首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
阳台农场环境控制系统设计   总被引:2,自引:1,他引:1  
针对阳台农业种植植物在无人照料时,由于光照、湿度不足引起的植株生长问题,以STC89C52单片机为控制核心,选取DHT11、BH1750、YL-69传感器,分别检测空气温湿度、土壤湿度、光照强度,设计了阳台农场的环境监测控制系统。系统可自动检测、显示并调控空气温度、湿度、土壤湿度和光照强度,当环境参数不满足预设阈值时,可自动调控,实现阳台农场的自动管理。  相似文献   

2.
【篇名】基于单片机的温室渗灌控制系统设计【作者】任文涛;杨懿;张玉龙;【单位】沈阳农业大学工程学院;沈阳农业大学土地环境学院【刊名】农机化研究,2008年03期【关键词】园艺学;渗灌控制系统;设计;温室;单片机;传感器;【篇名】基于单片机的温室温湿度控制系统设计【作者】王宝芹;范长胜;郭艳玲;【单位】东北林业大学机电工程学院;东北林业大学机电工程学院【刊名】林业机械与木工设备,2008年03期【关键词】温室;单片机;温湿度传感器;  相似文献   

3.
为了科学合理地制定灌溉计划、解决农业生产粗犷用水的问题,以STM32C8T6单片机作为主控单元,结合土壤水分传感器、空气温湿度传感器、电磁阀及驱动电路组成无线传感器网络节点,设计基于无线传感器网络的山地柑橘园灌溉控制系统,实现柑橘园的土壤湿度监测和精准灌溉,达到农业生产节约用水的目的。田间试验结果表明,在节点通信距离平均为203 m时,系统的合计丢包率为0.09%,空气温度数据采集误差低于6%,空气湿度数据采集误差低于4%,土壤湿度采集误差低于6%,电磁阀节点平均响应时间为6.7 s。  相似文献   

4.
【目的】智能温室是设施农业未来的发展趋势,传感技术和物联网技术是智能温室的 基础,分析温室传感器技术的研究进展与应用展望很有意义。【方法】温室传感器根据应用 领域可划分为环境因素传感器和植物体信息传感器,从传感器的精度、特点、适用范围、发 展趋势等方面对两类传感器进行了分析。【结果】环境因素传感器包括光照传感器、空气温 湿度传感器、CO 2 传感器和土壤相关的传感器,植物体信息传感器包括植物温度传感器、植 物水分传感器和植物营养元素传感器。光照传感器以硅光电池使用最广,空气温度传感器中 最具应用前景之一的是半导体 PN 结型温度传感器,空气湿度传感器中的电阻式、电容式感 湿材料都有应用,CO 2 传感器以红外线应用原理为主。在土壤和植物体信息传感器中,光谱 学扮演着越来越重要的角色。【结论】未来温室专用传感器领域会进一步细分,土壤和植物 体信息传感器继续成为未来的研究热点。温室传感器总体上会朝着体积更小、精度更高、非 接触式、实时检测的方向不断发展,传感器的信息融合趋势会愈加明显。传感器和物联网技 术在智能温室发展中将会发挥越来越重要的作用。  相似文献   

5.
为解决用户对合理照顾盆栽感到困难的问题,本文基于树莓派的智能盆栽通过传感器检测空气温湿度、土壤湿度、光照等条件,并根据检测到的数据来实现自动浇灌,提醒用户将盆栽移动至合适的位置。本设计允许用户通过Web访问连接到智能盆栽进行管理,从而达到优化盆栽的生长条件的目的。  相似文献   

6.
【目的】设计灰树花菇房温湿度监测系统并对其进行多点监测.【方法】首先,根据灰树花菇房的结构,进行集成式温湿度传感器的多点布置,以采集温湿度实时数据.而后,借助于无线传输模块,将数据实时传输到温湿度实时监测下位机系统.最后,开发上位机监控软件实现对每个节点温湿度数据的实时存储、显示和查询.【结果】通过将传感器、无线传输、上位机等硬、软件系统的合理布局和设计,采集灰树花菇房多点温湿度数据,并进行实时传输和存储,实现对灰树花菇房温湿度进行有效地监测.【结论】根据该监测系统所测温湿度值与仿真计算的温湿度分布值对比分析,两者差异很小,验证所设计检测系统的可行性.  相似文献   

