首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On December 2, 1999, 120 pregnant cows were weighed, their body condition scored, and then sorted into six groups of 20 stratified by BCS, BW, breed, and age. Groups were assigned randomly to six, 5.1-ha dormant common bermudagrass (Cynodon dactylon [L.] Pers.) pastures for 2 yr to determine the effects of supplemental Se and its source on performance and blood measurements. During the winter, each group of cows had ad libitum access to bermudagrass/dallisgrass (Paspalum dilatatum Poir.) hay plus they were allowed limited access (1 to 4 d/wk) to a 2.4-ha winter-annual paddock planted in half the pasture. Treatments were assigned randomly to pastures (two pastures per treatment), and cows had ad libitum access to one of three free-choice minerals: 1) no supplemental Se, 2) 26 mg of supplemental Se from sodium selenite/kg, and 3) 26 mg of supplemental Se from seleno-yeast/kg (designed intake = 113 g/cow daily). Data were analyzed using a mixed model; year was the random effect and treatment was the fixed effect. Selenium supplementation or its source had no effect (P > or = 0.19) on cow BW, BCS, conception rate, postpartum interval, or hay DMI. Birth date, birth weight, BW, total BW gain, mortality, and ADG of calves were not affected (P > 0.20) by Se or its source. Whole blood Se concentrations and glutathione peroxidase (GSH-Px) activity at the beginning of the trial did not differ (P > or = 0.17) between cows receiving no Se and cows supplemented with Se or between Se sources. At the beginning of the calving and breeding seasons, cows supplemented with Se had greater (P < 0.01) whole blood Se concentrations and GSH-Px activities than cows receiving no supplemental Se; cows fed selenoyeast had greater (P < or = 0.05) whole blood Se concentrations than cows fed sodium selenite, but GSH-Px did not differ (P > or = 0.60) between the two sources. At birth and on May 24 (near peak lactation), calves from cows supplemented with Se had greater (P < or = 0.06) whole blood Se concentrations than calves from cows fed no Se. At birth, calves from cows fed seleno-yeast had greater (P < or = 0.05) whole blood Se concentrations and GSH-Px activities than calves from cows fed sodium selenite. Although no differences were noted in cow and calf performance, significant increases were noted in whole blood Se concentrations and GSH-Px activities in calves at birth as a result of feeding of seleno-yeast compared to no Se or sodium selenite.  相似文献   

2.
The aim of this trial was to determine whether the selenium status of suckling calves could be improved by supplementing their dams' diet with organic Se instead of sodium selenite. A herd of 103 Hereford cows, which were on grass paddocks all year round, was divided into two groups. Both groups had free access to a mineral supplement that contained 30 mg of Se/kg; for one group the source of the Se was a Se yeast product, and for the other group the source was sodium selenite. The basal feed contained .02 mg of Se/kg DM. During the trial, the mean daily consumption of the mineral supplement was approximately 110 g/cow. The calving season started in the middle of March and ended in the middle of May. Blood samples were taken from 11 cows and their calves in the yeast group and from nine in the selenite group at the end of April and again at the beginning of June, and milk samples were taken at the same times. At both samplings, the concentration of Se in whole blood and the activity of glutathione peroxidase (GSH-Px) in the erythrocytes of the cows and calves in the yeast group were higher than in the samples from the animals in the selenite group. The same pattern was seen for plasma, except for the cows at the first sampling. The mean concentrations of Se in whole blood from calves in the yeast and selenite groups were 130 and 84 microg/L, respectively, and plasma concentrations were 48 and 34 microg/ L, respectively. Mean Se concentration in the milk from the yeast group (17.3 microg/L) was higher than that in milk from the selenite group (12.7 microg/L). There were significant correlations (r = .59 to .68) between the concentrations of Se in the cow's milk or cow's whole blood compared with Se concentrations in the calves whole blood and plasma or with the erythrocyte GSH-Px activity of the calves. The Se status of the calves in the selenite group was considered to be marginal, but the status of the calves in the yeast group was considered to be adequate. Supplementation of the suckler cows' diet with organic Se in the form of Se yeast rather than sodium selenite improved the Se status of their calves when the Se was mixed into a mineral supplement containing 30 mg of Se/kg. In practice, such supplementation would probably eliminate the risk of nutritional muscular degeneration in suckling calves.  相似文献   

