首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum in acidic conditions is toxic to plants. Aluminum tolerance in some plant species has been ascribed to arbuscular mycorrhizal fungal symbiosis. In this study, the application of aluminum was found to inhibit mycelia development of saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi Glomus mosseae and Glomus deserticola in vitro. Several levels of aluminum were applied to Eucalyptus globulus plants and inoculated with arbuscular mycorrhizal fungi alone or together with both saprobe fungi. The application of 1,500 mg kg?1 decreased the shoot and root dry weight, chlorophyll content and total P, Mg, and Ca concentrations in the shoot of E. globulus. However, both mycorrhizal fungi G. mosseae and G. deserticola inoculated alone increased the shoot dry weight of Eucalyptus, compared with a non- arbuscular mycorrhizal inoculated control treated with 1,500 mg kg?1 of aluminum. When 1,500 mg kg?1 of aluminum was applied, T. koningii increased the effect of G. deserticola on the shoot weight of eucalyptus, whereas with 3,000 mg kg?1, shoot weight and arbuscular mycorrhizal colonization decreased in all treatments. With 1,500 mg kg?1, the highest accumulation of aluminum in the shoot was obtained when G. deserticola was inoculated together with T. koningii. The possibility of manipulating an arbuscular mycorrhizal inoculation together with a saprobe fungus confers a high aluminum resistance in E. globulus. The effect of such combined inoculation is particularly important in some Chilean volcanic acid soils, mainly those which have been intensively cropped and are without lime addition, which facilitates the increase of phytotoxic aluminum species and limits their agricultural use. Therefore, such dual inoculation in field conditions deserves further investigation. Overall, the arbuscular mycorrhizal and saprobe fungi contribute to the increase in resistance of E. globulus to aluminium.  相似文献   

2.
The potential of interactions between saprophytic and arbuscular mycorrhizal (AM) fungi to improve Eucalyptus globulus grown in soil contaminated with Zn were investigated. The presence of 100 mg kg −1 Zn decreased the shoot and root dry weight of E. globulus colonized with Glomus deserticola less than in plants not colonized with AM. Zn also decreased the extent of root length colonization by AM and the AM fungus metabolic activity, measured as succinate dehydrogenase (SDH) activity of the fungal mycelium inside the E. globulus root. The saprophytic fungi Trametes versicolor and Coriolopsis rigida increased the shoot dry weight and the tolerance of E. globulus to Zn when these plants were AM-colonized. Both saprophytic fungi increased the percentage of AM root length colonization and elevated G. deserticola SDH activity in the presence of all Zn concentrations applied to the soil. In the presence of 500 and 1000 mg kg−1 Zn, there were higher metal concentrations in roots and shoots of AM than in non-AM plants; furthermore, both saprophytic fungi increased Zn uptake by E. globulus colonized by G. deserticola. The higher root to shoot metal ratio observed in mycorrhizal E. globulus plants indicates that G. deserticola enhanced Zn uptake and accumulation in the root system, playing a filtering/sequestering role in the presence of Zn. However, saprophytic fungi did not increase the root to shoot Zn ratio in mycorrhizal E. globulus plants. The effect of the saprophytic fungi on the tolerance and the accumulation of Zn in E. globulus was mediated by its effect on the colonization and metabolic activity of the AM fungi.  相似文献   

3.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

4.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   

5.
A screen-house experiment was conducted to study cadmium (Cd) and lead (Pb) phytoextraction using mustard and fenugreek as test crops. Cadmium was applied at a rate of 20 mg kg?1 soil for both crops, and Pb was applied at 160 and 80 mg kg?1 soil for mustard and fenugreek, respectively. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was applied at 0, 0.5, 1.0, and 1.5 g kg?1 soil. Dry-matter yield (DMY) of both crops decreased with increasing rates of EDTA application. Application of 1.5 g EDTA kg?1 soil caused 23% and 70% declines in DMY of mustard and fenugreek shoots, respectively, in the soils receiving 20 mg Cd kg?1 soil. Similarly, in soil with 160 mg Pb kg?1 soil, application of 1.5 g EDTA kg?1 resulted in 25.4% decrease in DMY of mustard shoot, whereas this decrease was 55.4% in fenugreek grown on a soil that had received 80 mg Pb kg?1 soil. The EDTA application increased the plant Cd and Pb concentrations as well as shoot/root ratios of these metals in both the crops. Application of 1.5 g kg?1 EDTA resulted in a 1.50-fold increase in Cd accumulation and a 3-fold increase in Pb accumulation by mustard compared to the control treatment. EDTA application caused mobilization of Cd and Pb from carbonate, manganese oxide, and amorphous iron oxide fractions, which was evident from decrease in these fractions in the presence of EDTA as compared to the control treatment (no EDTA).  相似文献   

