首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chilosi  & Magro 《Plant pathology》1998,47(6):700-705
Pectolytic enzymes produced by Didymella bryoniae in a liquid medium containing pectin as sole carbon source and in inoculated etiolated hypocotyls of 10 melon cultivars, as well as those constitutively expressed in spores, were studied by isoelectric focusing, quantitatively and qualitatively. Five constitutive pectin lyase (PNL) isoenzymes differing in isoelectric joint (pI), one acidic (pI 3.9) and four basic (pI 8.4, 8.9, 9.3, 9.9) were expressed in extracts from spores. The same PNL isoenzyme pattern was detected in culture filtrates and in infected tissues of all the melon cultivars tested. Polygalacturonase (PG) activity, represented by a single inducible acidic band (pI 4.6) was detected only in culture filtrates. A single constitutive basic pectin methylesterase (PME) isoenzyme (pI > 10.0) was also found in spores, culture filtrates and inoculated melon tissues. All cultivars were susceptible at the seedling growth stage, but with differences in disease severity; cultivars Amarillo Oro and Juane Canari were, respectively, the least and most susceptible. Pectin lyase activity was highly correlated with disease severity. In rotted tissues and culture filtrates, an increase in pH to values over 7.0 was recorded, values optimal for PNL activity. In this plant–pathogen interaction, PNL activity represents the principal pectolytic component and these isoenzymes were associated with the onset of disease, disease severity and an increase in pH of infected tissue.  相似文献   

2.
The time course of accumulation of two phytoalexins, the terpenoid rishitin and the polyacetylene cis-tetradeca-6-ene-1,3-diyne-5,8-diol, was determined in near-isogenic susceptible and resistant tomato lines inoculated with either Verticillium albo-atrum or Fusarium oxysporum f.sp. lycopersici.Cultivars containing the Ve gene for verticillium wilt resistance accumulated phytoalexins at a rate similar to that in susceptible plants following stem inoculation with V. albo-atrum. Higher amounts of phytoalexins were isolated from susceptible than from resistant plants at 11 days after inoculation. Inoculum concentrations of 105, 106, 107 and 108 conidia ml−1 had no differential effect on phytoalexin accumulation at 3 days after inoculation. Also, no differences were observed between fungal growth in susceptible and resistant cultivars during that period.A cultivar containing the I-1 gene for fusarium wilt resistance contained more rishitin than did susceptible plants at 2 and 3 days after inoculation with 107 conidia of F. oxysporum f.sp. lycopersici ml−1, but at 7 and 11 days after inoculation more rishitin had accumulated in the susceptible plants.No difference was observed between the rate of accumulation of phytoalexin in stem segments from resistant and susceptible plants inoculated by vacuum-infiltration.To estimate the concentration of phytoalexins in the xylem fluid, sap was expressed from vascular tissue and amounts of phytoalexins were determined in the sap and in the expressed tissue. Less than 5% of the phytoalexins present in stem segments was recovered from the sap, indicating that their concentration in the xylem fluid may be relatively low.The role of phytoalexins in resistance to verticillium and fusarium wilt is discussed.  相似文献   

3.
ABSTRACT Although several reports underscore the importance of silicon (Si) in controlling Magnaporthe grisea on rice, no study has associated this beneficial effect with specific mechanisms of host defense responses against this fungal attack. In this study, however, we provide evidence that higher levels of momilactone phytoalexins were found in leaf extracts from plants inoculated with M. grisea and amended with silicon (Si(+)) than in leaf extracts from inoculated plants not amended with silicon (Si(-) ) or noninoculated Si(+) and Si(-) plants. On this basis, the more efficient stimulation of the terpenoid pathway in Si(+) plants and, consequently, the increase in the levels of momilactones appears to be a factor contributing to enhanced rice resistance to blast. This may explain the lower level of blast severity observed on leaves of Si(+) plants at 96 h after inoculation with M. grisea. The results of this study strongly suggest that Si plays an active role in the resistance of rice to blast rather than the formation of a physical barrier to penetration by M. grisea.  相似文献   