7.
植物叶片颜色及生态环境参数无线数据采集系统的设计   总被引:1,自引:0,他引:1  
【目的】设计一套植物叶片颜色及生态环境参数无线数据采集系统,为研究生态环境参数变化对植物生长的影响提供技术支持。【方法】采用C8051F330单片机配合TCS230颜色传感器、温湿度传感器、光照传感器及nRF24L01+无线收发模块,组成无线数据采集节点,与带有无线接收节点的PC计算机结合,构建植物叶片颜色及其生态环境参数的无线数据采集系统。【结果】利用所建立的无线数据采集系统,可将从数据采集节点所采集的数据通过无线通信方式实时传送到PC计算机,在开阔地无干扰条件下通信距离可达100 m,可设置多个数据采集节点,数据也能以脱机的方式保存于节点的存储器中,按每个记录4个参数,一次可保存6 400个数据记录,再集中传送到PC计算机中。【结论】设计的无线数据采集系统能可靠地获得长期的植物叶片颜色数据以及对应时间的温湿度和光照等环境参数,且无线通信方式具有线路铺设简单、灵活、经济及数据通信可靠等优点,同时可进行多点数据采集,能显著提高研究工作效率。  相似文献   

8.
基于AT89C51单片机,设计了基于土壤湿度监测的智能农田灌溉系统。整套系统由控制、传感、执行三部分构成,通过蓝牙将检测到的湿度值传输到单片机并在液晶屏上显示,可用于实时监控土壤的湿度。工作时通过对土壤湿度的采集和对比,当实际湿度低于设定下限或高于设定上限值时,单片机启动水泵工作或停止。  相似文献   

9.
【目的】为了快速、准确地计算土体结构和孔隙度等特征,提出一种基于SFS算法(shape from shading)的土壤三维结构重构方法。【方法】首先获取土壤的灰度显微图像,根据朗伯表面漫反射模型建立土壤的光照方程;然后利用泰勒展开法和雅克比迭代法求解光照方程,计算出像素点高度值并实现土壤的三维重建;最后根据正态分布校正高度值计算土壤孔隙度。【结果】实验结果证明,该方法计算得出的孔隙度与环刀烘干法测得的结果相差0.81%,误差率1.75%。【结论】利用显微图像中土壤结构的三维信息,可以客观准确地计算出土壤孔隙度等物理特征。  相似文献   

10.
为充分利用水资源,满足农田灌溉之需,要求旱区农业从粗放的灌溉模式向集约型精量灌溉转变。作物需水状况的准确监测是实现精量灌溉和智能化农业用水管理的前提。基于GSM的土壤湿度监测系统由土壤湿度检测传感器、数据处理模块、GSM无线传输模块3部分组成。该系统采用土壤湿度传感器检测农田中的土壤湿度,单片机通过AD采集湿度信息并与设定值相比较,若湿度低于设定值,则通过GSM模块将信息发至农户,提醒用户开始灌溉。试验表明,该系统能有效监测土壤中湿度,为农户灌溉提供决策依据,实现农作物精量灌溉的远程监测。  相似文献   

11.
为了实现温室蔬菜溯源数据的高效采集与实时传输,解决传统温室蔬菜溯源数据采集系统的繁琐布线问题,设计了基于物联网技术的温室蔬菜溯源数据采集系统。该系统的传感器终端以CC2530射频单片机为控制核心,并结合空气温湿度传感器、土壤温度传感器、土壤湿度传感器、大气压强传感器、光照强度传感器、水滴流速传感器;协调器网关采用CC2530作为控制核心,并利用GPRS技术将现场检测到的数据实时传送给上位机或移动设备,实现对温室蔬菜生长环境数据的实时采集及远程传输,这不仅可以使消费者及时了解蔬菜的生长状况,还可以为研究人员提供准确的研究数据。  相似文献   