6.
Phytoextraction is a remediation technology that uses plants to remove heavy metals from soil. The success of a phytoextraction process depends on adequate plant yield (aerial parts) and high metal concentrations in plant shoots. A pot experiment was conducted to investigate the combination effects of plants [sunflower (Helianthus annuus) and canola (Brassica napus)] with soil treatments (manure, sulfuric acid and DTPA). Treatments, including two plants and seven soil treatments, which applied according to completely randomized factorial design with three replications. The largest shoot dry weight biomass production occurred in manure treatments for both plants. The maximum shoot concentrations of Pb and Zn were 234.6 and 1364.4 mg kg?1 respectively in three mmoles DTPA kg?1 treatment of sunflower. Furthermore the results showed that sunflower had a higher extracting potential for removal of Pb and Zn from polluted soil.  相似文献   

7.
《Applied soil ecology》2007,35(1):163-173
Two pot experiments were conducted to investigate the effect of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus intraradices on Pb uptake by two clones of Nicotiana tabacum plants. Non-transgenic tobacco plants, variety Wisconsin 38, were compared in terms of Pb uptake with transgenic plants of the same variety with inserted gene coding for polyhistidine anchor in fusion with yeast metallothionein. Bioavailability of Pb in experimentally contaminated soil was enhanced by the application of a biodegradable chelate ethylenediaminedissuccinate (EDDS).EDDS addition (2.5 and 5.0 mmol kg−1 substrate) increased Pb uptake from the substrate and enhanced Pb translocation from the roots to the shoots, with shoot Pb concentrations reaching up to 800 mg kg−1 at the higher chelate dose. Application of a single dose of 5 mmol kg−1 proved to be more efficient at increasing shoot Pb concentrations than two successive doses of 2.5 mmol kg−1, in spite of a marked negative effect on plant growth and phytotoxicity symptoms. Pb amendment (1.4 g kg−1 substrate) connected with either dose of EDDS decreased significantly plant biomass as well as reduced the development of AM fungi. AM inoculation promoted the growth of tobacco plants and partly alleviated the negative effect of Pb contamination, mainly in the case of root biomass.No consistent difference in Pb uptake was found between transgenic and non-transgenic tobacco plants. The effect of AM inoculation on Pb concentrations in plant biomass varied between experiments, with no effect observed in the first experiment and significantly higher root Pb concentrations and increased root–shoot ratio of Pb concentrations in the biomass of inoculated plants in the second experiment. Due to probable retention of Pb in fungal mycelium, the potential of AM for phytoremediation resides rather in Pb stabilisation than in phytoextraction.  相似文献   

8.
The phytoremediation potential for Pb of Buddleja asiatica (a wild species) and a closely related cultivated species, B. paniculata, was investigated by means of field survey, hydroponic and pot experiments, and field trial experiments. Field surveys showed that B. asiatica had an extraordinary accumulation capacity and tolerance for Pb. Plants grown in soil with 2,369.8–206,152 mg kg?1 total Pb accumulated 1,835.5–4,335.8 mg kg?1 Pb in their shoots. Under hydroponic conditions (10, 20 mg l?1 Pb), both B. asiatica and B. paniculata showed unusually high concentrations of Pb in their roots (12,133–21,667 mg kg?1) and increased biomass production. A pot experiment in a greenhouse without any soil amendments was conducted on three different soils with various Pb contents (10,652, 31,304, 89,083 mg kg?1) for 3 months. The results showed that both species of Buddleja had an increase in the biomass similar to the control plants. There was a slight decrease in survival rates of plants grown in soil with 89,083 mg kg?1 Pb content. A field trial experiment was conducted for 6 months at three sites around the Pb mine area in which plants were provided with Osmocote fertilizer. Both Buddleja species showed 100% survival, increased biomass production and phytoextraction capacity (TF 1.1–2.3) when grown in soil with Pb content of 94,584–101,405 mg kg?1. Plants accumulated 2,273–3,675 mg kg?1 Pb in their shoots. The results suggest these Buddleja plants are suitable for use in the phytoremediation of Pb-contaminated soil.  相似文献   