4.
Development of gibberella ear rot disease symptoms and the accumulation of the mycotoxin deoxynivalenol (DON) in maize ears inoculated via the silk with Fusarium graminearum was determined at various times after inoculation. Ten hybrids ranging in maturity from early to late, were inoculated with a conidial suspension in 1993 and 1994 and harvested every 2 weeks for 14 weeks after inoculation. Disease symptom evaluations were conducted on all 10 hybrids; five of these hybrids were further analysed for DON concentrations. Disease symptoms reached a maximum and stabilized by 6 weeks after inoculation, approximately at physiological maturity (35% kernel moisture) for the early hybrids and the late dent stage of maturity for later hybrids. Deoxynivalenol accumulation was correlated with symptom development but did not stabilize at 6 weeks for all genotypes. Hybrid maturity did not influence symptom development or DON accumulation, but environment did. For the evaluation of hybrids, assessments of resistance to fungal invasion and mycotoxin accumulation based on symptom development could be made much earlier than the current 12-14 week harvest time commonly used in inoculated experiments.  相似文献   

5.
Four carnation cultivars, Novada (resistant to races 1 and 2 ofFusarium oxysporum f.sp.dianthi), Elsy (susceptible to race 1), Lena (susceptible to race 2) and Sam's Pride (susceptible to both races), were selfed and crossed. When three months old, the seedlings were inoculated via the roots or via the stems, after which wilting was recorded weekly according to a 5-point ordinal scale.Analyses were carried out on the proportions of diseased plants. For race 1 variation between the progenies could be described by means of general combining abilities only; GCA values were not affected by the inoculation method used. Also for race 2 GCAs were most important but the GCA values appeared different for the two inoculation methods. It is concluded that resistance to both races is inherited in an additive way.Indications for independently inherited root-specific resistance components (extravascular resistance) were only found with race 2. With both races, the ability to confine the pathogen at the infection site appeared the most important resistance component. Resistant progenies were also characterized by longer latent periods and lower wilting rates.Both race 1 and race 2 induced the accumulation of the phytoalexins dianthalexin and methoxydianthramide S, but race 2 induced higher amounts than race 1. The accumulation of phytoalexins was positively correlated to the resistance level of the progenies against the respective races. The progenies of the double-resistant cultivar Novada appeared to produce particularly high levels of phytoalexins.  相似文献   

6.
Melon plants locally infected with Colletotrichum lagenarium display a marked increase in chitinase activities (exo- and endo-activities) throughout the whole plant. This increase begins 3 days after inoculation in the inoculated cotyledon, and then occurs sequentially in the non-infected tissues.Both fungal elicitors and plant endogenous elicitors induce a rapid increase in chitinase activity in the treated cotyledon. In other organs, chitinase activity is stimulated, to a lesser extent and after a lag period, only by fungal elicitors.The earlier, more rapid, systemic induction of chitinase activity, produced by treatment with the fungal elicitor is correlated by the increased resistance of the tissues to infection by the pathogen.  相似文献   

7.
The ability of nonpathogenic isolates of Fusarium oxysporum (np Fo ) to induce systemic resistance and defence responses against subsequent challenge with a pathogenic strain of F. oxysporum f. sp. asparagi ( Foa ) was examined in Asparagus officinalis . In a split-root experiment, roots inoculated with np Fo exhibited a hypersensitive response and those subsequently inoculated with Foa displayed resistance. Induction of systemic resistance in np Fo -treated plants led to significantly fewer necrotic lesions ( P  = 0·05) and reduced Foa disease severity compared with plants not treated with np Fo . In hyphal-sandwich root inoculation experiments, activities of peroxidase and phenylalanine ammonia-lyase and lignin content were higher in np Fo -treated plants and increased more rapidly than in np Fo -untreated plants after Foa inoculation. Antifungal activity (inhibition of fungal spore germination and germ-tube growth) from exudates of roots inoculated with Foa were observed for np Fo -treated plants but not for np Fo -untreated plants. Thus, isolates of np Fo may function as inducers of systemic acquired resistance (SAR) and defence responses against Foa invasion in A. officinalis .  相似文献   

