首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetic properties of ceftazidime, a third generation cephalosporin, were investigated in five cats after single intravenous (IV) and intramuscular (IM) administration at a dose rate of 30 mg/kg. Minimum inhibitory concentrations (MICs) of ceftazidime for some Gram-negative (Escherichia coli, n=11) and Gram-positive (Staphylococcus spp., n=10) strains isolated from clinical cases were determined. An efficacy predictor, measured as the time over which the active drug exceeds the bacteria minimum inhibitory concentration (T>MIC), was calculated. Serum ceftazidime disposition was best fitted by a bi-compartmental and a mono-compartmental open model with first-order elimination after IV and IM dosing, respectively. After IV administration, distribution was rapid (t(1/2(d)) 0.04+/-0.03 h), with an area under the ceftazidime serum concentration:time curve (AUC((0-infinity))) of 173.14+/-48.69 microg h/mL and a volume of distribution (V((d(ss)))) of 0.18+/-0.04 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.19+/-0.08 L/hkg and a t(1/2) of 0.77+/-0.06 h. Peak serum concentration (C(max)), T(max), AUC((0-infinity)) and bioavailability for the IM administration were 89.42+/-12.15 microg/mL, 0.48+/-0.49 h, 192.68+/-65.28 microg h/mL and 82.47+/-14.37%, respectively. Ceftazidime MIC for E. coli ranged from 0.0625 to 32 microg/mL and for Staphylococcus spp. from 1 to 64 microg/mL. T>MIC was in the range 35-52% (IV) and 48-72% (IM) of the recommended dosing interval (8-12h) for bacteria with a MIC(90)4 microg/mL.  相似文献   

2.
Two commercially available long-acting oxytetracycline (OTC) formulations were administered by the intramuscular (i.m.) route to six healthy pigs at the recommended dose of 30 mg/kg. After 2 h the mean maximum concentration (C(max)) reached values of 8.1 +/- 2.2 and 15.4 +/- 11.1 microg/mL, respectively. These concentrations remained higher than 0.5 microg/mL for more than 5 days after drug administration. The area under the concentration time curve (AUC09 days) of each formulation was 255 +/- 76.5 and 399.2 +/- 123 microg. h/mL, respectively, and the mean residence time (MRT) was around 3 days for both formulations. No significant differences were observed between the pharmacokinetic parameters of the two formulations, showing the bioequivalence of the two formulations studied according to the criteria established by the Food and Drug Administration (FDA) and the Committee for Veterinary Medicinal Products (CVMP).  相似文献   

3.
【目的】研究头孢氨苄片受试制剂和参比制剂在比格犬体内的生物等效性。【方法】采用双周期和双序列交叉设计,将22只健康比格犬随机分成2组,按30 mg/kg BW分别单剂量口服头孢氨苄片受试制剂Trolevis~?300和参比制剂Rilexine~?300,于给药前(0 h)和给药后0.5、1、1.5、2、2.5、3、4、6、8、12、17和24 h从臂头静脉采血。对超高效液相色谱串联质谱(UPLC-MS/MS)方法进行特异性、线性、检测限、准确度、精密度、稳定性等方法学考察。利用建立好的UPLC-MS/MS方法测定血浆中的药物浓度,并用WinNonlinTM 8.1软件对药代动力学参数进行分析计算。【结果】方法学结果显示,在100~5 000 ng/mL浓度范围内相关性良好,相关系数(R2)≥0.99,标准曲线方程为y=10.6828x-176.481;高、中、低3个浓度的相对回收率平均值分别为105.63%、104.35%和102.40%;日内和日间变异系数均<15%;检测限为50 ng/mL,定量限为100 ng/mL。药代动力学结果...  相似文献   

4.
The pharmacokinetic behaviour of enrofloxacin in greater rheas was investigated after intramuscular (IM) administration of 15 mg/kg. Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined by high performance liquid chromatography. Enrofloxacin peak plasma concentration (C(max)=3.30+/-0.90 microg/mL) was reached at 24.17+/-9.17 min. The terminal half-life (t(1/2lambda)) and area under the curve (AUC) were 2.85+/-0.54 h and 4.18+/-0.69 microg h/mL, respectively. The AUC and C(max) for ciprofloxacin were 0.25+/-0.06 microg/mL and 0.66+/-0.16 microg h/mL, respectively. Taking into account the values obtained for the efficacy indices, an IM dose of 15 mg/kg of enrofloxacin would appear to be adequate for treating infections caused by highly susceptible bacteria (MIC(90)<0.03 microg/mL) in greater rheas.  相似文献   

