首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】为实现复杂背景下广佛手发病早期的病虫害快速精准识别,提出一种基于YOLOv5-C的广佛手病虫害识别方法。【方法】使用YOLOv5s网络模型作为基础网络,通过引入所提出的多尺度特征融合模块,提高网络模型的特征提取与特征融合能力,均衡提高每一类广佛手病虫害的识别准确率;使用注意力机制模块提高网络模型对病虫害目标特征信息的关注度,弱化复杂背景的干扰信息,提高网络模型的识别准确率;利用改进的C3-SC模块替换PANet结构中的C3模块,在不影响网络模型识别性能的条件下减少网络模型的参数。【结果】基于YOLOv5-C的复杂背景下的广佛手病虫害识别,F1分数为90.95%,平均精度均值为93.06%,网络模型大小为14.1 Mb,在GPU上每张图像平均检测时间为0.01 s。与基础网络YOLOv5s相比,平均精度均值提高了2.45个百分点,7个类别识别的平均准确率的标准差由7.14减少为3.13,变异系数由7.88%减少为3.36%。平均精度均值比Retina Net、SSD、Efficientdet和YOLOv4模型分别高22.30、20.65、4.84和2.36个百分点。【结论】该方法...  相似文献   

2.
[目的]肉鹅姿态是预警肉鹅异常行为、评判肉鹅健康状态的重要指标,针对传统养殖场人工观察肉鹅姿态耗时费力且有很大主观性等问题,提出了一种基于深度学习模型自动识别肉鹅姿态的检测算法。[方法]利用YOLO v5模型对扬州鹅4种姿态(站立、休憩、饮水和梳羽)进行识别;对YOLO v5模型加入SENet、CBAM、ECA三种注意力模块改进网络结构,提高模型的识别能力;设计明暗试验和密集场景试验进一步验证模型在复杂场景下的鲁棒性。[结果]YOLO v5+ECA模型的平均检测精度(mAP)为88.93%,相比YOLO v5提升了2.27%。在识别精度(AP)上,站立姿态为91.85%,休憩姿态为93.42%,饮水姿态为90.02%,梳羽姿态为80.42%。在明暗试验和密集场景试验中,YOLO v5+ECA模型性能表现稳定,漏检现象和误检现象相对较少。[结论]该模型可以实现养殖场复杂场景下肉鹅姿态准确快速检测,为后续肉鹅行为监控和健康防疫提供数据支撑。  相似文献   

3.
针对自然环境下橙子检测存在枝叶遮挡、相邻果实重叠等情况而导致检测效果差的问题,提出一种改进的YOLO v5方法。首先,在主干网络部分使用RepVGG(re-param VGG)模块替换原始C3模块,加强网络对特征信息的提取能力;其次,在颈部网络使用鬼影混洗卷积(ghost-shuffle convolution)代替原有的标准卷积,能够在保证精度的前提下,降低模型参数量;再次,在预测头前加入ECA(efficient channel attention)注意力模块,能够更加准确定位目标信息;最后,引入EIOU(efficient intersection over union)损失函数加速预测框的收敛,提高其回归精度。改进的YOLO v5网络在自然环境下的橙子检测中平均精度达到90.1%,相比于目前热门的检测网络CenterNet、YOLO v3和YOLO v4其在识别效果方面有一定的提升。可见,所提出的改进网络在橙子检测上更有优势,能为今后智能采摘机器人的研发提供理论支撑和技术参考。  相似文献   