3.
AIM: To determine the effect of grazing pasture that had a low selenium (Se) concentration on serum concentrations of triiodothyronine (T3) and thyroxine (T4), and erythrocyte glutathione peroxidase (GSH-Px) activity in dairy cows. METHODS: Forty pregnant Friesian cows were grazed on pasture that contained 0.03-0.04 ppm Se on a dry matter (DM) basis. Two months before parturition, 20 cows were randomly selected and treated with 1 mg Se/kg bodyweight subcutaneously, as barium selenate (Group Se-S). The other group (Se-D) was not supplemented. Blood samples were taken before supplementation (-60 days) and 30, 60, 90, 180 and 270 days after parturition, for determination of concentrations of T3 and T4 in serum, and GSH-Px activity in erythrocytes. RESULTS: Erythrocyte GSH-Px activity in the Se-D group was <60 U/g haemoglobin (Hb) throughout the experiment. Supplementation increased (p<0.05) activities to >130 U/g Hb throughout lactation. Mean serum concentrations of T4 in Se-D and Se-S cows increased from 23.7 (SEM 0.7) and 23.4 (SEM 0.8) nmol/L, respectively, in the prepartum period to 69.6 (SEM 0.1) and 67.6 (SEM 0.2) nmol/L, respectively, at 180 days of lactation (p<0.01), and no effect of Se supplementation was evident. Serum concentrations of T3 in Se-D cows decreased (p<0.05) from 1.6 (SEM 0.1) nmol/L prepartum to 1.0 (SEM 0.2) nmol/L at the beginning of lactation, and remained lower (p<0.05) than those in the Se-S cows which did not decrease after calving and ranged from 1.9 (SEM 0.1) to 2.4 (SEM 0.2) nmol/L throughout lactation. CONCLUSIONS: Serum T3 concentrations decreased during early lactation in unsupplemented cows grazing pastures low in Se (0.03-0.04 ppm) and both serum T3 and erythrocyte GSHPx activities were consistently lower throughout lactation compared with Se-supplemented cows. Se supplementation had no effect on serum T4 concentrations.  相似文献   

4.
The effect of Se supplementation before or after calving on Se status in deficient cows and their calves was studied using 72 beef cows in two experiments. In Exp. 1, cows calving in February or March 1997 were supplemented orally for 15 d in late pregnancy with 13.0, 32.5, or 45.5 mg of Se/d as sodium selenite. Glutathione peroxidase (GSH-Px) activities were measured in red blood cells (RBC) or plasma of cows and calves at d 15 and between d 17 and 88 after calving. In Exp. 2, cows calving in January 1997 were supplemented orally with .0, 13.0, or 32.5 mg of Se/d for 15 d postpartum, and calves were injected with 1.38 mg of Se when 2 d old and at an average age of 49 d. The GSH-Px activities were measured in 30-d-old calves and in cows and calves between d 77 and 115 after calving. In both experiments, Se supplementation resulted in adequate Se status for the dams. The increase in RBC GSH-Px activity was faster with 45.5 mg of Se/d, and GSH-Px activities remained high for up to 98 d after the end of supplementation. The improvement in Se status in calves as a result of maternal supplementation was greater in Exp. 1 than in Exp. 2, suggesting that the placental transfer of Se is more efficient than milk transfer. Prepartum oral Se supplementation of deficient beef cows with 13.0 mg of Se/d for 15 d allowed adequate Se status of dams and calves, and 45.5 mg of Se/d resulted in a faster improvement of Se status. Parenteral administration of 1.38 mg of Se to newborn calves did not sustain normal Se status in calves issued from deficient cows.  相似文献   

5.

Background

Selenium (Se) is important for the postnatal development of the calf. In the first weeks of life, milk is the only source of Se for the calf and insufficient level of Se in the milk may lead to Se deficiency. Maternal Se supplementation is used to prevent this.We investigated the effect of dietary Se-enriched yeast (SY) or sodium selenite (SS) supplements on selected blood parameters and on Se concentrations in the blood, colostrum, and milk of Se-deficient Charolais cows.

Methods

Cows in late pregnancy received a mineral premix with Se (SS or SY, 50 mg Se per kg premix) or without Se (control – C). Supplementation was initiated 6 weeks before expected calving. Blood and colostrum samples were taken from the cows that had just calved (Colostral period). Additional samples were taken around 2 weeks (milk) and 5 weeks (milk and blood) after calving corresponding to Se supplementation for 6 and 12 weeks, respectively (Lactation period) for Se, biochemical and haematological analyses.