12.
【目的】探究大球盖菇菌渣全量还田对水稻产量、土壤肥力和微生物多样性的影响,为评价菌渣对土壤环境质量的改良提供重要参考。【方法】在江西吉安开展菌渣原位还田试验,试验设置常规施肥(CK)、菌渣原位还田+常规施肥(JZ)和秸秆全量还田+常规施肥(JG)3个处理,分析不同栽培措施下水稻的生物量、产量和养分吸收量,以及土壤养分含量、菌群丰度和微生物多样性等土壤环境的差异。【结果】与CK处理相比,JZ和JG均显著提高了水稻的生物量和产量,产量增幅分别为9.51%和4.89%。JZ和JG处理促进了水稻对氮(N)、磷(P)、钾(K)养分的吸收,成熟期N、P、K吸收量分别提高了41.44%和31.01%、48.64%和33.13%、28.44%和26.74%。JZ处理土壤pH较CK略有升高,JG处理移栽前期和幼穗分化期则显著降低;JZ和JG处理土壤中有机质和速效养分含量均明显升高;施用菌渣和秸秆显著提高了土壤中细菌的多样性,JZ处理土壤中与有机质降解相关的菌群丰度明显升高。【结论】大球盖菇菌渣原位还田和秸秆全量还田均能提高土壤的养分含量、土壤微生物群落多样性和水稻产量,菌渣原位还田对稻田土壤环境和水稻生...  相似文献   

13.
本文给出了基于物联网的温室干旱预警系统结构图,从数据采集、信息传输和功能分析三个模块进行了设计。根据土壤温湿度、植物冠层温湿度和作物叶片含水量三个指标,选择LC-TWS土壤温湿度传感器、WTH-215空气温湿度传感器和X8W850-H2植物叶面水分传感器采集数据,将数据传输到CC2530芯片;通过Zigbee组网和GPRS模块将数据发送到上位机数据库;建立系统管理平台,进行数据显示与处理,实现温室干旱预警。  相似文献   

14.
在利用大棚进行农作物培育时,土壤湿度是影响其生长、发育的关键因素之一,因此对大棚进行多点土壤湿度检测,根据各点土壤湿度对农作物实现精准灌溉显得尤为重要。本文设计了一种基于单片机的土壤多点灌溉控制系统。系统中选用SM2801B土壤水分传感器作为测量土壤湿度元件,以STM32F429单片机为控制核心,进行多点土壤湿度检测并以电磁阀为执行元件实现农作物的定点灌溉。同时,通过串口与PC机进行通信,并以VB编写的上位机界面将各点土壤湿度以曲线的形式显示出来,通过上位机界面进行远程定点灌溉操作。  相似文献   

15.
基于宽度卷积神经网络的异常农情数据检测方法   总被引:1,自引:1,他引:0  
【目的】为准确有效地检测农业物联网的感知数据异常,提出了基于宽度卷积神经网络的异常农情数据检测方法,为实现农业物联网数据高质量感知提供参考。【方法】首先将标准化后的农情数据编码为极坐标表示,通过滑动窗口机制划分子集,接着将每个子集数据重构为矩阵,最后设计并训练宽度卷积神经网络模型用于异常检测,采用养殖场环境监测数据进行试验。【结果】构建的滑动窗口机制可提升异常数据检测能力,缩短检测时间。所设计的宽度卷积神经网络对空气温湿度、土壤温湿度等数据中所存在的异常检测准确率均超过97.5%,优于SVM、RF和CNN模型1.69%、2.76%和3.05%;F1值均在0.985以上,优于SVM、RF和CNN模型0.009 3、0.014 9和0.016 3;且在处理波动性较大的空气、土壤温湿度数据时性能优势更为明显,准确率和F1值分别提高了3.61%~5.98%和0.018 8~0.031 0。此外,该方法模型检测耗时较短,仅为传统CNN模型的1/6~1/7,并且比SVM和RF模型使用更少的超参数。【结论】所建立的数据编码、子集划分和重构方法与宽度卷积神经网络模型对异常农情数据有较好的检测效果。  相似文献   