4.
针对YOLO v5检测模型存在的漏检率和误检率问题,改进目标检测技术,提升苹果叶部病害早期发现及定位的准确性和速度,从而减少经济损失。先采用加权双向特征金字塔网络(BiFPN)特征融合方法,有效改善PANet对多尺度特征融合的不良影响,并引入Transformer机制,有效改进原始网络结构,使其专注于有用的信息,并增强特征融合效果。再使用ATCSP模块和自上而下的特征融合方法,增强模型对多尺度疾病的检测效果,并将强大的语义信息传达至模型底层,进一步提高检测精度。使用数据集由实验室采集的苹果树叶样本构成,包含3 331张标记图像的矩形位置来标记病害。由于图像亮度分布不均匀,采用直方图均衡化和改进的直方图均衡化处理,使图像对比度得到增强,大幅降低后续图像特征提取的计算量。在训练和测试过程中,还对原始病害图像进行旋转、随机亮度增强、随机色度增强、随机对比度增强和锐化等数据增强操作。结果表明,改进的YOLO v5检测算法可以显著提高苹果叶部病害检测的精度,对比原始算法,平均精度mAP@0.5提高20.8%。改进YOLO v5苹果叶部病害检测算法能够及时发现和定位苹果叶部病害,进而为深度学习技术...  相似文献   

5.
草莓是一种流行性较广的高价值水果,在我国种植面积较广。草莓采摘期较长,同一时间可能存在多种形态的果实,针对这一特殊生长习性,提出一种基于YOLO v5的目标检测算法,在准确识别成熟果实的同时,完成多阶段草莓的检测,用于机器人采摘、成熟期预估和生产管理。使用草莓生产环境下图像建立数据集,利用深度学习网络提取草莓生长期各阶段特征。将YOLO v5n、YOLO v5s、YOLO v5m 3种YOLO v5系列的模型和CIoU、EIoU、SIoU、AlphaIoU 4种损失函数计算方法组合,形成了12种算法,在数据集上进行对比试验,结果表明SIoU更适合本研究。将优化后的模型在Jetson Xavier NX和Jetson Nano 2款嵌入式开发板上进行推理效率验证,明确了不同开发板使用的最优模型,Jetson Xavier NX更适合YOLO v5m+SIoU的模型、Jetson Nano更适合YOLO v5s+SIoU的模型,为草莓智能化生产奠定基础。  相似文献   

6.
基于改进SSD的棉种破损检测   总被引:3,自引:2,他引:1  
为实现群体棉籽的破损检测,以新路早-50#脱绒棉籽为研究对象,将群体棉籽随机摆放,使用CCD相机采集群体棉籽的图像,在经典的单步多框检测(single shot multibox detector,SSD)算法上进行改进。基于改进SSD,利用ResNet 50网络代替经典SSD算法中的VGG网络,将ResNet50作为SSD的基础网络,用来快速提取群体棉籽图像的特征,最终对群体脱绒棉籽中的破损棉籽实现精准识别。试验结果表明:该方法建立的模型对群体棉籽的检测精度、召回率、漏检率分别达到96.1%、97.3%、0%;高于经典SSD网络模型(检测精度、召回率、漏检率分别为92.5%、96.4%、1.4%)。  相似文献   

7.
针对现有番茄叶片病害识别存在背景复杂、识别准确率低、模型参数量大、计算量大以及难以部署至移动设备或嵌入式设备等问题,提出一种改进的轻量化YOLO v5n的番茄叶片病害识别方法。首先收集细菌性斑疹病、早疫病、晚疫病、叶霉病、斑枯病、褐斑病等6种常见番茄叶片病害图像以及番茄健康叶片图像,对图像进行镜像翻转、高斯模糊等数据增强方式增加样本多样性,提升模型识别和泛化能力。接着在YOLO v5n网络基础上,选择采用轻量化的C3Ghost模块替换C3模块以压缩卷积过程中的计算量、模型权重和大小,同时在颈部网络中融合轻量级卷积技术GSConv和VOV-GSCSP模块,在增强特征提取能力的同时降低模型参数量。最后引入PAGCP算法对改进后的模型进行全局通道剪枝压缩参数量并减少训练开销。试验结果表明,改进后的YOLO v5n平均精度均值达到99.0%,参数量减少66.67%,计算量降低了2.6 G,模型权重压缩了2.23 MB。本研究提出的番茄叶片病害识别方法在降低了模型大小、参数量、计算量的同时仍保持较高的识别精度,为移动设备上实现番茄叶片病害识别提供技术参考。  相似文献   