9.
We compared acetic, ascorbic, and oxalic acids with ethylenediaminetetraacetic acid (EDTA) to enhance phytoextraction of nickel (Ni), manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) by maize. Except ascorbic acid, acids significantly (P < 0.05) decreased shoot dry weight with maximum (5.60 g pot?1) recorded with ascorbic acid and minimum with oxalic acid (4.06 g pot?1). Maximum ammonium bicarbonate–diethylenetriaminepenta acetic acid (AB-DTPA)–extractable nickel (19.94 mg kg?1) was recorded with EDTA and it was minimum (10.57 mg kg?1) with oxalic acid. The EDTA significantly (P < 0.05) increased AB-DTPA-extractable lead while other acids decreased it. Except acetic acid, other acids significantly (P < 0.05) increased Ni and Zn concentration in shoots with maximum Ni (9.22 mg kg?1) and Zn (37.40 mg kg?1) with EDTA.  相似文献   

10.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg?1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg?1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg?1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

11.
In a screen-house study, the effects of artificially contaminating the soil with lead (Pb) at levels ranging from 0 to 1500 mg kg?1 soil on the growth and uptake of Pb and micronutrients by Indian mustard [Brassica juncea (L.) Czern.] grown on a loamy sand soil (Typic Ustorthent) were investigated. The crop was grown for 60 days with adequate basal fertilization of nitrogen, phosphorus, and potassium, and dry matter was recorded. The plants were analyzed for total Pb and micronutrients, and the soil was analyzed for diethylenetriaminepentaacetic acid (DTPA)-extractable Pb. The DTPA-extractable Pb measured before sowing of Indian mustard increased consistently and significantly with increase in rates of Pb application to soil. It increased from 0.65 mg kg?1 in the control to 199.8 mg kg?1 in soil treated with 1500 mg Pb kg?1 soil. Significant reduction in the dry-matter yield of Indian mustard occurred with Pb applications of 500 mg kg?1 soil and greater. The concentration as well as uptake of Pb by Indian mustard increased significantly over control at all rates of its application. It increased from 9.4 μg pot?1 in the control to 220.6 μg pot?1 at Pb application of 1500 mg kg?1 soil. Applications of Pb to the soil decreased the concentration of micronutrients in plants, but a significant reduction occurred only for iron at rates greater than 500 mg Pb kg?1 soil. However, the uptake of iron, manganese, and copper registered a significant decline at Pb application of 500 mg kg?1 and greater and that of zinc at 750 mg kg?1 and greater. In a Typic Ustorthent soil, a DTPA-extractable Pb level of 59.5 mg kg?1 and plant content of 44.2 μg Pb g?1 dry matter was found to be the upper threshold levels of Pb for Indian mustard. This study suggests that once the soil is contaminated by Pb, it remains available in the soil for a long time, and such soils, if ingested with food crops, may be a significant source of Pb toxicity to both humans and grazing animals.  相似文献   

12.
The rhizosphere, enriched in organic matter, is the bottleneck of metal transfer in the soil–plant system. However, the transformation of metal fractions in the rhizosphere and the mechanisms that are involved, notably the role of organic matter, are poorly known. In this study, the solid-phase fractionation of lead (Pb) in the rhizosphere and non-rhizosphere soil of Elsholtzia splendens in a Pb-contaminated soil was investigated using a nine-step selective sequential extraction method in a pot experiment. Compared to the non-rhizosphere soil, there were measurable increases in Pb-fulvic complexes, Pb-humic complexes, organic Pb, and amorphous Pb but no significant changes in other forms of Pb in the rhizosphere soil. Pb-fulvic complexes and organic Pb, increasing from 397 to 438 mg kg?1 and 229 to 258 mg kg?1, respectively, showed a stronger accumulating trend than Pb-humic complexes and amorphous Pb, with an increase from 15.9 to 17.3 mg kg?1 and 6.04 to 7.80 mg kg?1 respectively, in the rhizosphere soil relative to non rhizosphere soil. These results may be mainly due to the enrichment of organic matter in the rhizosphere soil, resulting from root exudation and the enhanced turnover of microorganisms. The accumulation of Pb-fulvic complexes in the rhizosphere soil increases the potential phytoavailable pool, thus likely facilitating the phytoextraction of Pb in metal-contaminated soil.  相似文献   

13.
Three pot experiments were set up to determine how efficiently mycorrhizal fungi affect the uptake, translocation, and distribution of labeled phosphorus (32P), phosphorus (P), and heavy metals in alfalfa (Medicago sativa L.). In experiments 1 and 2, the efficiencies of different arbuscular mycorrhizal fungi (AMF) species including Glomus mosseae, G. etunicatum, G. intraradices and a mixed strain (G. mosseae, Gigaspora hartiga, and G. fasciculatum) on uptake, translocation, and distribution of 32P and P in alfalfa were investigated, respectively. In a third experiment, the efficiency of G. mosseae on uptake and distribution of heavy metals [cadmium (Cd), cobalt (Co), lead (Pb), and combinations] was tested. Results of experiments 1 and 2 suggest that G. mosseae was the most effective at increasing the uptake of 32P and P. Experiment 3 result showed that in the triple-metal-contaminated soil, inoculated plants had greater Co (32.56 mg kg?1) and Pb (289.50 mg kg?1) concentration and G. mosseae enhanced the translocation of heavy metals to shoot. Hence, mycorrhizal alfalfa in symbiosis with G. mosseae can be used for remediation of heavy metals polluted soils with high efficiency.  相似文献   