16.
用于观光农业的混合型无线传感器网络节点设计   总被引:1,自引:0,他引:1  
【目的】设计用于观光农业中游客服务与田间种植管理通用的混合型无线传感器网络节点。【方法】设计该节点的硬件结构及基于Android系统的移动智能设备APP;利用ZigBee与上位机通信来实现种植环境监测和设备控制。【结果】支持用户使用基于近场通信和蓝牙技术的节点田间快速接入功能,通过移动设备为游客和种植管理者提供园内位置定位、种植信息查看、环境参数监测等服务。【结论】该混合型无线传感器网络节点使用灵活、方便、快捷、功能扩展性好,可为观光农业提供较为灵活的多业务工程化支持。  相似文献   

17.
郭毅锋  黄丽敏 《安徽农业科学》2011,39(27):17081-17083
设计了一种基于AVR单片机的自动灌溉系统,系统由SHT11温湿度传感器的数据采集电路、LCD显示电路、蜂鸣器报警电路、按键电路等构成。以ATmega16单片机为控制芯片,软件编程实现了SHT11温湿度传感器现场湿度数据采集,LCD1602液晶进行实时显示,按键设定湿度控制范围,以及实时报警等功能,并给出了硬件原理框图及软件流程图。试验结果表明,该系统实现了根据农作物实时湿度进行自动灌溉的功能,并具备良好的效果。  相似文献   

18.
针对广西山区茶园设计了依靠节点自组织特性自动构建零通信费的ZigBee无线网络监测系统,能够定时采集茶园的空气温湿度、土壤温湿度和光照等参数。该系统除协调器外全部使用路由节点,种植区按蜂窝状划分,每个路由监测节点均布置在蜂窝中心,有效提高了监测系统可靠性。在种植区与监控中心之间的非种植区设计了路由中继节点,用于接力传送茶园监测数据至监控中心内的协调器。节点硬件电路包括核心板与底板,核心板设计了CC2530与RFX2401射频功放,底板设计了传感器处理模块、电源模块及调试接口。深入分析了Z-stack协议栈基于事件处理的多任务构架下用户程序设计方法。完成了山区茶园基于ZigBee技术的无线监控网络设计,实现了茶叶种植区内空气温、湿度及土壤温、湿度,光照参数,CC2530供电电压和工作温度的周期采集和传输。通过实际运行,整个系统稳定可靠。  相似文献   

19.
介绍了采用无线蓝牙BLE4.0模块、AT89S52单片机和DHT11温湿度传感器模块构成的农业大棚环境温湿度采集节点,实现了对农业温室大棚内温度和湿度信号的采集,并通过蓝牙BLE4.0模块进行实时通信。本系统与现有的设备相比,实现了温湿度采集节点的无线化布置,方便对大棚内不同区域的环境进行监控。  相似文献   

20.
赵扬帆  郑永春  苏红梅 《吉林农业》2011,(3):253-254,256
在规模化猪场中,猪舍的环境,如温度、湿度、光照、有害气体等对猪的生长、生产性能有重要的影响。针对因温湿度过量或不足造成的生长速度慢、出栏率低的情况,设计了一种基于单片机AT89C2051的温湿度自动控制系统。温度传感器选用DS18B20,湿度传感器选用HM1500,配以定时电路及数据存储器件,实现温湿度信号的采集、转换和存储。通过上位机和单片机之间的通信,使锅炉、风机等设备投入或退出运行,实现猪舍内温湿度的自动调节,使之保持在猪群生长所需的最佳小气候条件下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号