Results

Colostral period. Se concentrations in whole blood and colostrum on day 1 post partum and in colostrum on day 3 post partum were 93.0, 72.9, and 47.5 μg/L in the SY group; 68.0, 56.0 and 18.8 μg/L in the SS group; and 35.1, 27.3 and 10.5 μg/L in the C group, respectively. Differences among all the groups were significant (P < 0.01) at each sampling, just as the colostrum Se content decreases were from day 1 to day 3 in each group. The relatively smallest decrease in colostrum Se concentration was found in the SY group (P < 0.01).Lactation period. The mean Se concentrations in milk in weeks 6 and 12 of supplementation were 20.4 and 19.6 μg/L in the SY group, 8.3 and 11.9 μg/L in the SS group, and 6.9 and 6.6 μg/L in the C group, respectively. The values only differed significantly in the SS group (P < 0.05). The Se concentrations in the blood were similar to those of cows examined on the day of calving. The levels of glutathione peroxidase (GSH-Px) activity were 364.70, 283.82 and 187.46 μkat/L in the SY, SS, and C groups, respectively. This was the only significantly variable biochemical and haematological parameter.

Conclusion

Se-enriched yeast was much more effective than sodium selenite in increasing the concentration of Se in the blood, colostrum and milk, as well as the GSH-Px activity.  相似文献   

6.
Three groups of 20-month-old pregnant Hereford heifers received 3 regimens of selenium (Se) supplementation. Group 1 received pelleted alfalfa hay, soybean meal, which contained Se (0.313 mg/kg), and 90 mg of Se as sodium selenite/kg of salt-mineral mix ad libitum. Group 2 received the pelleted hay and soybean meal, and group 3 received only the pelleted alfalfa hay. At time of parturition, the mean whole blood Se concentrations were: group 1 = 0.250 mg of Se/kg of blood, group 2 = 0.162 mg/kg, and group 3 = 0.052 mg/kg, whereas the respective mean blood glutathione peroxidase (GSH-Px) values were 144, 80, and 30 mU/mg of hemoglobin. In comparison, the mean whole blood Se values for the calves were 0.242, 0.175, and 0.81 mg/kg, respectively, and their blood GSH-Px values were 154, 113, and 50 mU/mg of hemoglobin, respectively. Thus, the blood Se and GSH-Px values for each group reflected dietary intake of Se. The calf blood GSH-Px values were similar to their dams for group 1, but were 41% higher in group 2 and 67% greater in group 3. The data suggested that the fetus can sequester blood Se, accumulating values greater than the dam, and that larger amounts were concentrated in the fetus when smaller amounts were available from the dam. The colostrum contained modest to low amounts of Se proportionate to dietary intake of this element. However, milk 7 days after parturient contained inadequate amounts of Se to sustain blood Se values in calves and the milk from heifers with low normal blood Se was essentially void of Se (0.009 mg/kg). (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study measured the effect on glutathione peroxidase (GSH-Px) and selenium (Se) in whole blood and plasma associated with subcutaneous Se injections in beef heifers fed organic or inorganic Se. Heifers (n = 120) were randomly divided into 2 groups, 1 of which received subcutaneous Se injections. Both groups were given the same total mixed ration with 3 mg of organic or inorganic Se daily. Until week 2, heifers that had received Se injections showed higher concentrations of plasma Se and GSH-Px and whole blood Se (P < 0.001) than those having had no injections. Concentrations of plasma Se and GSH-Px were higher in the group receiving organic Se than the group receiving inorganic Se. Whole blood GSH-Px concentrations increased significantly (P < 0.001) throughout a 12-week period but were not affected by Se source. Combination of Se injections and supplementation could help maintain normal Se and GSH-Px blood status in beef heifers during the first few weeks in the feedlot.  相似文献   