8.
不同采收期广佛手指纹图谱研究   总被引:1,自引:0,他引:1  
[目的]建立不同采收期的广佛手指纹图谱,探索广佛手的最佳采收期。[方法]采用RP-HPLC法,Hypersil C18(250 mm×4.6mm,5μm)色谱柱,流动相为甲醇-0.05%磷酸水溶液,梯度洗脱;流速1.0 ml/min,柱温30℃,检测波长283 nm。[结果]不同采收期广佛手成分的种类及含量存在一定的差异,9月份样品整体相似度高于7月份样品,广佛手以9月份采收为宜。[结论]该方法简便可行、重复性较好,可为质量控制以及实现规范化种植提供可靠的科学依据。  相似文献   

9.
【目的】对受松材线虫病影响的树木进行快速、高效和精确的检测。【方法】利用深度学习技术中的YOLO v4(you only look once version 4)目标检测模型,对高分辨率影像中的松材线虫病变色木进行检测,并与SSD(single shot multibox detector)模型进行对比。【结果】YOLO v4模型的检测精度较高,精确度(P)为0.961 3,召回率(R)为0.764 9,F1分数为0.851 9。【结论】YOLO v4可准确地识别和定位松材线虫病变色木,且精确度比SSD高。  相似文献   

10.
[目的]针对育肥猪采食行为识别误差大、检测速度慢等问题,提出一种具有轻量化结构的育肥猪采食行为检测模型,实现对育肥猪采食行为的快速检测与采食时长统计。[方法]以YOLO v5L目标检测算法为基础,构建侧视视角下的猪只采食行为检测模型。对比更换不同轻量化主干网络后对模型检测效果的影响,选取性能最优的模型;改进ShuffleNet V2网络结构基本单元,采用Mish激活函数提高模型泛化能力与推理速度,引入SE注意力机制给予目标特征更高的权重以提高目标识别精度;对比分析模型增加非营养性访问行为检测前、后的采食行为识别准确率。[结果]优化后的育肥猪采食行为检测模型大小为38.2 MB,计算量为37.8 GFLOPs,视频检测平均帧耗时7.6 ms。与非营养性访问行为进行区分识别后,猪只采食行为检测识别准确率为96.4%,召回率为92.5%。模型检测采食时长与人工统计采食时长相对误差为6.1%。[结论]改进的YOLO v5L-ShuffleNet网络模型检测速度和模型大小均能满足实际生产需求,可在复杂养殖环境中全天候识别育肥猪采食行为。  相似文献   

11.
复合酶法提取广佛手多糖的工艺研究   总被引:1,自引:0,他引:1  
章斌  李远志  陈宇  郭奕纯 《安徽农业科学》2010,38(15):7833-7835,7873
[目的]探讨复合酶法对广佛手多糖提取率的影响。[方法]以广佛手为原料,用复合酶法提取多糖。通过单因素和L16(45)正交试验对佛手多糖的提取工艺进行优化。[结果]复合酶法提取佛手多糖的最佳工艺条件为:酶用量1.2%、酶解时间150min、料液比1∶40、酶解温度50℃,此条件下的佛手多糖得率为4.13%。[结论]复合酶法能显著地提高多糖的提取率。  相似文献   

12.
番茄检测模型的检测速度和识别精度会直接影响到番茄采摘机器人的采摘效率,因此,为实现复杂温室环境下对番茄精准实时的检测与识别,为采摘机器人视觉系统研究提供重要的参考价值,提出一种以YOLO v5s模型为基础,使用改进的MobileNet v3结构替换主干网络,平衡模型速度和精度。同时,在颈部网络引入Ghost轻量化模块和CBAM注意力机制,在保证模型检测精度的同时提高模型的检测速度。通过扩大网络的输入尺寸,并设置不同尺度的检测网络来提高对远距离小目标番茄的识别精度。采用SIoU损失函数来提高模型训练的收敛速度。最终,改进YOLO v5s模型检测番茄的精度为94.4%、召回率为92.5%、均值平均精度为96.6%、模型大小为7.1 MB、参数量为3.69 M、浮点运算(FLOPs)为6.0 G,改进的模型很好地平衡了模型检测速度和模型识别精度,能够快速准确地检测和识别复杂温室环境下的番茄,且对远距离小目标番茄等复杂场景都能实现准确检测与识别,该轻量化模型未来能够应用到嵌入式设备,对复杂环境下的温室番茄实现实时准确的检测与识别。  相似文献   