8.
Activities of polygalacturonase, pectin lyase, and cellulase increased in susceptible, catechol-treated, and resistant tomato plants, after inoculation withFusarium oxysporum f.lycopersici (Sacc.) Snyder and Hansen race 2. The catechol-treated and the resistant plants remained symptomless, while susceptible plants developed symptoms of disease. It is therefore suggested that increased activity of cell-wall-degrading enzymes in inoculated plants does not necessarily cause the development of disease symptoms.  相似文献   

9.
本文采用基因克隆和生物信息学方法研究了花生Hy PGIP基因及编码蛋白的基本性质和生物学功能,并通过测定接种叶腐病菌后花生植株内PG酶的活性变化和PGIP蛋白的生成量变化,以及Hy PGIP基因瞬时表达分析,探讨了PGIP蛋白与寄主抗病性关系。结果表明,受叶腐病菌侵染的花生植株中,抗病品种的PG酶活性都明显低于感病品种,而生成的PGIP蛋白量都比感病品种显著多,暗示PGIP蛋白与花生叶腐病抗性有关。经基因克隆和测序获得HyPGIP基因全长序列为1 029 bp,编码342个氨基酸,无内含子,终止密码子为TGA,与已报道的五个花生PGIP序列的同源性都很高;结构预测发现该序列存在8个LRR结构域,存在信号肽,疏水性较强,定位于细胞壁上;RT-PCR显示,经接种叶腐病菌处理后,花生植株中的PGIP基因表达量明显增加。  相似文献   

10.
Assessment of resistance to Plasmodiophora brassicae in swedes   总被引:1,自引:1,他引:0  
A method is described in which swede seedlings inoculated with standardized concentrations of resting spores of specific populations of Plasmodiophora brassicae can be evaluated for resistance in different environments. Similar ranking for resistance of four swede cultivars inoculated with one pathogen population was obtained from seedling tests in a glasshouse, from young plants in a polythene tunnel, and from mature plants in field trials. Differential resistance of the four cultivars to two pathogen populations evident in glasshouse seedling tests was more clearly demonstrated in the field where there was a highly significant cuitivar × pathogen population interaction (p<0 001) for both root fresh weight and mean disease category.
The inclusion of uninoculated control plants in field trials enabled a direct comparison of yield with that from inoculated plants. Cultivars were defined as resistant in terms of yield if they did not suffer any crop loss in comparison with uninoculated plants, even though some plants showed restricted gall development. The distribution of fresh weight to galls, roots and shoots could be used to characterize the relative resistance of cultivars; in the most susceptible cultivars there was rapid gall development but little increase in root or shoot fresh weight between 6 and 12 weeks after inoculation. Differential response was determined during the 6 weeks following inoculation; the implications of this observation are discussed in relation to growth stage and rate of development of host and pathogen.  相似文献   

11.
Zhang J  Bruton BD  Biles CL 《Phytopathology》1997,87(10):1020-1025
ABSTRACT Production of polygalacturonase (PG), a cell wall-degrading enzyme, by Phomopsis cucurbitae (latent infection fungus) was studied in relation to different carbon sources and various stages of cantaloupe fruit development. P. cucurbitae produced multiple PG isozymes both in vitro and in vivo. The fungus produced the highest PG activity and the greatest number of isozymes on pectin compared with those produced on glucose, galactose, and sucrose. Eight P. cucurbitae PG isozymes (pIs 3.7, 4.2, 6.6, 7.0, 7.3, 7.5, 7.8, and 8.6) were detected in extract from inoculated mature fruit (40 days after anthesis) by isoelectric focusing. Isozyme bands with pIs of 4.2, 7.3, and 7.8 were the most prominent. A similar set of PG isozymes was produced by P. cucurbitae in autoclaved mature fruit tissue (mesocarp). When tissue discs taken from 20-, 30-, 40-, and 50-day postanthesis fruit were inoculated with P. cucurbitae, PG activity and the number of PG isozymes extracted from the macerated fruit tissue discs increased with the degree of fruit maturity and ripening. Increases in PG activity and PG isozymes were also correlated with reactivation of latent infections and the beginning of tissue maceration. An anionic PG isozyme (pI 4.2) was only visualized on decayed 50-day-old fruit exocarp, as well as 40- and 50-day-old fruit mesocarp. The experimental results support the hypotheses that P. cucurbitae PG isozymes play an important role in fruit decay once latent infection becomes active following harvest.  相似文献   