8.
The main aim of this trial was to define the possible differences between selenite and selenate in their ability to increase the selenium (Se) concentration of milk, in comparison with organic Se. Dairy cows (n = 42) were fed a basal diet containing .10 to .12 mg Se/kg DM for 5 mo and were then divided into four groups of 10 or 11, as similar as possible in age and stage of lactation. During the next 84 d, the cows in three of the groups were supplemented with 3 mg of Se daily, whereas the cows in one control group remained unsupplemented. The Se supplement was given as sodium selenite, sodium selenate, or a Se yeast product. The total Se concentration of the diets varied with the cows' stage of lactation and was for the supplemented groups .24 to .31 mg/kg DM, but remained between .10 and .12 mg/kg in the control group. At the end of the trial, the mean whole blood Se concentrations in the selenite, selenate, yeast, and control groups were 138, 141, 165, and 104 microg/L, respectively. The Se concentration in plasma apparently reached a plateau level within 4 wk, at approximately 75 microg/L in the selenite group, 80 microg/L in the selenate group, and 90 microg/L in the yeast group. In the control group the mean concentration in plasma remained at approximately 50 microg/L. The increase of the activity of glutathione peroxidase (GSH-Px) in the erythrocytes was significantly higher in the supplemented groups than in the control group. The mean concentrations of Se in milk in the selenite, selenate, and yeast groups were 16.4, 16.4, and 31.2 microg/L, respectively, whereas the concentration remained at approximately 14 microg/L in the control group. The milk Se concentration reached a plateau within 1 wk after the start of Se supplementation. Dietary supplementation with selenite and selenate, thus, had only a limited effect on the Se concentration in milk, and there was no significant difference between the two inorganic compounds in any variable measured. Organic Se was much more effective than inorganic Se in increasing the concentration of Se in milk.  相似文献   

9.
The distribution of glutathione peroxidase (GSH-Px) activity and selenium concentrations among several components in the blood of dairy cows was examined. Approximately 98% of the GSH-Px activity in peripheral blood was associated with the erythrocytes when enzyme activity was expressed as units per milliliter of blood. The GSH-Px activity expressed per cell was approximately fourfold greater for peripheral leukocytes than for erythrocytes. The cellular component contained a greater proportion (approx 73%) of whole blood selenium than did the plasma. A positive linear relationship (r = 0.958) between blood GSH-Px activity and blood selenium concentrations was found in dairy cattle under practical field conditions.  相似文献   

10.
AIM: To determine whether there are differences in postpartum gonadotrophic activity between strains of Holstein-Friesian dairy cows genetically selected on mature liveweight that might explain differences between the strains in fertility, and the interval between calving and the resumption of ovarian follicular activity. METHODS: Mixed-age Holstein-Friesian cows fed generous allowances of ryegrass/white clover pasture, and genetically selected for heavy (H) or light (L) mature liveweight, were given 10 microg buserelin on Days 21, 28, 35 and 42 (Experiment 1a; n=8/group), or Days 7, 14, 21 and 28 (Experiment 1b; n=8/group) postpartum. The same dose of buserelin was also given to first-calved heifers from each strain (Experiment 1c; n=6/group) on Days 7, 14, 21, and 28 postpartum. Luteinising hormone (LH)concentrations were measured in serial blood samples that were taken for up to 240 min after administration of buserelin. In Experiment 2, serial blood samples were taken at 15-min intervals from H and L cows (n=7/group) over 8 h on Days 14, 21, 28 and 35 postpartum, to examine the endogenous secretion patterns of LH and follicle stimulating hormone (FSH).The time-course of the restoration of positive feedback between oestradiol and LH was examined by giving 1 mg oestradiol benzoate(ODB) 48 h after administration of 500 microg cloprostenol to mixed-age cows from each strain on Days 7 and 21 (n=8/group), or 14 and 28 (n=8/group) after calving (Experiment 3). Relationships between nutrition and the restoration of positive feedback were studied by giving 0.75 mg ODB/500 kg liveweight on Day 17 or 18 after calving to pure-bred Holstein (OSH) and New Zealand Friesian (NZF) cows that were fed either pasture (n=12 OSH, 12 NZF) or a total mixed ration (TMR; n=13 OSH,12 NZF) (Experiment 4). Plasma LH and FSH concentrations were measured in samples collected for 42 h (Experiment 3) or 48 h (Experiment 4) after treatment with ODB. Milk progesterone concentrations were measured 3x weekly to define the reproductive status of animals in each experiment. Conception rates were recorded for animals in all of the experiments. RESULTS: First-service conception rates were lower (p<0.05) in H than L cows (46% vs 59%). In Experiments 1b and 1c, LH response to buserelin increased between Days 7 and 28 postpartum (both p<0.001), but did not differ between strains (p=0.77 and p=0.19, respectively). In Experiment 1a, LH responses to buserelin did not change between Days 21 and 42 postpartum, but overall mean peak concentrations were significantly(p<0.001) greater in L than H cows. In Experiment 2, anoestrous H cows had higher mean (p=0.004) and episodic (p=0.001) concentrations of LH than did L cows, but in cows that had active corpora lutea there were no such differences. There were no differences in FSH concentrations between strains. LH secretion in response to exogenous oestradiol (Experiment 3) increased between Days 7 and 28 postpartum (p<0.001), but there were no differences between strains. Responses were also similar in OSH and NZF cows on Day 17 or 18 postpartum, although there was a significant effect of ration upon the proportion of cows that exhibited an LH surge (20/24 cows on grass vs 12/25 on a TMR; p=0.005). CONCLUSION: These results confirm that H cows have poorer first-service conception rates than L cows, but do not support an hypothesis that there are major differences between these strains of Holstein-Friesian dairy cows in the rate of restoration in the hypothalamo-pituitary axis. However, in anoestrous cows, differences between strains in the endogenous release of LH maybe related to an earlier onset of oestrous cycles in H animals.  相似文献   

