclusion diagnostics be used much earlier in similar clinical situations on pig farms.  相似文献   

15.
The results of the laboratory tests carried out by the Institute for Animal Science and Health (ID-Lelystad), the Netherlands, on samples collected during the Classical Swine Fever (CSF) epidemic 1997-1998 are summarized in this article. The relevance of the different laboratory tests and various samples collected on the eradication of CSF during an outbreak is evaluated.  相似文献   

16.
In this paper we describe a study of the use of the white blood cell count (wbcc) as a parameter for detecting outbreaks of Classical Swine Fever (CSF). Meta-analysis of the results of challenge experiments revealed that oronasal infection of SPF-pigs with the virulent CSF virus (CSFV) strains Brescia or NL9201 resulted in a significant decrease in the average white blood cell count during the first week after inoculation of the virus. Challenge of conventional finishing pigs and sows with the moderately virulent strain Paderborn also resulted in a significant decrease in the average wbcc. However, this decrease was not observed after inoculation of SPF pigs with the mildly virulent CSFV strains Henken, Zoelen, or Bergen. The usefulness of clinical inspection in combination with wbcc to detect CSF outbreaks in the field was examined using the results of 214 EDTA blood specimens collected from 22 infected herds and 7250 EDTA blood specimens collected from 1450 non-infected herds. Half of the infected herds had been infected with the moderately virulent CSFV strain Venhorst (closely related to strain Paderborn) during the 1997-98 epidemic in the Netherlands. The other half had been infected with the moderately virulent CSFV strain Loraine. Using these data as a starting point, 1000 samples of one to ten specimens were generated by Monte Carlo simulation. These simulated samples and the samples of the non-infected herds were analysed by use of Receiver Operating Characteristic curves. On the basis of that analysis, the optimal number of animals whose wbcc needed to be determined to detect a CSF outbreak was five. With this number of animals, in conjunction with the threshold of 8000 white blood cells per mm3 (meaning that a herd is designated as CSF suspect if one or more of the five specimens has a white blood cell count of 8000 leukocytes/mm3 or less), the test procedure had a herd sensitivity (HSE) of 94.5% and a herd specificity (HSP) of 97.2%). The HSE is defined as the percentage of samples of infected herds with a positive result of the test procedure; HSP is defined as the percentage of uninfected herds with a negative result of the test procedure. We conclude that the wbcc can help the veterinary practitioner to detect outbreaks of CSF caused by (moderately) virulent CSFV strains. However, for the detection of outbreaks caused by mildly virulent CSFV strains, the contribution of the wbcc is doubtful. Development of additional tools that can improve the clinical diagnosis of the veterinary practitioner remains desirable.  相似文献   

17.
Epidemiology of classical swine fever in Germany in the 1990s   总被引:10,自引:0,他引:10  
In Germany, 424 outbreaks of CSF in domestic pigs and a great number of cases in wild boar were recorded between 1990 and 1998. Most of the federal states ('Bundesl?nder') were affected. Epidemiological data from field investigations combined with genetic typing allowed to distinguish seven unrelated epidemics and a number of sporadic outbreaks in domestic pigs. Detailed epidemiological data was available for 327 outbreaks. It was found that 28% of these were primary outbreaks. Most of them were due to indirect or direct contact to wild boar infected with CSF virus or swill feeding. Infected wild boar remain the main risk for domestic pigs. The most frequent sources of infection in secondary or follow up outbreaks were the trade with infected pigs, neighbourhood contacts to infected farms and other contacts via contaminated persons and vehicles, respectively. An increased risk of virus transmission from infected herds to neighbourhood farms was observed up to a radius of approximately 500m. More than two thirds of the infected herds were discovered due to clinical signs. About 20% were identified by epidemiological tracing on and back. These were scrutinised because contacts to infected herds were evident. In conclusion, tracing of contact herds and clinical examination combined with carefully targeted virological testing of suspicious animals is likely to be the most important measure to immediately uncover secondary outbreaks. Obligatory serological screening in the surveillance and the restriction zones do not seem to be efficient measures to detect follow-up outbreaks.  相似文献   

18.
Classical swine fever (CSF) outbreaks in domestic pig herds lead to the implementation of standard control measures according to legislative regulations. Ideal outbreak control entails the swift and efficient culling of all pigs on premises detected positive for CSF virus. Often all pig holdings around the detected cases are pre-emptively destroyed to exclude transmission into the neighbourhood. In addition to these measures, zones are defined in which surveillance and protection measures are intensified to prevent further distant disease spread. In particular, all movements are prohibited within standstill areas. Standstill also excludes the transport of fattened pigs to slaughter. Historical outbreaks provide evidence of the success of this control strategy. However, the extent to which the individual strategy elements contribute to this success is unknown. Therefore, we applied a spatially and temporally explicit epidemic model to the problem. Its rule-based formulation is tailored to a one-by-one model implementation of existing control concepts. Using a comparative model analysis the individual contributions of single measures to overall control success were revealed. From the results of the model we concluded that movement restrictions had the dominant impact on strategy performance suggesting a reversal of the current conceptual thinking. Additional measures such as pre-emptive culling only became relevant under imperfect compliance with movement restrictions. The importance of movement restrictions for the overall control success illustrates the need for explicit consideration of this measure when contingency strategies are being amended (e.g. emergency vaccination) and associated risks assessed.  相似文献   

19.
Chile eradicated classical swine fever (CSF) in April 1998, following a 17-year eradication programme. The authors describe biosecurity levels of pig farms in Chile after the eradication of CSF. A formal survey was administered to 50 large integrated pig farms, which represented almost 60% of the swine population. The main topics on the questionnaire were production, health management, biosecurity, insurance and information about CSF outbreaks in the past. Biosecurity practices were analysed according to the criteria stated by Barcelo and Marco in 1998. A scoring system to measure biosecurity was designed and pig farms were classified according to this score. An adjusted specific measure is discussed as a potential indicator of risk for disease infections. The authors explore associations between biosecurity herd size and insurance policy against CSF.  相似文献   

20.
Summary

In the course of the 1997–1998 CSF epidemic in the Netherlands, two semen collection centres (SCC) became infected. As an eradication strategy for an acute crisis situation, it was concluded that all semen of the boars at the SCCs collected and distributed in the risk period of 28 January to 7 March 1997 was potentially contaminated (suspect semen). As a consequence, a total of 1680 pig herds, mainly located in the southern part of the Netherlands, were officially declared CSF suspect. The purpose of this study was to investigate whether infection of farms through contaminated semen played a significant role in the CSF epidemic. A total of 123 CSFV infected herds were identified, that had received suspect semen from one or both of the infected SCCs. In 87 out of these 123 infected herds, infection by way of artificial insemination (AI) could be excluded either according to the insemination information or the infection pattern observed. In only 21 herds, infection by way of AI was regarded as possible according to the insemination information and infection pattern. Owing to missing information, no conclusion could be drawn about the possibility of infection of 15 farms by way of AI. Thus, we conclude that at most 36 farms may have been infected through AI during the CSF epidemic in the Netherlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号