首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The sorption and bioconcentration of Hg, Se, and As were measured in Schoenoplectus californicus and Typha angustifolia in a pilot constructed wetland receiving wastewater inflows containing these elements at potentially hazardous levels. Results indicated that these species bioconcentrated Hg, Se, and As at factors of up to 1,911, 10,981, and 4,927, respectively. Plant tissue concentrations decreased as Hg, Se, and As were translocated from the roots to the aerial portions of the plant. Greatest element concentrations in S. californicus were found in roots, indicating that an exclusion mechanism may be responsible for element tolerance by this plant species. Greater root:shoot transfer of Hg, Se, and As was observed with T. angustifolia than with S. californicus, suggesting that element tolerance was more likely due to an internal detoxification mechanism. To completely assess ecological risks associated with the use of constructed wetlands, contaminant bioavailability for plant uptake, translocation, and bioconcentration must be considered.  相似文献   

2.

Purpose

Aquatic macrophytes are an important source of autochthonous dissolved organic carbon in aquatic ecosystems. Yield and mass loss of aquatic humic substances released from macrophytes decomposition could be affected by the plant species and oxygen availability. Our aim was to describe the kinetics of dissolved fulvic and humic acids formed from decomposition of four aquatic macrophytes under aerobic and anaerobic conditions.

Materials and methods

Samples of Eichhornia azurea (Sw.) Kunth, Egeria najas Planch, Oxycaryum cubense (Poepp. and Kunth), and Salvinia molesta (Mitchell) were incubated under aerobic and anaerobic conditions. On sampling days, the remaining particulate detritus were weighted and were measured for the pH, the electrical conductivity, and the organic carbon in the dissolved fraction. Humic substances were extracted from the dissolved fraction, separated into fulvic and humic acids, and then quantified. The mass loss of particulate and dissolved fractions were fitted to first order kinetic models.

Results and discussion

Aerobic environment favored mineralization of aquatic macrophyte detritus and humification of organic dissolved carbon. Incubations under aerobic conditions formed 3.6 times more humic acid than incubations under anaerobic conditions. However, incubations in an anaerobic environment formed 1.84 times more fulvic acid. The dissolved humic compounds presented low mineralization rates probably due to the presence of the macrophyte detritus in the incubation representing a more attractive source of resource for microorganisms.

Conclusions

In many cases, the mineralization of HS was not noticed, leading to an increase in humic and fulvic acid concentration in the water. O. cubense detritus presented the highest carbon concentration, were related to refractory features, and generated the highest amounts of dissolved HA (mainly under aerobic condition). Egeria najas detritus presented the lowest carbon concentration, were related to labile features, and generated the highest amounts of dissolved FA (mainly under anaerobic condition). Besides that, high humic substance concentrations in the dissolved organic carbon were related to low mineralization of this fraction.
  相似文献   

3.
Ephemeral wetlands are characterized by temporal changes in abiotic characteristics that could ameliorate or exacerbate contaminant effects on resident species. The goal of this study was to determine the effects of temperature and naturally occurring suspended solids and organic carbon on the response of Daphnia pulex, and the calanoid copepod, Diaptomus clavipes, to a copper reference toxicant. Organisms were exposed to copper at 10, 20 and 30 °C in 48-h static renewal tests with a diluent of either reconstituted laboratory water or water from a wetland that had elevated levels of both suspended solids and organic carbon. 48-h LC50 values were calculated for both total and free ion copper concentrations. When wetland water was used as the diluent, LC50 values based on total copper concentrations were significantly greater than free ion LC50s for both species. This difference was not as great in laboratory water, indicating that binding of the metal was greater in the wetland diluent and the free ion was largely responsible for toxicity. While D. clavipes was significantly less sensitive to the metal than D. pulex (48-h LC50 for total copper in laboratory water at 20 °C 607.4 μg/L vs. 10.7 μg/L, respectively), the copepod exhibited a much greater response to increasing temperature. When the Biotic Ligand Model was used to generate free ion concentrations, it was found that measured concentrations exceeded the predicted values at each test condition; however measured LC50 values for D. pulex were within a factor of two of the predicted LC50's at all temperatures and in both diluents.  相似文献   