11.
AIM: To determine the effect of grazing pasture that had a low selenium (Se) concentration on serum concentrations of tri iodothyronine (T3) and thyroxine (T4), and erythrocyte glutathione peroxidase (GSH-Px) activity in dairy cows.

METHODS: Forty pregnant Friesian cows were grazed on pasture that contained 0.03–0.04 ppm Se on a dry matter (DM) basis. Two months before parturition, 20 cows were randomly selected and treated with 1 mg Se/kg bodyweight subcutaneously, as barium selenate (Group Se-S). The other group (Se-D) was not supplemented. Blood samples were taken before supplementation (-60 days) and 30, 60, 90, 180 and 270 days after parturition, for determination of concentrations of T3 and T4 in serum, and GSH-Px activity in erythrocytes.

RESULTS: Erythrocyte GSH-Px activity in the Se-D group was >60 U/g haemoglobin (Hb) throughout the experiment. Supplementation increased (p>0.05) activities to >130 U/g Hb throughout lactation. Mean serum concentrations of T4 in Se-D and Se-S cows increased from 23.7 (SEM 0.7) and 23.4 (SEM 0.8) nmol/L, respectively, in the prepartum period to 69.6 (SEM 0.1) and 67.6 (SEM 0.2) nmol/L, respectively, at 180 days of lactation (p>0.01), and no effect of Se supplementation was evident. Serum concentrations of T3 in Se-D cows decreased (p>0.05) from 1.6 (SEM 0.1) nmol/L prepartum to 1.0 (SEM 0.2) nmol/L at the beginning of lactation, and remained lower (p>0.05) than those in the Se-S cows which did not decrease after calving and ranged from 1.9 (SEM 0.1) to 2.4 (SEM 0.2) nmol/L throughout lactation.

CONCLUSIONS: Serum T3 concentrations decreased during early lactation in unsupplemented cows grazing pastures low in Se (0.03–0.04 ppm) and both serum T3 and erythrocyte GSH-Px activities were consistently lower throughout lactation compared with Se-supplemented cows. Se supplementation had no effect on serum T4 concentrations.  相似文献   

