首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The genus Brachiaria, native to the African tropical savannas, has achieved significance as a pasture grass in many tropical and subtropical countries, including Brazil. Many species and accessions are polyploid and apomictic, which complicates the improvement of breeding stocks through hybridization. In support of breeding programs, cytogenetic characterization, including chromosome counts and evaluation of the meiotic behavior in the accessions of the Brachiaria has been undertaken at the Embrapa Beef Cattle Center. In this study, 22 accessions of B. brizantha were analyzed of which one was found to be diploid (2n = 2x = 18), 18 were tetraploid (2n = 4x = 36) and three were hexaploid (2n = 6x = 54). The meiotic chromosome behavior was slightly irregular in the diploid and in some tetraploid accessions, and highly irregular in most tetra- and hexaploid accessions. Meiotic abnormalities were those common to polyploidy, i.e., multivalent chromosome association at diakinesis and irregular chromosome segregation leading to micronuclei formation in the tetrad stage. Low frequencies of multivalent chromosome associations among polyploids suggest that they may be segmental allopolyploids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The meiotic behavior of two half-sib interspecific tetraploid (2n = 4x = 36) promising hybrids, a sexual and an apomictic one, from crosses B. ruziziensis and B. brizantha, was evaluated. Although chromosome paired predominantly as bivalents, a few tri- and quadrivalents were recorded. Results suggest that B. brizantha and B. ruziziensis are closely related and genetic recombination is expected in hybrids. Introgression of specific target genes from B. ruziziensis into B. brizantha and vice-versa may be foreseen. However, abnormalities such as irregular chromosome segregation, chromosome stickiness and abnormal cytokinesis reported in these hybrids affect pollen fertility. More than 65% of pollen grains are sterile. Since the distinctive cytological feature of these hybrids is abnormal cytokinesis, this fact suggests that both parental genomes are unable to coordinate their activities with regard to this cytological phenomenon. Deployment of such hybrids in the process of developing varieties is discussed.  相似文献   

3.
Difficulties in obtaining new breeding lines of Brachiaria (Trin.) Griseb., an important forage grass in Brazil, are mostly related to differences in ploidy among the accessions, and to apomixis, an asexual mode of reproduction. Usually, sexual accessions are diploid while apomicts are polyploid. Induced tetraploids of Brachiaria brizantha (A. Rich.) Stapf have been successfully obtained and this paper presents the results of a study of their reproductive modes and fertility. Despite frequent meiotic aberrations during microspore development, the induced tetraploids produced viable pollen and produced progeny after controlled self-pollination. Similarly to the original diploid sexual progenitor, embryo sacs of the Polygonum type with confirmed meiotic origin were present in the induced tetraploids suggesting chromosome doubling did not alter the reproductive mode. The embryo sac of the Polygonum type was also observed in progenies obtained after self and open pollination. Nevertheless, embryo sacs of the Polygonum and the Panicum types within the same ovule were observed in some progenies obtained after open pollination, probably having resulted from hybridization with tetraploid, apomictic plants. Indeed, the compatibility of the progeny with tetraploid, apomictic B. brizantha was confirmed by the formation of mature caryopses after controlled pollination. Evidence is presented that the induced tetraploids and their progeny are sexual plants and that they are compatible with natural tetraploid B. brizantha. The induced tetraploids will be useful for analyses of apomictic inheritance as well as in the development of sexual tetraploid lines in Brachiaria breeding programs.  相似文献   

4.
Two diploid accessions of wild oat, CIav6956 and CIav7233, were identified as carrying seedling resistance to oat crown rust (caused by Puccinia coronata f. sp. avenae; Pca). Two vigorous interploidy F1 hybrids were generated from crosses involving the hexaploid oat cultivar Wintaroo and the diploid oat Avena strigosa Schreb. accession CIav6956. An additional interploidy F1 hybrid, designated “F1-Aa1”, was produced from a cross of Wintaroo and the diploid oat accession CIav7233. All three hybrids were more vigorous and taller than the cultivated parent Wintaroo. The three F1 hybrids contained full chromosome complements from both parents (2n = 4x = 28), but no seeds were obtained when the three F1 hybrids were selfed. Meiotic analyses of the hybrids indicated that they exhibited a high degree of inter-genome and intra-genome pairing. Trivalent configurations were detected in 95–96% of meiotic cells and a minimum of three bivalents was present in all cells. An average chiasma frequency of 7.2–7.9 per cell was observed for the three F1 hybrids. A fourth F1 hybrid was subsequently generated from a cross between the diploid oat accession CIav7233 and Wintaroo. One octaploid (2n = 8x = 56) was generated from this hybrid and progeny were resistant to two Pca races. The chromosome number of the octaploid progeny varied between 51 and 54 chromosomes. Development of a chromosome addition line(s) with the crown rust resistance should be possible from these partial-octaploids.  相似文献   