12.
Proliferation and collapse of subcuticular hyphae of Venturia nashicola race 1 were studied ultrastructurally, after inoculation of susceptible Japanese pear cv. Kousui, resistant Japanese pear cv. Kinchaku, resistant Asian pear strain Mamenashi 12 and nonhost European pear cv. Flemish Beauty leaves, to understand the nature of the resistance mechanism. After cuticle penetration by the pathogen, the hyphae were observed at lower frequency in epidermal pectin layers and middle lamellae of leaves of the three resistant plants than in those of susceptible ones. This result suggested that fungal growth was suppressed in the incompatible interaction between pear and V. nashicola race 1. In the pectin layers of all inoculated plants, some hyphae had modifications such as breaks in the plasmalemma with plasmolysis, necrotic cytoplasm and degraded cell walls. More hyphae had collapsed in the leaves of the three resistant plants than in those of the susceptible cv. Kousui. In collapsed hyphae, the polymerized cell walls broke into numerous fibrous and amorphous pieces, showing that the scab resistance might be associated with cell wall-degrading enzymes from pear plants.  相似文献   

13.
过氧化物酶及其同工酶与小麦抗赤霉病性的关系   总被引:24,自引:2,他引:24  
 本文报道了对赤霉病抗性不同的五个小麦品种的过氧化物酶比活力及其同工酶的差异。种子过氧化物酶比活力的大小及其pI10.3酶带颜色的深浅与品种的抗病性呈正相关。各品种的叶片过氧化物酶比活力及其同工酶谱的差异与品种的抗病性无明显相关。各品种的接种穗与其对照穗比较,抗病品种接种穗的过氧化物酶比活力持续上升,感病品种的酶比活力先上升后下降。抗病品种接种穗的过氧化物酶同工酶PI6.3、9.5和10.3三条酶带的颜色比对照深,感病品种的浅或消失,与品种的抗病性呈正相关。  相似文献   

14.
Germinated seeds of 'kabuli' chickpea cv. ICCV 4 were inoculated with a conidial suspension of the incompatible race 0 of Fusarium oxysporum f.sp. ciceris (Foc) or of nonhost F. oxysporum resistance 'inducers', and 3 days later were challenged by root dip with a conidial suspension of highly virulent Foc race 5. Prior inoculation with inducers delayed the onset of symptoms and/or significantly reduced the final amount of fusarium wilt caused by race 5. However, the extent of disease suppression varied with the nature of the inducing agent; the nonhost isolates of F. oxysporum were more effective at disease suppression than the incompatible Foc race 0. Inoculation with the inducers gave rise to synthesis of maackiain and medicarpin phytoalexins in inoculated seedlings; these did not accumulate in plant tissues but were released into the inoculum suspension. Inoculation with inducers also resulted in accumulation of chitinase, β-1,3-glucanase and peroxidase activities in plant roots. These defence-related responses were induced more consistently and intensely by nonhost isolates of F. oxysporum than by incompatible Foc race 0. The phytoalexins and, to a lesser extent, the antifungal hydrolases, were also induced after challenge inoculation with Foc race 5. However, in this case the defence responses were induced in both preinduced and noninduced plants infected by the pathogen. It is concluded that the suppression of fusarium wilt in this study possibly involved an inhibitory effect on the pathogen of preinduced plant defences, rather than an increase in the expression of defence mechanisms of preinduced plants following a subsequent challenge inoculation.  相似文献   