5.
Enrofloxacin pharmacokinetics were studied in European cuttlefish, Sepia officinalis, after a single 5 mg/kg i.v. injection or a 2.5 mg/L 5 h bath. A pilot study with two animals was also performed following a 10 mg/kg p.o. administration. The concentration of enrofloxacin in hemolymph was assayed using high-performance liquid chromatography (HPLC) and pharmacokinetic parameters were derived from compartmental methods. In the i.v. study, the terminal half-life (t(1/2)), apparent volume of distribution, and systemic clearance were respectively 1.81 h, 385 mL/kg, and 4.71 mL/min/kg. Following bath administration the t(1/2), peak hemolymph concentration (C(max)), and area under the curve to infinity (AUC(0-infinity)) were 1.01 h, 0.5 +/- 0.12 mug/mL, and 0.98 microg.h/mL, respectively. After oral administration, the t(1/2), C(max), and AUC(0-infinity) were 1.01 h, 10.95 microg/mL, 26.71 mug.h/mL, respectively. The active metabolite of enrofloxacin, ciprofloxacin, was not detected in any samples tested. The hemolymph concentration was still above minimum inhibitory concentration (MIC) values for shrimp and fish bacterial isolates at 6 h after i.v. administration, therefore, a dose of 5 mg/kg i.v. every 8-12 h is suggested for additional studies of efficacy. The C(max) value for the water bath was lower than for the i.v. study, but a bath of 2.5 mg/L for 5 h once to twice daily is suggested for additional studies to test efficacy against highly susceptible organisms. Although only two animals were used for the oral study, a dose of 10 mg/kg produced hemolymph concentrations of enrofloxacin that were in a range consistent with therapeutic efficacy in other species.  相似文献   

6.
Pharmacokinetics of difloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of five (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analyzed by a compartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t(1/2beta)) were 17.14 +/- 4.14, 25.79 +/- 8.10, 16.67 +/- 4.04 (pigs) and 6.11 +/- 1.50, 5.64 +/- 0.74, 8.20 +/- 3.12 h (broilers), respectively. After single i.m. and p.o. administration, difloxacin was rapidly absorbed, with peak plasma concentrations (C(max)) of 1.77 +/- 0.66, 2.29 +/- 0.85 (pigs) and 2.51 +/- 0.36, 1.00 +/- 0.21 microg/mL (broilers) attained at t(max) of 1.29 +/- 0.26, 1.41 +/- 0.88 (pigs) and 0.86 +/- 0.4, 4.34 +/- 2.40 h (broilers), respectively. Bioavailabilities (F) were (95.3 +/- 28.9)% and (105.7 +/- 37.1)% (pigs) and (77.0 +/- 11.8)% and (54.2 +/- 12.6)% (broilers) after i.m. and p.o. doses, respectively. Apparent distribution volumes(V(d(area))) of 4.91 +/- 1.88 and 3.10 +/- 0.67 L/kg and total body clearances(Cl(B)) of 0.20 +/- 0.06 and 0.37 +/- 0.10 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), the half-lives of both absorption and distribution(t(1/2ka), t(1/2alpha)) were also determined. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 5 mg/kg given intramuscularly every 24 h in pigs, or administered orally every 24 h at the dosage of 10 mg/kg in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC(90) are <0.25 microg/mL and <0.1 microg/mL respectively.  相似文献   