13.
为实现自然环境下蓝莓的精确快速检测,在YOLO v5s的基础上提出了一种结合轻量级网络和注意力机制的改进算法。首先,在主干网络和检测头的位置去除了最大目标检测层的结构,因而降低模型的参数量,增强模型对小目标的检测能力。其次,将MHSA(Multi-head self-attention,多头自注意力)替换了SPPF(Spatial pyramid pooling-fast,快速空间金字塔池化)前面的C3模块,使模型学习到更全面的特征表示,增强模型对蓝莓图像中复杂空间关系和上下文信息的理解能力。最后,在C3模块中加入了S-PSA(Sequential polarized self-attention,顺序极化自注意力),以便模型能够更好地捕捉特征图中相邻区域之间的上下文依赖关系。结果表明,改进后的YOLO v5s算法对成熟、半成熟和未成熟蓝莓的检测精度分别提升1.2、4.4、2.6百分点,平均精度提升2.7百分点,模型参数量减少76.0%。与当前主流轻量化目标检测模型相比,改进后的模型性能更加优越,能为自然环境下蓝莓采摘机器人视觉系统提供一种有效的方案。  相似文献   

14.
植物病害的检测与识别是一个日益发展的研究领域,随着机器学习和深度学习概念的不断介入,为农业的发展提供了重要的技术支持。然而,目标检测技术存在着带标注数据获取成本高,且需要大量的人工来对数据进行标注等问题,给技术的实际应用造成了一定的阻碍。为解决在使用少量已标注数据及大量未标注数据进行训练模型从而提高准确率的问题,提出一种YOLO目标检测结合self-training半监督学习的方法,并且针对现有的YOLO v3-Tiny目标检测网络在半监督学习基础上准确率相比于监督学习较低的问题,对原有的YOLO v3-Tiny模型进行了改进。首先,使用空间金字塔池化结构对主干网络的多尺度特征进行融合;其次,将YOLO v3-Tiny检测头部分的标准卷积层替换成GSConv;最后,运用BiFPN结构对中间部分的特征与检测头部分的多尺度特征进行双向融合。本研究提出的基于半监督学习的改进型YOLO v3-Tiny网络可以快速准确地检测出梨叶上的病斑,在试验中,准确度、召回率、平均精度分别达到97.07%、93.78%、97.51%,对于快速准确地诊断出梨叶病斑的危害程度并且及时进行防治具有十分重要的意义。  相似文献   

15.
针对水稻害虫识别过程中存在的检测难度大、模型精度低、计算量大等问题,以稻纵卷叶螟等14类水稻害虫为研究对象,改进了YOLO v5检测算法,引入高效通道注意力机制(efficient channel attention, ECA)与EIoU(efficient-IoU)损失函数,并结合Ghost卷积,提出了一种基于改进的YOLO v5水稻害虫识别方法:(1)通过引入ECA注意力机制实现对水稻害虫识别过程中重要信息的处理,采用跨通道信息交互,保证模型性能和降低复杂度;(2)引入EIoU损失函数代替CIoU(complete-IoU)损失函数,从而降低原有CIoU损失函数存在的回归精度问题;(3)利用Ghost卷积替换CBS模块及C3模块中的标准卷积,实现模型轻量化处理。结果表明,改进后的模型较原始YOLO v5模型精度略微提升,参数量减少,模型体积降低至7.38 MB,较原模型减少了46%,与YOLO v7、Faster-RCNN模型相比,mAP比YOLO v7高1.49百分点,比Faster-RCNN高12.89百分点,且本研究模型体积最小,检测速度满足实时性要求,使水稻害虫检测识别能够...  相似文献   