5.
Fingerprinting of alfalfa meiotic mutants using RAPD markers   总被引:5,自引:0,他引:5  
Summary A calendar of female sporogenesis and gametogenesis was made for both apomictic tetraploid (2n=4x=36) Brachiaria brizantha and Brachiaria decumbens and their apomictic F1 hybrids with sexual tetraploid (2n=4x=36) Brachiaria ruziziensis. Microgametogenesis was used as a reference. Apospory was facultative in both species and hybrids. Environmental conditions had variable effects on the level of apomixis according to each genotype. Ratios of segregation into sexuals and apomicts in the interspecific hybrids suggest an oligogenic determinism with dominant apomixis in the genus Brachiaria. Highly apomictic and partially male fertile hybrids were identified and will be used in an improvement program to transfer genes for apomixis into the sexual species B. ruziziensis.  相似文献   

6.
In the genus Brachiaria, genetic variation can be exploited directly from germplasm collections or released using sexual reproduction in normally apomictic polyploids. The discovery of a natural sexual polyploid accession H031 of Brachiaria humidicola collected in Africa, opened new opportunities to exploit the genetic variation in this species. This accession was crossed with an apomictic cultivar BRS Tupi with the same chromosome number (2n = 36) and 361 F1 hybrids were obtained. Following visual selection for leafiness, vigor, growth habit, and the mode of reproduction, 50 hybrids were selected for further agronomic evaluation. The parents and 45 of the 50 selected hybrids were evaluated for the regularity of meiosis. In the female parent (H031), meiosis was somewhat irregular, with 16.3% of abnormal tetrads, whereas the male (cv. BRS Tupi) meiosis was very regular, with only 3.1% of abnormal tetrads. Among hybrids (sexual and apomictic), the percentage of abnormal tetrads ranged from 15.8 to 98.3%. The abnormalities included irregular chromosome segregation, chromosome stickiness and the absence of cytokinesis. Considering that apomixis in the genus Brachiaria is pseudogamic, and that meiotic aberrations can compromise pollen viability, the results of this study present another parameter to aid selection for more stable microsporogenesis. Apomictic derivatives with stable meiosis are candidates for new cultivars whereas sexual hybrids can be retained in breeding for another round of recombination.  相似文献   

7.
Summary Fourteen germplasm accessions of Paspalum compressifolium native from southern Brazil were cytologically and embryologically analysed. The study revealed that one accession was diploid (2n=20), twelve were tetraploid (2n=40) and one was hexaploid (2n=60). This is the first report of diploid and hexaploid cytotypes for this species. Studies on microsporogenesis, megasporogenesis, and embryo sac development indicated that the diploid cytotype had regular meiotic behavior and reproduces sexually. Tetraploid cytotype usually had an important proportion of chromosomes that associated as quadrivalents during meiosis and reproduced by mean of aposporous apomixis. The hexaploid cytotype showed irregular meiotic behavior with about one third of the chromosomes associated as multivalents and reproduced by aposporous apomixis. Thus, P. compressifolium could be an agamic complex. Breeding in this complex is possible due to the presence of diploid sexuals which can be treated by colchicine and pollinated by apomicts.  相似文献   

8.
Summary Colchicine induced tetraploid (2n=4x=36) Brachiaria ruziziensis were used as female parent in crosses with apomictic tetraploid species (2n=4x=36) Brachiaria decumbens and Brachiaria brizantha. Tetraploid B. ruziziensis pollinated with B. decumbens set significantly more seed than selfed or crossed with B. brizantha. The crossability between B. ruziziensis and B. decumbens is also better than between B. ruziziensis and B. brizantha. In addition, hybrid seedlings obtained in crosses involving B. brizantha are more frequently lethal. All the viable F1 hybrids are tetraploid with 36 chromosomes. Meiotic chromosome behaviour suggest that the three species belong to the same genomic group and therefore the same agamic complex. Chromosome associations at metaphase I do not allow to identify fertile and sterile hybrids. The interspecific hybrids averaged a lower fertility than their female parent, but some hybrids were more fertile than their apomictic male parent.  相似文献   