7.
The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).  相似文献   

8.
Eighteen male Beagle dogs were randomized to oral (p.o.) or subcutaneous (s.c.) carprofen administration in a two-sequence, two-period crossover design with a 10-day washout between periods. Twenty-five milligrams of carprofen was administered p.o. or s.c. every 12 h for 7 days. Plasma concentrations of carprofen collected after the first and last treatments were determined by high-performance liquid chromatography. Carprofen concentration data were natural log transformed and geometric means were calculated for maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC0--12) following the first dose and Cmax and AUC0--12 following administration of the last dose. Formulations were considered bioequivalent if the 90% confidence interval (CI) of the mean difference for each variable between formulations were within -20% and 25% of the oral formulation. The mean Cmax and AUC0--12 were 16.9 microg/mL and 73.1 microg. h/mL, respectively, following a single oral dose and 8.0 microg/mL and 64.3 microg x h/mL, respectively, following a single s.c. injection. The 90% CI for Cmax (-56.8 to -48.7%) was outside of the bioequivalence criteria whereas the 90% CI for AUC0--12 (-16.3 to -7.5%) was within the bioequivalence criteria. At steady-state, the mean Cmax and AUC0--12 were 18.7 microg/mL and 101.9 microg x h/mL, respectively, following p.o. administration and 14.7 microg/mL and 111.0 microg x h/mL, respectively, following s.c. injection. The 90% CI was outside the bioequivalence criteria for Cmax (-30.8 to -10.8) but within the bioequivalence criteria for AUC0--12 (2.3-15.9%). The results of this study indicate that peak plasma concentrations of carprofen differ when administered p.o. and s.c., but that total drug exposure following a single dose and at steady-state are bioequivalent.  相似文献   

9.
The pharmacokinetics of cephalexin, a first generation cephalosporin, were investigated in dogs using two formulations marketed for humans, but also often employed by practitioners for pet therapy. Cephalexin was administered to five dogs intravenously and intramuscularly as a sodium salt and by the oral route as a monohydrate. The dosage was always 20 mg/kg of active ingredient. A microbiological assay with Sarcina lutea as the test organism was adopted to measure cephalexin concentrations in serum. The mean residence time (MRT) median values after intravenous (i.v.), intramuscular (i.m.) and oral administration (p.o.) were 86 min, 200 min, and 279 min, respectively. After i.m. and oral dosing the peak serum concentrations (24.2 +/- 1.8 micrograms/mL and 20.3 +/- 1.7 micrograms/mL, respectively) were attained at 90 min in all dogs and bioavailabilities were 63 +/- 10% and 57 +/- 5%, respectively. The time course of the cephalexin serum concentrations after oral administration was best described by a model incorporating saturable absorption kinetics of the Michaelis-Menten type: thus in the gastrointestinal tract of dogs a carrier mediated transport for cephalexin similar to that reported in humans, may exist. The predicted average serum concentrations of cephalexin after repeated i.m. and oral administration indicated that, in order to maintain the therapeutic concentrations, the 20 mg/kg b.w. dosage should be administered every 6-8 h.  相似文献   

10.
Objective To determine the bioequivalence of a paste formulation of cephalexin with that of the tablet form.
Design A two-way cross-over study.
Animals Ten adult cats of mixed breed.
Procedure The cats, randomly allocated to two groups, received either the paste preparation or the tablet orally at 12-hour intervals for 48 h before a 12-hour blood collection period. Two weeks later the treatments were reversed and the blood sampling repeated. The serum concentrations of the antibiotic were determined. The pharmacokinetic factors were analysed using a computer.
Results There were no significant differences between the peak concentration of cephalexin, or the other pharmacokinetic factors obtained from the tablet and paste formulations. The serum profiles of cephalexin following four 12-hourly doses of each formulation were similar with the peak serum values occurring at approximately 2 h after administration.
Conclusion The paste formulation and the tablet form are bioequivalent.  相似文献   

11.
Pharmacokinetics of marbofloxacin in horses   总被引:3,自引:0,他引:3  
Marbofloxacin is a fluoroquinolone antibiotic expected to be effective in the treatment of infections involving gram-negative and some gram-positive bacteria in horses. In order to design a rational dosage regimen for the substance in horses, the pharmacokinetic properties of marbofloxacin were investigated in 6 horses after i.v., subcutaneous and oral administration of a single dose of 2 mg/kg bwt and the minimal inhibitory concentrations (MIC) assessed for bacteria isolated from equine infectious pathologies. The clearance of marbofloxacin was mean +/- s.d. 0.25 +/- 0.05 l/kg/h and the terminal half-life 756 +/- 1.99 h. The marbofloxacin absolute bioavailabilities after subcutaneous and oral administration were 98 +/- 11% and 62 +/- 8%, respectively. The MIC required to inhibit 90% of isolates (MIC90) was 0.027 microg/ml for enterobacteriaceae and 0.21 microg/ml for Staphylococcus aureus. The values of surrogate markers of antimicrobial efficacy (AUIC, Cmax/MIC ratio, time above MIC90) were calculated and the marbofloxacin concentration profiles simulated for repeated administrations. These data were used to determine rational dosage regimens for target bacteria. Considering the breakpoint values of efficacy indices for fluoroquinolones, a marbofloxacin dosage regimen of 2 mg/kg bwt/24 h by i.v., subcutaneous or oral routes was more appropriate for enterobacteriaceae than for S. aureus.  相似文献   