14.
Phytoextraction of Heavy Metals by Eight Plant Species in the Field   总被引:1,自引:0,他引:1  
Phytoremediation is an in situ, cost-effective potential strategy for cleanup of sites contaminated with trace metals. Selection of plant materials is an important factor for successful field phytoremediation. A field experiment was carried out to evaluate the phytoextraction abilities of six high biomass plants (Vertiveria zizanioides, Dianthus chinensis, Rumex K-1 (Rumex upatientia × R. timschmicus), Rumex crispus, and two populations of Rumex acetosa) in comparison to metal hyperaccumulators (Viola baoshanensis, Sedum alfredii). The paddy fields used in the experiment were contaminated with Pb, Zn, and Cd. Our results indicated that V. baoshanensis accumulated 28 mg kg?1 Cd and S. alfredii accumulated 6,279 mg kg?1 Zn (dry weight) in shoots, with bioconcentration factors up to 4.8 and 6.3, respectively. The resulting total extractions of V. baoshanensis and S. alfredii were 0.17 kg ha?1 for Cd and 32.7 kg ha?1 for Zn, respectively, with one harvest without any treatment. The phytoextraction rates of V. baoshanensis and S. alfredii for Cd and Zn were 0.88 and 1.15%, respectively. Among the high biomass plants, R. crispus extracted Zn and Cd of 26.8 and 0.16 kg ha?1, respectively, with one harvest without any treatment, so it could be a candidate species for phytoextraction of Cd and Zn from soil. No plants were proved to have the ability to phytoextract Pb with high efficiency.  相似文献   

15.
The effects of increasing levels of metals (10 and 20 mg of Cr kg-1 and 25 and 50 mg of Cd, Pb, and Ni kg-1 soil) and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the yield, chemical composition of volatile oil, and metal accumulation in sweet basil (Ocimum basilicum L.) were investigated in a pot experiment. The shoot yield, content of essential oil, and root yield of sweet basil were increased by the application of low dose of Cd, Pb, and Ni as compared to control. The application of high level of metals had deleterious effect on the yield. In soil with low dose of metal applied, AM fungi inoculation significantly enhanced the metal concentration in shoots and had adverse effect on the yield, whereas in soil with high dose of metal applied, AM fungal inoculation reduced the metal concentration in shoot and had beneficial effect on the yield. The content of linalool in basil oil was decreased and that of methyl chavicol was increased by the application of Cr, Cd, and Pb in soil as compared to control. Similarly, the level of linalool and methyl chavicol was decreased and that of methyl eugenol was increased by the application of Ni as compared to control. However, AM fungal inoculation led to maintain the content of linalool, methyl chavicol, and methyl eugenol in volatile oil, which were either increased or decreased by the application of metals. We conclude that the AM–sweet basil symbiosis could be used as a novel approach to enhance the yield and maintain the quality of volatile oil of sweet basil under metal-contaminated soils.  相似文献   

16.
The objective of this study was to study the influence of different ethylenediamine tetraacetate (EDTA), nitrilotriacetic acid (NTA) and oxalic acid (HOx) concentrations on tolerance and lead (Pb) accumulation capacity of carrot (Daucus carota). The results indicated that by increasing Pb, NTA and HOx concentrations in the soil, the shoot, taproot and capillary root dry matters increase effectively. In contrary, EDTA caused to reduce capillary roots biomass. EDTA was more effective than NTA and HOx in solubilizing soil Pb. The highest Pb content in shoots (342.2 ± 13.9 mg kg?1) and taproots (301 ± 15.5 mg kg?1) occurred in 10 mM EDTA, while it occurred for capillary roots (1620 ± 24.6 mg kg?1) in 5 mM HOx, when the soil Pb concentration was 800 mg kg?1. The obtained high phytoextraction and phytostabilization potentials were 1208 (±25.6) and 11.75 (±0.32) g Pb ha?1 yr?1 in 10 mmol EDTA kg?1 soil and no chelate treatments, respectively. It may be concluded that chelate application increases Pb uptake by carrots. Consequently, this plant can be introduced as a hyperaccumulator to phytoextract and phytostabilize Pb from contaminated soils.  相似文献   