9.
Summary Sexual polyploidization via the action of 2n gametes (gametes with the sporophytic chromosome number) has been identified as the most important evolutionary mode of polyploidization among plant genera. This study was conducted to determine whether 2n gametes are present in the tetraploid level of the genus Avena (2n=4×=28) Twenty tetraploid Avena lines, representing four species and one interspecific hybrid, were screened for pollen grain size in order to differentiate between n and 2n pollen. Avena vaviloviana (Malz.) Mordv. line PI 412767 was observed to contain large pollen grains at a 1.0% frequency. Cytogenetic analyses of pollen mother cells of PI 412767 revealed cells with double the normal chromosome number (i.e., 56 chromosomes at metaphase I and anaphase I). The mode of chromosome doubling was found to be failure of cell wall formation during the last mitotic division that preceded meiosis. The resulting binucleate cells underwent normal meiotic divisions and formed pollen grains with 28 chromosomes. Based on the formation and function of 2n gametes, three models involving diploid and tetraploid oat lines are proposed to describe possible evolutionary pathways for hexaploid oats. If stable synthetic hexaploid oat lines could be developed by utilizing 2n gametes from diploid and tetraploid oat species through bilateral sexual polyploidization, the resulting hexaploids could be used in breeding programs for transferring genes from diploids and tetraploids to cultivated hexaploids.  相似文献   

10.
2n Gamete formation in the genus Brachiaria (Poaceae: Paniceae)   总被引:1,自引:0,他引:1  
Microsporogenesis of several Brachiaria species of the Brazilian collection at Embrapa Beef Cattle has been analyzed in detail. This paper reports abnormal cytokinesis in three accessions of three different species (Brachiaria humidicola, 2n = 4x = 36, Brachiaria decumbens, 2n = 4x = 36, and Brachiaria dura, 2n = 6x = 54). Chromosomes paired in bi-, tri-, and quadrivalents in these accessions, whereas chromosome segregation at meiosis I was characterized by exclusion of laggards as micronuclei. In a high number of meiocytes, the first sign of cytokinesis appeared only in metaphase II and did not divide the meiocyte into a dyad. Total absence of cytokinesis was also detected among meiocytes in the second division. Since in both cases the two metaphase plates were very close, they favored the rejoining of chromosome sets after anaphase II and formed a restitutional nucleus in telophase II. Second cytokinesis occurred after telophase II in most meiocytes. Monads, dyads, and triads with n or 2n nuclei were observed among meiotic products. The 2n gametes observed correspond to the first division restitution (FDR). The number of affected cells in each accession was variable, but the number of microspores with restitutional nucleus, including those scored in tetrads and the released ones, did not exceed 9%. Although polyploidy is common in the genus Brachiaria, its origin is still unclear. Current results suggest that 2n gametes may have contributed to the evolutionary history of the genus.  相似文献   

11.
Ploidy races in Actinidia chinensis   总被引:3,自引:0,他引:3  
Summary Ploidy levels were examined in 26 accessions of Actinidia chinensis: 20 accessions were diploid (2n=2x=58) and 6 accessions were tetraploid (2n=4x=116). There was no evidence of variation in ploidy level within an accession. Our results are consistent with tetraploid A. chinensis coming from a restricted part of China.Interploid crosses within A. chinensis produced only low numbers of seedlings which were mainly triploid. Crossing hexaploid A. deliciosa with pollen of tetraploid A. chinensis produced a large family of plants and those checked were pentaploid.Counts on 83 genotypes of different ploidy levels (2x, 3x, 4x, and 5x) confirmed that the basic chromosome number in Actinidia is 29.  相似文献   

12.
Brachiaria humidicola is a tropical grass that grows in seasonally swampy grasslands in Africa. In Brazil, two apomictic cultivars (2n = 54) of this species are widely used as pastures in poorly drained soils. The recent discovery of a sexual polyploid accession (2n = 36) in the germplasm collection at the Embrapa Beef Cattle Research Center allowed intraspecific hybridization with the objective of broadening the genetic variability and selection of superior genotypes in this species. Hybridization, however, depends on accessions with the same ploidy level. Cytological analyses of 55 accessions revealed that 19 apomictic accessions also presented 2n = 36 chromosomes. Chromosome pairing in hexavalent association at diakinesis and metaphase I suggested that the basic chromosome number for this species is x = 6. Cytological analysis revealed abnormalities in variable frequencies in the meiosis of these hexaploid (2n = 6x = 36) accessions. The most common were those related to irregular chromosome segregation which led to unbalanced gamete formation, but chromosome stickiness was also recorded. These results clearly demonstrate the value of cytogenetics in the choice of genitors and for superior hybrids to be obtained in the breeding of this species. For that both the ploidy level and the frequency of abnormalities need to be considered, besides other favorable agronomic characteristics.  相似文献   