12.
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).  相似文献   

13.
The pharmacokinetics of enrofloxacin (EFL) and its active metabolite ciprofloxacin (CIP) was investigated in 7-8 month old turkeys (6 birds per sex). EFL was administered intravenously (i.v.) and orally (p.o.) at a dose 10 mg kg(-1) body weight. Blood was taken prior to and at 0.17, 0.33, 0.5, 1, 2, 3, 4, 6, 8, 10 and 24 h following drug administration. The concentrations of EFL and CIP in blood serum were determined by high-performance liquid chromatography (HPLC). Serum concentrations versus time were analysed by a noncompartmental analysis. The elimination half-live and the mean residence time of EFL after i.v. injection for the serum were after oral administration 6.64+/-0.90 h, 8.96+/-1.18 h and 6.92+/-0.97 h, 11.91+/-1.87 h, respectively. After single p.o. administration, EFL was absorbed slowly (MAT=2.76+/-0.48 h) with time to reach maximum serum concentrations of 6.33+/-2.54 h. Maximum serum concentrations was 1.23+/-0.30 microg mL(-1). Oral bioavailability for for EFL after oral administration was found to be 69.20+/-1.49%. The ratios C(max)/MIC and AUC(0 --> 24)/MIC were respectively from 161.23+/-5.9 h to 12.90+/-0.5 h for the pharmacodynamic predictor C(max)/MIC, and from 2153.44+/-66.6 h to 137.82+/-4.27 h for AUC(0 --> 24)/MIC, for the different clinically significant microorganisms, whose values for MIC varies from 0.008 microg L(-1) to 0.125 microg mL(-1).  相似文献   

14.
The pharmacokinetic properties of cefpodoxime, and its prodrug, cefpodoxime proxetil, were evaluated in two separate studies, one following intravenous (i.v.) administration of cefpodoxime sodium and the second after oral (p.o.) administration of cefpodoxime proxetil to healthy dogs. After cefpodoxime administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). A single i.v. administration of cefpodoxime sodium at a dose of 10 mg cefpodoxime/kg body weight resulted in a cefpodoxime average maximum plasma concentration (Cmax) of 91 (+/-17.7) microg/mL, measured at 0.5 h after drug administration, an average half-life (t1/2) of 4.67 (+/-0.680) h, an average AUC(0-infinity) of 454 (+/-83.1) h.microg/mL, an average V(d(ss)) of 151 (+/-27) mL/kg, an average Cl(B) of 22.7 (+/-4.2) mL/h/kg and an average MRT(0-infinity) of 5.97 (+/-0.573) h. When dose normalized to 10 mg cefpodoxime/kg body weight, cefpodoxime proxetil administered orally resulted in Cmax of 17.8 +/- 11.4 microg/mL for the tablet formulation and 20.1 +/- 6.20 microg/mL for the suspension formulation and an average AUC(0-LOQ) of 156 (+/-76.1) h.microg/mL for the tablet formulation and 162 (+/-48.6) h.microg/mL for the suspension formulation. Relative bioavailability of the two oral formulations was 1.04 (suspension compared with tablet), whereas the absolute bioavailability of both oral formulations was estimated to be approximately 35-36% in the cross-study comparison with the i.v. pharmacokinetics. Combined with previous studies, these results suggest that a single daily oral dose of 5-10 mg cefpodoxime/kg body weight as cefpodoxime proxetil maintains plasma concentrations effective for treatment of specified skin infections in dogs.  相似文献   