12.
AIM: To determine the effect of iodine supplementation on milk production and iodine concentrations in milk for pasture-fed, seasonally calving dairy cows. METHODS: The study was run over two consecutive seasons on the same dairy farm. In Trial One, 294 Friesian dairy cows were either untreated or injected intramuscularly three times with iodised oil (2,370 mg iodine/dose) at the start of lactation (Day 1) and at about 100-day intervals thereafter. Iodine concentrations in milk were determined prior to each injection on Days 1, 98 and 210, and milk, fat and protein yields measured on Days 43, 98, 176 and 238. In Trial Two, 234 Friesian dairy cows were either untreated or injected intramuscularly with iodised oil (2,370 mg iodine/dose) in early lactation (Day 1) and 99 days later. Iodine concentrations in milk were determined prior to treatment on Days 1, 55 and 161. Serum thyroxine (T4) and triiodothyronine (T3) concentrations were determined in the latter two samples and milk, protein and fat yields were determined on Days 25, 119, 182 and 221. In both trials, pasture was sampled at 1- or 3-monthly intervals and iodine concentrations in herbage measured. RESULTS: Iodine concentrations in pasture averaged 0.24 mg/kg dry matter (DM) in both seasons and varied little over the experimental period. Iodine concentrations in milk from unsupplemented cows were <20 microg/L in both trials. Three iodine injections at about 100-day intervals increased iodine concentrations in milk to 58 microg/L for at least 98 days after each treatment. Two iodine injections at about 100-day intervals raised milk iodine concentrations to 160 microg/L and 211 microg/L at least 55 days after each treatment, but had no effect on serum thyroid hormone concentrations. Iodine supplementation had no significant effect on milk, milkfat or milk protein yield. CONCLUSIONS: Pastures in New Zealand that contained 0.24 mg iodine/kg DM appeared to provide an adequate iodine intake for dairy cows. Intramuscular injections of iodine resulted in significant increases in iodine concentrations in milk. CLINICAL SIGNIFICANCE: Increasing iodine concentrations in milk via intramuscular injection of iodine could provide a method for significantly increasing iodine intakes of humans, in particular, children.  相似文献   

13.
The efficacy of selenium dioxide (SeO2) was similar to sodium selenate (Na2SeO4 x 10H2O), in terms of increasing and maintaining blood Se concentrations, when administered orally twice daily to give 0.64 mg of Se/day to grazing dairy cows for 55 days.  相似文献   

14.
In three separate trial series (TS) the effect of diet composition on selenium (Se) status of dairy cows were investigated. Diets were formulated based mainly on grass (TS1), grass silage (TS2) or maize silage (TS3) with different levels of Se supplementation. Each TS comprised a total of 30 dairy cows and contained one treatment group without Se supplementation (control) and two groups with increasing levels of Se supplementation (levels 1 and 2). Selenium was administered as Na-selenite. The control groups of the different TS showed a very low Se supply of 38–54 μg Se/kg DM. At level 1 the Se supply was increased to 102–165 μg Se/kg DM and at level 2 was 294–373 μg Se/kg DM. After completion of the 6-week trials the average plasma Se concentration of the control cows (without Se supplementation) across all TS was 21.5 μg/l; this increased significantly following Se supplementation, to 37.7 μg/l at level 1 and 61.5 μg/l at level 2. The plasma glutathione peroxidase (GSH-Px) activity of the control cows averaged 67 U/l, rising considerably after supplementation at level 1 to a value of 101 U/l, but showed little further increase at level 2 with a mean value of 120 U/l. By contrast, the average Se content of the milk was unchanged in the control and level 1 groups at 10.5 μg/kg and 10.9 μg/kg, respectively, and only increased markedly after supplementation at level 2 to a mean value of 15.1 μg/kg. The diet based on maize silage, while having a similar Se content as the grass and grass silage-based diets, resulted in a slightly improved Se status, which is due to a higher Se intake from soybean meal.  相似文献   

15.
In cows from 15 dairy herds (n = 210), serum selenium (Se) concentrations ranged from 0.021 to 0.789 microgram/ml, whereas 0.05 to 0.40 microgram/ml is the reported range for adequate serum Se concentrations in cattle. Serum Se concentrations of dairy cattle appeared to follow a geographic distribution pattern. On the basis of herd mean serum Se concentrations, adequate serum Se concentrations were found in cattle from only 1 of 5 herds grazing forage in the geographic area classified as Se deficient for cattle. Adequate mean serum Se concentrations were found in cattle from 4 of 5 herds located in geographic areas described as having variable forage Se concentrations (Se-marginal areas). Of the 10 herds from these 2 areas, there were only 2 herds in which 95% of the cattle had serum Se concentrations in the Se-adequate range (0.05 to 0.40 microgram/ml). In 2 selected neighboring farms in the Se-deficient area, cattle in 1 herd had adequate serum Se concentrations and cattle in the other herd had less than adequate serum Se concentrations (less than 0.05 microgram/ml). Therefore, more cattle are at risk of developing Se-deficiency disease than is commonly believed and forage of neighboring farms may have different Se concentrations. Serum Se concentrations (up to 0.789 microgram/ml) correlated with glutathione peroxidase enzyme activity; this serum Se concentration (0.789 microgram/ml) is approximately 6.2 times higher than previously reported in dairy cattle. Therefore, RBC glutathione peroxidase activity may be useful in determining the diagnosis of chronic Se toxicosis.  相似文献   