13.
Langdon durum D-genome disomic substitution lines were used to study the chromosome locations of adult-plant leaf rust resistance genes identified from tetraploid wheat accessions. The accessions are 104 (Triticum turgidum subsp. dicoccum var. arras) and 127 (T. turgidum subsp. durum var. aestivum). The complete sets of the substitution lines were crossed as female parents with the accessions and F1 double monosomic individuals selected at metaphase I. Segregating F2 individuals were inoculated during the flag leaf stage with pathotype UVPrt2 of Puccinia triticina. The substitution analysis involving accession 104 showed that the gene for leaf rust resistance is located on chromosome 6B. The analysis with accession 127 indicated that chromosome 4A carries a gene for leaf rust resistance. The two novel genes are temporarily designated as Lrac104 and Lrac127, respectively from accessions 104 and 127.  相似文献   

14.
A triploid hybrid, which was obtained from interspecific crosses between tetraploid Primula denticulata (2n = 4x = 44) and P. rosea (2n = 2x = 22), successfully produced 11 plants by backcrossing with pollen of tetraploid P. denticulata. Analysis of ploidy level using flow cytometry and chromosome counting in the 11 BC1 plants revealed that all progeny had much larger DNA contents and chromosome number than both parents. In this triploid-tetraploid (3x–4x) crossing, progeny was predominantly true or near pentaploid presumably produced by the fertilization between true or near triploid female gamete produced from triploid hybrid and diploid pollen of tetraploid P. denticulata. These results suggest that unreduced (3x) or near triploid female gametes were partially produced by single step meiosis, either first-division restitution or second-division restitution process. The zygotes formed by the fertilization between true or near triploid egg produced by single step meiosis in triploid hybrid and diploid pollen produced by normal meiosis of tetraploid P. denticulata might be the only survivors in embryogenesis.  相似文献   

15.
Genetic diversity of wheat wild relatives in the Near East detected by AFLP   总被引:3,自引:0,他引:3  
In order to reveal the molecular genetic diversity of wheat wild relatives, an AFLP analysis was conducted with 16 accessions of five Triticum andAegilops species originating from the Near East. Variation within population was studied with at least seven individuals per accession. Four primer combinations were used for selective amplification. Based on the scored bands, we estimated percentage of polymorphic bands, 1 – proportion of shared bands (1-psb) and nucleotide diversity (π). Of the five species used in this study, Ae. speltoides had the highest level of `within population' variation. This species had also the highest value of the variation among populations. As for Triticum species, the level of variation within population was low in diploid species (T. urartu and T. boeoticum),whereas two tetraploid species (T. dicoccoides and T. araraticum) had relatively high levels of variation within population. While the two diploid Triticum indicated a clear interspecific divergence, the two tetraploid wild wheats were not clearly divergent in this study. The variance portioning analysis indicated that the variation detected for diploid Triticum species was mainly composed of `between species' variation, on the other hand that for tetraploid Triticum was mostly composed of `within population' variation. In conclusion, AFLP analysis reveals molecular variation in all accessions used in this study, suggesting a potential genetic diversity of the wheat wild relatives in natural populations. These results have implications for the design of strategies to maintain genetic diversity within genebank collections. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Glycine tabacina (Labill.) Benth. is a wild perennial species related to the cultivated soybean, G. max (L.) Merr. It is composed of diploid (2n=40) and tetraploid (2n=80) cytotypes. Currently, to differentiate the cytotypes, plants are grown out in the greenhouse and chromosome counts made on pollen mother cells. It is a laborious and time consuming process. The objective of this study was to determine whether electrophoretic techniques could be utilized to separate the cytotypes. Electrophoretic examination of seven isozyme systems from seed of 67 G. tabacina accessions revealed banding patterns that could be used to differentiate between diploid and tetraploid cytotypes in the species. Among the tetraploid accessions, the number of bands observed were always greater than the diploids. Some tetraploid banding patterns consisted of bands similar to the diploid tabacina and/or additional bands previously identified in other Glycine species. The patterns of isozyme multiplicity and variation in the tetraploid tabacinas suggests more than one mode of origin for the tetraploids.  相似文献   