15.
The aims of this investigation were to calculate the pharmacokinetic parameters and to identify parameters, based on individual plasma concentration-time curves of amoxicillin and clavulanic acid in dogs, that may govern the observed differences in absorption of both drugs. The evaluation was based on the data from plasma concentration-time curves obtained following a single dose in an open, randomized, two-way crossover study involving 24 male Beagle dogs treated with two Amoxi-Clav formulations (A Clavubactin and B Synulox, each with 200/50 mg). Plasma amoxicillin and clavulanic acid concentrations were determined using validated bioassay methods. The half-life of elimination of amoxicillin was 1.5 h (t1/2 = 1.52 +/- 0.19 h, Cmax = 11.4 +/- 2.74 microg/mL), and that of clavulanic acid 0.76 h (t1/2 = 0.71 +/- 0.23 h, Cmax = 2.06 +/- 1.05 microg/mL). There was a fivefold variation in the AUCt of clavulanic acid for both formulations, while the AUCt of amoxicillin varied by a factor of 2. The mean ratio of the AUCt amoxicillin : clavulanic acid was 12.7 +/- 3.65 for formulation A and 11.8 +/- 5.22 for formulation B (P = 0.51).  相似文献   

16.
The single-dose disposition kinetics of orbifloxacin were determined in clinically normal rabbits (n=6) after intravenous (i.v.), subcutaneous (s.c.) and intramuscular (i.m.) administration of 5 mg/kg bodyweight. Orbifloxacin concentrations were determined by high performance liquid chromatography with fluorescence detection. Minimal inhibitory concentrations (MICs) assay of orbifloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The concentration-time data were analysed by compartmental and noncompartmental kinetic methods. Steady-state volume of distribution (V(ss)) and total body clearance (Cl) of orbifloxacin after i.v. administration were estimated to be 1.71+/-0.38 L/kg and 0.91+/-0.20 L/h x kg, respectively. Following s.c. and i.m. administration orbifloxacin achieved maximum plasma concentrations of 2.95+/-0.82 and 3.24+/-1.33 mg/L at 0.67+/-0.20 and 0.65+/-0.12 h, respectively. The absolute bio-availabilities after s.c. and i.m. routes were 110.67+/-11.02% and 109.87+/-8.36%, respectively. Orbifloxacin showed a favourable pharmacokinetic profile in rabbits. However, on account of the low AUC/MIC and C(max)/MIC indices obtained, its use by i.m. and s.c. routes against the S. aureus strains assayed in this study cannot be recommended given the risk of selection of resistant populations.  相似文献   

17.
This study evaluates the comparative plasma dispositions of ivermectin (IVM) and doramectin (DRM) following oral and subcutaneous administration (200 microg/kg) over a 40-day period in dogs. Twenty bitches were allocated by weight in to four groups (Groups I-IV) of five animals each. Animals in the first two groups (Groups I and II) received orally the injectable solutions of IVM and DRM, respectively, at the dose of 200 microg/kg bodyweight. The other two groups (Groups III and IV) received subcutaneously injectable solutions at the same dose rate. Blood samples were collected between 1h and 40 days after treatment and the plasma samples were analysed by high performance liquid chromatography (HPLC) using fluorescence detection. The results indicated that IVM produced a significantly higher maximum plasma concentration (C(max): 116.80+/-10.79 ng/ml) with slower absorption (t(max): 0.23+/-0.09 day) and larger area under the concentration versus time curve (AUC: 236.79+/-41.45 ng day/ml) as compared with DRM (C(max): 86.47+/-19.80 ng/ml, t(max): 0.12+/-0.05 day, AUC: 183.48+/-13.17 ng day/ml) following oral administration of both drugs; whereas no significant differences were observed on the pharmacokinetic parameters between IVM and DRM after subcutaneous administrations. In addition, subcutaneously given IVM and DRM presented a significantly lower maximum plasma concentration (C(max): 66.80+/-9.67 ng/ml and 54.78+/-11.99 ng/ml, respectively) with slower absorption (t(max): 1.40+/-1.00 day and 1.70+/-0.76 day, respectively) and larger area under the concentration versus time curve (AUC: 349.18+/-47.79 ng day/ml and 292.10+/-78.76 ng day/ml, respectively) as compared with the oral administration of IVM and DRM, respectively. No difference was observed for the terminal half-lives ((t(1/2lambda(z)) and mean residence times (MRT) of both molecules. Considering the pharmacokinetic parameters, IVM and DRM could be used by the oral or subcutaneous route for the control of parasitic infection in dogs.  相似文献   