17.
Effect of arbuscular mycorrhizal (AM) fungus on cadmium (Cd) concentration in flax was investigated in a pot experiment. Flax inoculated with Glomus intraradices and uninoculated controls were grown in a pasteurized soil that received Cd (0, 2.5, and 10 mg kg?1) and phosphorus (P; 10 and 50 mg kg?1) additions. Root colonization was not affected by Cd addition but was reduced by high P addition. Effect of G. intraradices on Cd was evident only at low P supply. Inoculation with G. intraradices decreased shoot Cd at no or low Cd addition, which was attributed to reduced root-to-shoot Cd translocation. In contrast, G. intraradices inoculation increased shoot Cd at high Cd addition, which might be associated with the greater absorption of Cd by extraradical hyphae and lower rhizosphere pH. Our results indicate that a benefit of AM fungus in reducing Cd in crops is achievable at Cd and P concentrations commonly in agricultural soils.  相似文献   

18.
The influence of Glomus mosseae supplemented with ethylenediaminetetraacetic acid (EDTA) on lead (Pb) uptake by Fenugreek (Trigonella foenum-graecum) was studied under pot conditions in a 2?×?2?×?5 factorial design with two AM treatments (G. mosseae inoculated and uninoculated), two EDTA concentrations (without and with 2.5 mmol EDTA kg?1), and five lead concentrations (0, 50, 100, 400, and 800 mg kg?1). A negative interaction was found between increasing lead concentration and G. mosseae. The plant dry matter and chlorophyll content was enhanced by G. mosseae whereas G. mosseae with EDTA showed the greatest root and shoot phosphorus (P) content. Ethylenediaminetetraacetic acid significantly enhanced lead concentration in the plant; however, at the same time it resulted in a slight decrease in the dry matter. However, when EDTA was applied along with G. mosseae, the deleterious effect of EDTA was overcome by the G. mosseae by promoting mineral uptake and plant growth, and hence metal accumulation also increased.  相似文献   

19.
Assessment of native plants and laboratory-scale phytoextraction tests are fundamental and preliminary steps in checking the feasibility and practice of low-cost and low-impact phytoremediation. In this study, we investigated the absorption of B by plants as a tool to remove boron in sediments from different areas of the Cecina River basin in Tuscany, Italy. The investigation was performed analyzing total and available B fraction in sediment samples as well as the B content in different tissues of native plants colonizing the contaminated areas. In laboratory scale, a phytoextraction screening test was performed. Selected high biomass crops (Brassica juncea, Zea mays, and Helianthus annuus) were evaluated in the most contaminated sample in two consecutive growing cycles. Results from field survey showed no hyperaccumulator native plant was present in the investigated areas although, high accumulation levels were found in native species from Bulera dump (Rumex crispus??259 mg?kg?1 and Poa spp??203 mg?kg?1). Results from laboratory phytoextraction tests showed a higher ability of B. juncea which removed about 18.5 mg?B?kg?1 sediment in after the two consecutive growing cycles, representing on the whole 45% of the initial available B fraction. The sediment characteristics affected by the phytoextraction processes were also discussed.  相似文献   

20.
Phytoextraction is a soil remediation technique involving plants that concentrate heavy metals in their shoots, which may be removed from the area by harvest. The application of synthetic chelants to soil increases metal solubility, and therefore enhances phytoextraction. However, synthetic chelants degrade poorly in soil, and metal leaching poses a threat to human and animal health. The aim of this study is to assess the use of two biodegradable chelants (citric acid and nitrilotriacetic acid (NTA)) for Pb phytoextraction by maize from a soil contaminated by battery-casing disposal. In order to assess the behavior of a non-degradable chelant, ethylenediaminetetraacetic acid (EDTA) was also included in the experiment. The chelants NTA and EDTA were applied to soil pots at rates of 0, 3, 5, 7, and 10 mmol kg?1 of soil. The rates used to citric acid were 0, 5, 10, 15, and 30 mmol kg?1. Maize plants were grown for 72 days and chelants were applied 9 days before harvest. Soil samples were extracted with CaCl2 to assess the Pb solubility after chelants application. The results showed that NTA was more efficient than citric acid to solubilize Pb from soil; however, citric acid promoted higher net removal of Pb (120 mg pot?1) than NTA (57 mg pot?1). Thus, the use of citric acid, a biodegradable organic acid, could be feasible for enhancing the phytoextraction of Pb from the site studied with no environmental constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号