17.
L. Crespel  S. C. Ricci  S. Gudin 《Euphytica》2006,151(2):155-164
Based on the size differences found between haploid and diploid pollen produced by diploid and tetraploid rose cultivars, respectively, 2n pollen producers were identified in a population of 53 diploid hybrids from a cross between a dihaploid rose, derived from the haploidization of a tetraploid modern cultivar and the diploid species R. wichuraiana. Frequency of 2n pollen producers was estimated in 2002, 2003 and 2004. Highly variable frequencies were found i) within population; ii) during years of observation (between years and between different months in the same year). The variation of 2n pollen production could be related to environmental fluctuations. A cytological analysis of male meiosis was carried out in 10 hybrids randomly chosen. Among meiotic abnormalities leading to 2n pollen formation, triads (containing a 2n microspore at one pole and two n microspores at the other) resulting from abnormal spindle geometry were frequently observed. The mode of 2n pollen formation is genetically equivalent to a First Division Restitution (FDR) mechanism. FDR 2n pollen transmits a high percentage of the heterozygosity from the diploid parent – 2n pollen producer-to the tetraploid offspring.  相似文献   

18.
Three different karyotypes of sugar beet with resistance against the beet cyst nematode (Heterodera schachtii) have been investigated. These comprised monosomic addition lines (2n = 19) with one complete chromosome from B. patellarris or B. procumbens, one line with a chromosomal fragment added to the normal sugar beet chromosome complement (2n =18 + fragment) and one diploid line (2n = 18). The fragment originated from a B. procumbens chromosome since during meiosis it formed a univalem. It carries the gene for nematode resistance. Meiotic disturbances like univalems. laggards, anaphase I bridges, fragments and micronuclei were observed in all resistant genotypes. These may result in an exclusion of the chromosome fragment carrying the resistance from the rest of the genome. In the diploid resistant line, a chromosome with a translocation could be distinguished from the other B. vulgaris chromosomes. Meiotic irregularities also appeared in diploid resistant types and are one main reason for low transmission of the resistance. Tin-relationship between meiotic stability and the transmission rate of the resistance gene is discussed.  相似文献   

19.
Paspalum glaucescens belongs to the informal group Plicatula, reproductively characterized by the dominance of tetraploid apomitic lines in most of its populations, with rare diploid, sexual counterparts. The species shows high phenotypic variation. Twenty nine Southern Brazilian accessions were cytologically and morphologically analysed. Most of the accessions were tetraploid (2n = 4x = 40). Meiotic study of three tetraploids showed their irregular behaviour. Eight accessions presented the diploid level (2n = 2x = 20).This can be considered a very high frequency of diploids in a member of the Plicatula group. While the tetraploids are concentrated at the highest elevations, diploids were detected mostly in the lowlands. Average stomatal sizes were quite distinct on different ploidy levels, being larger in tetraploids. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Meiotic nondisjunction during microsporegenesis can lead to aneuploid gametes formation and reduced pollen fertility in plants. This paper reports the prevalence of meiosis I nondisjunction in a resynthesized Brassica napus (AACC, 2n = 38) and its use for aneuploid production. Meiosis in the amphidiploids was characterized by high frequencies of univalents and multivalents per PMC at diakinesis/metaphase I and notably unbalanced chromosome segregations at anaphase I (AI). In all the plants observed, 18.95–44.3% of PMCs exhibited a segregation of 18:20 (n − 1:n + 1) at AI which was caused by nondisjunction of one bivalent or the distribution of two homologous univalents to the same pole. Meiosis proceeded normally after AI then, thus led to the formation of viable n − 1 and n + 1 gametes and high pollen fertility of these plants. Microspore culture was subsequently carried out using these plants in an attempt to isolate Brassica nullisomics. Four nullisomics (2n = 36), two nullihaploids (2n = 18) and one tetrasomic haploid (2n = 20) were identified cytologically and characterized morphologicaly and physiologically. Amplified fragment length polymorphism (AFLP) survey suggested that of the six nullisomics/nullihaploids, one nullihaploids lost one A-genome chromosome and the other five lost C genome chromosome(s). Altogether, different C-genome chromosomes were thought to have been lost in the nullisomics/nullihaploids. The mechanisms underlying the meiotic abnormalities and the implications of these B. napus nullisomics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号