18.
A disposition and bioequivalence study with a suxibuzone granulated and a suxibuzone paste oral formulation was performed in horses. Suxibuzone (SBZ) is a nonsteroidal anti-inflammatory drug, which was administered to horses (n = 6) at a dosage of 19 mg/kg bwt by the oral route (p.o.) in a two period cross-over design. Suxibuzone is very rapidly transformed into its main active metabolites, phenylbutazone (PBZ) and oxyphenbutazone (OPBZ). Therefore plasma and synovial fluid concentrations of SBZ, PBZ and OPBZ were simultaneously measured by a sensitive and specific high-performance liquid chromatographic method. The pharmacokinetic parameters were determined by noncompartmental analysis. Suxibuzone could not be detected in any plasma and synovial fluid samples (< 0.04 microgram/mL). Plasma PBZ and OPBZ concentrations were detected between 30 min and 72 h after granulate and paste administration. Mean plasma concentration of PBZ peaked at 5 h (34.5 +/- 6.7 micrograms/mL) and at 7 h (38.8 +/- 8.4 micrograms/mL), and mean area under the concentration-time curve (AUC0-->LOQ) was 608.0 +/- 162.2 micrograms.h/mL and 656.6 +/- 149.7 micrograms.h/mL after granulate and paste administration, respectively. Mean plasma concentration of OPBZ increased to 5-6.7 micrograms/mL, with the maximum concentration (Cmax) appearing between 9 and 12 h after administration of both formulations. The AUCs0-->LOQ for OPBZ were also similar (141.8 +/- 48.3 micrograms.h/mL granulate vs. 171.4 +/- 45.0 micrograms.h/mL paste). It was concluded that the suxibuzone products were bioequivalent with respect to PBZ. For OPBZ, the 95% confidence intervals of the pharmacokinetic parameters were within the acceptable range of 80-125%. The paste formulation provided greater bioavailability of PBZ and OPBZ.  相似文献   

19.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

20.
The vehicle in which endectocide compounds are formulated plays a relevant role in their absorption kinetics and resultant systemic availability. The pharmaceutical bioequivalence and comparative plasma disposition kinetics of ivermectin (IVM), following the subcutaneous administration of two injectable formulations to pigs and cattle were investigated using parallel experimental designs. Sixteen parasite-free male Duroc Jersey-Yorkshire crossbred pigs (90-110 kg) (Expt 1) and 16 parasite-free male Holstein calves (100-120 kg) (Expt 2) were divided into two groups and treated subcutaneously at either 300 (pigs) or 200 (calves) microg/kg with two different propylene glycol/glycerol formal (60: 40) based IVM formulations; in both experiments pigs or calves in Group A received the test (IVM-TEST) formulation and those in Group B were treated with the reference formulation (IVM-CONTROL). Heparinized blood samples were taken from 0 h up to either 20 (pigs) or 30 (calves) days post-treatment and plasma was extracted, derivatized and analysed by high performance liquid chromatography (HPLC) using fluorescence detection. Early detection of IVM (12 h) with a peak plasma concentration (C(max)) between 33 and 39 ng/mL was observed in pigs. The drug was detected in plasma up to 20 days post-administration of either formulation, resulting in elimination half-lives between 3.47 and 3.80 days. There were no differences between the IVM-TEST and IVM-CONTROL formulations in the kinetic parameters (except t(max)) obtained in pigs. IVM was detected in plasma between 12 h and 30 days post-administration of both formulations under investigation in cattle. The plasma disposition kinetics of IVM in calves was similar following treatment with both formulations. C(max) values (between 40.5 and 46.4 ng/mL) were achieved at 2 days post-administration of both formulations. None of the estimated kinetic parameters were statistically different between drug formulations. The injectable IVM formulations investigated were bioequivalent after their subcutaneous administration to both pigs and calves at recommended dose rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号