16.
为实现冬枣园机械化自动化采摘以及冬枣树精准化管理,针对自然场景下冬枣果实的快速、准确分类识别问题,提出一种基于YOLO v4模型改进的冬枣果实分类识别模型CC-YOLO v4。利用改进的CSP跨阶段部分连接结构和多尺度特征融合的CBAM卷积注意力模块,减小网络规模的同时增强特征提取能力,改善果实分类识别的误检和遮挡目标的漏检情况;采用Softmax交叉熵损失函数代替Sigmoid二元交叉熵损失函数作为分类损失函数,引入EIoU损失函数代替CIoU损失函数作为边界框回归损失,进一步改善果实分类识别的误检并提升预测框精度。试验结果表明,CC-YOLO v4模型对3类冬枣果实的查准率P均值为81.86%,平均检测精度均值mAP为82.46%,IoU均值为81.35%,模型参数量和大小分别为26.9 M和108 MB,检测速度可达28.8 F/s。与其他模型相比,本模型具有更好的分类识别能力、识别速度和较小的模型复杂度。在不同果实数量情况下进一步试验,本研究方法具有良好的精度和鲁棒性,对解决自然场景下冬枣果实的精准分类识别问题具有重要参考价值。  相似文献   

17.
[目的]为实现果园自然场景下智能农业机器人对桃花的准确、快速、有效检测.[方法]文章采用相机获取桃花图片数据,通过LabelImg软件进行人工标记建立桃花目标识别的检测样本数据集,训练Darknet深度学习框架下的YOLO v4模型对桃花进行识别.[结果]模型精度评估表明,YOLO v4模型的平均准确率MAP值(86%...  相似文献   

18.
针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值分别为81.6%、87.3%,比原模型分别提高了4.9、3.4百分点。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。  相似文献   

19.
[目的]针对自然场景下无人机拍摄的图像中鼠洞目标占比小,与地物高度融合且容易受阴影等各类因素影响,导致误识别率高的情况,需要对目标检测算法进行改进,以提高鼠洞定位精度。[方法]以YOLOv5s为基础算法进行优化改进,在Backbone主干网络的C3模块融合轻量ECA注意力机制模块,从通道方面更好关注特征信息,降低漏检率;在特征金字塔FPN中引入转置卷积学习最佳上采样方法,恢复卷积运算中丢失的有用信息;用SIoU替换CIoU损失函数来有效减少冗余框,同时加快预测框的收敛和回归。其次,做消融实验来验证3种改进策略的有效性并对比模型改进前后在不同场景下的识别情况。[结果]改进的YOLOv5s比原始模型的P、R和mAP分别提高了3.3%、3.7%和3.5%,FPS达到了56.7,且在特殊场景下无漏检、错检的情况,可以保证鼠洞检测的准确性和实时性。对比其它算法在平均检测精度、体积和速度上都较有优势。[结论]本文改进的算法能满足在复杂场景下的鼠洞检测,实现精确定位,为鼠害监测提供鼠洞检测方面的支撑。  相似文献   

20.
鉴于对大豆叶片虫洞进行识别有助于及时发现虫情并有针对性的防治虫害,提出了一种大豆叶片虫洞的识别方法:以YOLO v5s网络作为基础,在大豆叶片虫洞特征提取过程中引入空洞卷积代替3次池化处理,提取虫洞边缘不规则信息;将特征信息输入空间注意力机制,提取时空融合信息,进而捕获野外不同背景下的颜色信息;针对大豆叶片虫洞目标远近不一的问题,重构特征金字塔结构,增加了1层输出层,将80像素×80像素输出特征图经过上采样后得到160像素×160像素特征图,并将其与浅层同尺寸特征图进行拼接,提高虫洞目标识别定位的准确性;将融合后的总特征输入目标检测模块,输出单个对象的检测外框,得到大豆叶片虫洞识别模型。在大豆叶片虫洞样本数据集上对模型进行测试,结果对大豆叶片虫洞的平均识别准确率最高达95.24%,模型存储空间为15.1 MB,每秒传输91帧。所建立的方法与Faster R–CNN、YOLO v3、YOLO v5s对比,对大豆叶片虫洞识别的平均准确率分别提高2.50%、12.13%、2.81%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号