15.
Leaf tissue harvested from cucumber plants (Cucumis sativus L.) expressing induced resistance against the powdery mildew fungus Podosphaera xanthii (syn. Sphaerotheca fuliginea, Castagne; Braun and Shishkoff) was extracted and analyzed for phytoalexin compounds. Fluorescence microscopy was then used to observe the production of these compounds in planta, and laser scanning confocal microscopy observations were made to locate the subcellular sites of phytoalexin accumulation. Phytochemical analyses and fluorescence microscopy observations revealed the production of autofluorescent C-glycosyl flavonoid phytoalexins within the epidermal tissues of disease-resistant plants undergoing fungal ingress. Phytoalexin production was triggered by the combination of an eliciting/inoculation treatment, and tissue autofluorescence of color characteristic of the phytoalexins reached a maximum 48 h after elicitation prior to subsiding following the collapse of the pathogen. After a second eliciting treatment, disease-resistant plants produced phytoalexins more rapidly in response to fungal challenge. At the cellular level, autofluorescent C-glycosyl flavonoid phytoalexins were observed associated with the plasma membrane of infected epidermal cells immediately following elicitation. In the hours that preceded the collapse of conidial chains, phytoalexins accumulated inside the haustorial complexes of the pathogen within the epidermal cells of disease-resistant plants. Taken together, the results of this study show the timely synthesis of C-glycosyl flavonoid phytoalexins at precise subcellular locations as a key defense reaction used by cucumber to create incompatible interactions with powdery mildew.  相似文献   

16.
Sclerotinia sclerotiorum is a necrotrophic fungus that causes a devastating disease called white mould, infecting more than 450 plant species worldwide. Control of this disease with fungicides is limited, so host plant resistance is the preferred alternative for disease management. However, due to the nature of the disease, breeding programmes have had limited success. A potential alternative to developing necrotrophic fungal resistance is the use of host‐induced gene silencing (HIGS) methods, which involves host expression of dsRNA‐generating constructs directed against genes in the pathogen. In this study, the target gene chosen was chitin synthase (chs), which commands the synthesis of chitin, the polysaccharide that is a crucial structural component of the cell walls of many fungi. Tobacco plants were transformed with an interfering intron‐containing hairpin RNA construct for silencing the fungal chs gene. Seventy‐two hours after inoculation, five transgenic lines showed a reduction in disease severity ranging from 55·5 to 86·7% compared with the non‐transgenic lines. The lesion area did not show extensive progress over this time (up to 120 h). Disease resistance and silencing of the fungal chs gene was positively correlated with the presence of detectable siRNA in the transgenic lines. It was demonstrated that expression of endogenous genes from the very aggressive necrotrophic fungus S. sclerotiorum could be prevented by host induced silencing. HIGS of the fungal chitin synthase gene can generate white mould‐tolerant plants. From a biotechnological perspective, these results open new prospects for the development of transgenic plants resistant to necrotrophic fungal pathogens.  相似文献   

17.
Two cucumber ( Cucumis sativus ) cultivars differing in their resistance to powdery mildew, Ningfeng No. 3 (susceptible) and Jinchun No. 4 (resistant), were used to study the effects of foliar- and root-applied silicon on resistance to infection by Podosphaera xanthii (syn. Sphaerotheca fuliginea ) and the production of pathogenesis-related proteins (PRs). The results indicated that inoculation with P. xanthii significantly suppressed subsequent infection by powdery mildew compared with noninoculation, regardless of Si application. Root-applied Si significantly suppressed powdery mildew, the disease index being lower in Si-supplied than in Si-deprived plants, regardless of inoculation treatment. The resistant cultivar had a more constant lower disease index than the susceptible cultivar, irrespective of inoculation or Si treatment. Moreover, with root-applied Si, activities of PRs (for example peroxidase, polyphenoloxidase and chitinase) were significantly enhanced in inoculated lower leaves or noninoculated upper leaves in inoculated plants of both cultivars. Root-applied Si significantly decreased the activity of phenylalanine ammonia-lyase in inoculated leaves, but increased it in noninoculated upper leaves. However, Si treatment failed to change significantly the activity of PRs in plants without fungal attack. Compared to the control (no Si), foliar-applied Si had no effects either on the suppression of subsequent infection by P. xanthii or on the activity of PRs, irrespective of inoculation. Based on the findings in this study and previous reports, it was concluded that foliar-applied Si can effectively control infections by P. xanthii only via the physical barrier of Si deposited on leaf surfaces, and/or osmotic effect of the silicate applied, but cannot enhance systemic acquired resistance induced by inoculation, while continuously root-applied Si can enhance defence resistance in response to infection by P. xanthii in cucumber.  相似文献   