16.
The objectives of this study were to evaluate the effects of dietary organic sources of zinc (Zn), copper (Cu) and selenium (Se) for dairy cows on somatic cell count (SCC), occurrence of subclinical mastitis, number of clinical mastitis cases and concentration of superoxide dismutase (CuZnSOD), glutathione peroxidase (GSH-Px) and ceruloplasmin (CP). Nineteen dairy cows, with confirmed pregnancy, were selected by body weight, body condition score (BCS), number of lactation, and milk yield in previous lactation, and randomly distributed among two groups, one to receive organic (n = 9) and the other the inorganic (n = 10) source of Zn, Cu and Se. Diets were formulated to meet the nutritional requirements of animals from 60 days before the expected date of calving up to 80 days of lactation. Blood samples were collected at − 60, − 21, 1, 21, 40 and 80 days in relation to the expected date of calving for analysis of CuZnSOD, GSH-Px and CP concentration. Milk samples for SCC determination were collected weekly after 15 days of lactation, also at day 1 and 7 and when a clinical case was diagnosed for microbiological culture. The number of new and total cases of subclinical mastitis was lower for the group of cows fed with organic sources of Zn, Cu and Se compared to animals receiving inorganic sources. Average SCC during the first 80 days of lactation tended to be lower for the group fed with organic Zn, Cu and Se. Feeding organic Zn, Cu and Se did not alter the concentration of CuZnSOD, GSH-Px and CP.  相似文献   

17.
《动物营养(英文)》2021,7(4):1087-1094
The effects of selenium (Se) yeast supplementation on performance, blood biochemical and antioxidant parameters, and milk Se content and speciation were evaluated. Thirty-six mid-lactation Holstein dairy cows were randomly assigned to 1 of 3 treatments: 1) control (basal diet containing Se at 0.11 mg/kg DM), 2) basal diet + 0.5 mg supplemental Se/kg DM (SY-0.5), and 3) basal diet + 5 mg supplemental Se/kg DM (SY-5). Selenium was supplemented as Se yeast. The trial consisted of a 1-week pretrial period and an 8-week experimental period. Milk somatic cell score decreased with SY-5 supplementation (P < 0.05), but other performance parameters were not affected (P > 0.05). The serum Se concentration increased with the increasing levels of Se yeast supplementation (P < 0.05), however, blood biochemical parameters showed few treatment effects. The antioxidant capacity of dairy cows was improved with Se yeast supplementation reflected in increased serum glutathione peroxidase activity (P < 0.05) and total antioxidant capacity (P = 0.08), and decreased malondialdehyde concentration (P < 0.05). Milk total Se concentration increased with Se dose (P < 0.05). Also, the selenomethionine concentration increased with Se dose from 13.0 ± 0.7 μg/kg in control to 33.1 ± 2.1 μg/kg in SY-0.5 and 530.4 ± 17.5 μg/kg in SY-5 cows (P < 0.05). Similarly, selenocystine concentration increased from 15.6 ± 0.9 μg/kg in control and 18.9 ± 1.1 μg/kg in SY-0.5 to 22.2 ± 1.5 μg/kg in SY-5 cows (P < 0.05). In conclusion, Se yeast is a good organic Se source to produce Se-enriched cow milk with increased Se species including selenomethionine and selenocystine. The results can provide useful information on milk Se species when a high dose Se yeast was supplemented in the cow diet.  相似文献   

18.
AIM: To determine the concentration of the anti-theilerial drug buparvaquone in the milk and tissue of dairy cattle following treatment with two different formulations, and to assess the effect of clinical theileriosis on the concentration of buparvaquone in milk.

METHODS: Healthy lactating dairy cows (n=25) were injected once (Day 0) I/M with 2.5?mg/kg of one of two formulations of buparvaquone (Butalex; n=12 or Bupaject; n=13). Milk samples were collected from all cows daily until Day 35. Five cows were slaughtered on each of Days 56, 119, 147, 203 and 328, and samples of liver, muscle and injection site tissue collected. Milk samples were also collected from cows (n=14) clinically affected with theileriosis for up to 21 days after treatment with buparvaquone. Milk and tissue samples were analysed by liquid chromatography-mass spectrometry; limits of detection (LOD) were 0.00018?mg/kg for muscle and 0.00023?mg/L for milk. Concentrations of buparvaquone in milk and tissues were log10-transformed for analysis using multivariate models.