18.
ABSTRACT To describe the disease cycle of the root pathogen Aphanomyces euteiches, enzymatic activity in the mycelium was compared with the development of oospores in pea roots. Plants were inoculated with two zoospore concentrations to achieve different disease levels. Hyphae were stained for fungal alkaline phosphatase activity in the roots. Additionally, enzyme activity was measured after electrophoresis of an A. euteiches-specific glucose-6-phosphate isozyme. Development of oospores in the roots was measured after staining the oospores with trypan blue. In plants inoculated with the higher zoospore concentration, the enzymatic activity of the pathogen mycelium peaked 10 to 14 days after inoculation, when oospore formation was initiated. Oospore formation was associated with a gradual increase in disease symptoms. At the last harvest, plants inoculated with the higher zoospore concentration had died. In these plants, oospores were found in 90% of the root length, while the enzymatic activity of the mycelium was low. This suggests that the pathogen mycelium is only active on living plants and does not grow saprophytically on dead plant material.  相似文献   

19.
Silicon (Si) has been reported to be a beneficial element and shown to enhance disease resistance in many crops, although it is not regarded to be critical for plant growth and development. In this study, the potential effect of Si supplementation on resistance to banana xanthomonas wilt (BXW) disease was evaluated using various banana cultivars. Si application at a concentration of 200 mg per plant per week was found to be optimal in enhancing resistance to BXW without any detrimental effects on plant growth. The effect of varying the duration of Si application showed continuous supply of Si before and after pathogen inoculation led to a significantly higher level of resistance to BXW in all the banana cultivars tested in comparison to non‐Si‐treated inoculated plants. Banana plants treated with Si before pathogen inoculation only, also exhibited high protection against BXW similar to plants treated continuously with Si. The total Si content in leaves increased significantly in Si‐treated plants in comparison to non‐Si‐treated control plants. The amount of Si accumulation was directly correlated to the duration of application; plants treated with Si continuously showed significantly higher amounts of Si accumulation in leaves than plants where Si application was terminated following bacterial inoculation or when Si application started immediately after pathogen inoculation. The Si‐treated plants also showed higher activity of the peroxidase enzyme in comparison to non‐Si‐treated control plants. This study confirms that application of Si enhances resistance to BXW and may provide an alternative disease management strategy.  相似文献   

20.
Experiments were conducted to determine the temporal and spatial effects of Meloidogyne jav anica and host cultivar on pathogenesis by Fusarium oxysporum f. sp tracheiphilum in cowpea. In the wilt-susceptible cowpea cultivar California Blackeye No. 5 (CB5). F. o. tracheiphilum proliferated rapidly in both the hypocotyl and first internode 6 weeks after inoculation. The fungus spread quickly upward as plants grew, colonized most tissues within 6 weeks, and caused severe wilt. In wilt-resistant cultivar CB3. there was little proliferation of F. oxysporum in any tissue, whether or not plants were infected by St. javanica. The fungus was found above the primary internode in 15"., of all CB3 plants, but did not continue to spread upward after 4 weeks Vascular discoloration was greatest when St. javanica was added 4 weeks before F. o. tracheiphilum, but simultaneous inoculation also increased wilt symptoms Root wounding did not increase wilt. Split-root experiments provided no evidence that infection by, M. javanica results in a translocatable factor that reduces wilt resistance. When hypocoivls were inoculated with F. o. tracheiphilum at different intervals after roots infected by St. jav anica were removed, there was no evidence that the effect of the nematode on wilt susceptibility was translocated or persistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号