RESULTS: In healthy cows, concentrations of buparvaquone in milk declined with time post-treatment (p<0.001), but were above the LOD in 11 of 25 cows at Day 35. Concentration in milk was higher one day after treatment in cows treated with Butalex than in cows treated with Bupaject, but not different thereafter (p=0.007). Concentrations of buparvaquone in muscle were below the LOD for four of five animals at Day 119 and for all animals by Day 147, but were above the LOD at the injection site of one cow, and in the liver of three cows at Day 328. Tissue concentrations did not differ with formulation nor was there a formulation by time interaction (p>0.3).

Concentrations of buparvaquone in the milk of clinically affected animals were not different from those of healthy animals at 1 and 21 days post-treatment (p=0.72). Between 21 and 25 days post-treatment concentrations were below the LOD in 9/14 milk samples from clinically affected cows.

CONCLUSIONS: Detectable concentrations of buparvaquone were found in the milk of some cows for at least 35 days and in the liver and injection site of some cows until at least 328 days after injection. There were no biologically meaningful differences in milk or tissue concentrations between the formulations, or in the milk concentrations for cows that were clinically affected compared with those that were healthy at the time of treatment.  相似文献   

19.
Three groups of beef cow and calf pairs were studied to determine plasma vitamin E and blood selenium (Se) concentrations of calves at 1 month old. Group 1 was managed on irrigated pasture and calves received no Se/vitamin E injections at birth. Group 2 was managed on irrigated pasture, and the calves were injected with Se/vitamin E at birth. Group 3 was managed on dry foothill grasslands, and these cows were supplemented with 56.3 mg vitamin E and 3 mg Se daily, and the calves received a Se/vitamin E injection at birth. The plasma concentration of vitamin E in group 1 and 2 cows (9.5 +/- 1.24 and 8.43 +/- 1.0 microg/ml, respectively) was significantly higher than that of the group 3 cows (2.28 +/- 0.42 microg/ml; P < 0.05). The blood Se concentrations in group 3 cows (169 +/- 37 ng/ml) were significantly higher than those in group 1 and 2 cows (36.4 +/- 15.9 and 31.1 +/- 12.5 ng/ml, respectively; P < 0.05). Calf Se was highly correlated to cow Se (r = 0.965), and calf vitamin E was moderately correlated to cow vitamin E (r = 0.605). Calf vitamin E concentrations were consistently lower than cow vitamin E concentrations, and many values would be considered deficient.  相似文献   

20.
Small‐scale urban dairy farms (n = 16) in and around Jimma, Ethiopia with cross‐bred (Bos indicus × Bos taurus) cows were enrolled in a double‐blinded intervention study to investigate the effect of a trace element supplementation programme on trace element status and milk concentrations as well as performance [body condition score (BCS), milk yield, leptin], milk composition, antioxidant status (ferric‐reducing ability of plasma (FRAP), thiobarbituric acid‐reactive substances (TBARS)], blood biochemistry, serum proteins and immune response (antibody titre upon rabies vaccination). The farms were allocated to a (1) placebo or (2) Cu, Zn, Se, Co and I supplementation treatment for 150 d. On days 0 and 120, four lactating cows per farm were sampled for milk and plasma, and on day 150 for serum, following primo‐vaccination. Cu deficiency was present in 17% and marginal Se deficiency in 30% of initially sampled cows, while no Zn shortage was detected. Over 120 days, trace element supplementation caused a bigger increase in plasma Se and Cu concentrations, but also a larger decrease of plasma Fe concentrations. A larger increase in milk Se concentrations was observed in the supplemented group, whereas none of the other elements were affected. BCS decreased more over time in the supplemented group. None of the other parameters of performance and antioxidant status nor milk composition or blood biochemistry was affected by treatment. Antibody response to rabies vaccination did not differ between groups, whereas α1‐globulins tended to be lower and β‐globulins tended to be higher in the supplemented group. In conclusion, despite improved Cu and Se status and Se concentrations in milk, cows on tropical urban dairy farms did not seem to benefit from trace element supplementation, with respect to the parameters investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号