4.
Mercury and organic carbon concentrations vary dynamically in streamwater at the Sleepers River Research Watershed in Vermont, USA. Total mercury (THg) concentrations ranged from 0.53 to 93.8 ng/L during a 3-year period of study. The highest mercury (Hg) concentrations occurred slightly before peak flows and were associated with the highest organic carbon (OC) concentrations. Dissolved Hg (DHg) was the dominant form in the upland catchments; particulate Hg (PHg) dominated in the lowland catchments. The concentration of hydrophobic acid (HPOA), the major component of dissolved organic carbon (DOC), explained 41–98% of the variability of DHg concentration while DOC flux explained 68–85% of the variability in DHg flux, indicating both quality and quantity of the DOC substantially influenced the transport and fate of DHg. Particulate organic carbon (POC) concentrations explained 50% of the PHg variability, indicating that POC is an important transport mechanism for PHg. Despite available sources of DHg and wetlands in the upland catchments, dissolved methylmercury (DmeHg) concentrations in streamwaters were below detection limit (0.04 ng/L). PHg and particulate methylmercury (PmeHg) had a strong positive correlation (r 2?=?0.84, p?<?0.0001), suggesting a common source; likely in-stream or near-stream POC eroded or re-suspended during spring snowmelt and summer storms. Ratios of PmeHg to THg were low and fairly constant despite an apparent higher methylmercury (meHg) production potential in the summer. Methylmercury production in soils and stream sediments was below detection during snowmelt in April and highest in stream sediments (compared to forest and wetland soils) sampled in July. Using the watershed approach, the correlation of the percent of wetland cover to TmeHg concentrations in streamwater indicates that poorly drained wetland soils are a source of meHg and the relatively high concentrations found in stream surface sediments in July indicate these zones are a meHg sink.  相似文献   

5.
Pilot-scale constructed wetland treatment systems (CWTSs) were designed and built to decrease concentrations of constituents of concern in water simulated to match characteristics of water produced from specific oilfields in sub-Saharan Africa. The oilfield produced water has low ionic strength (704?C1,370?mg?L?1 total dissolved solids) and contains Fe, Mn, Ni, Zn, and oil and grease (O&G). To treat these constituents, biogeochemical pathways were targeted in the design of two subsurface flow (SSF) CWTS series planted with Phragmites australis and a free-water surface (FWS) series planted with Typha latifolia. These systems were designed for prevailing conditions at the sub-Saharan site studied. Concentrations of O&G, Fe, Mn, Ni, and Zn in outflow from the SSF series met use criteria for irrigation and livestock watering. For the FWS series, outflow concentrations of O&G, Fe, and Mn met use criteria for irrigation and livestock watering, and Ni concentrations met use criteria for livestock watering. Both SSF and FWS series were effective in reducing concentrations of O&G in the produced water investigated with >98% efficiency. The high-removal efficiency is attributed to achieving aerobic conditions in the wetland cells. Both SSF and FWS series reduced concentrations of Fe and Mn but with a wider range of efficiency compared with O&G removal. The removal of Ni and Zn could be increased by the addition of organic matter, such as plant detritus, to wetland cells to promote reducing conditions and dissimilatory sulfate reduction.  相似文献   

6.
To clarify the variation in soil microbial respiration (SMR) in Jiuduansha wetland during different succession stages, the SMR of five typical zones was evaluated. The results showed that the SMR during different successional stages of vegetation varied significantly (P < 0.05), with the SMR of the Spartina alterniflora zone (0.43 mg CO2 g−1 d−1) being the highest. These findings implied that S. alterniflora could enhance the SMR. Based on both the SMR and input of organic matter from plant decomposition, the Phragmites australis community likely possesses a higher organic carbon accumulation capability. In addition, the results of the present study implied that the difference in microbial characteristics among the wetland soils may be the primary reason for their different SMR. Path analysis indicated that the correlation between soil bacterial diversity and SMR was especially strong. Moreover, phylogenetic analysis showed that the bacterial community structure along the successional stages varied. Specifically, microbial species such as Acidobacteria, δ-Proteobacteria and Cytophaga belonging to Bacteroidetes, which have special heterotrophic metabolic capabilities or the ability to degrade cellulose, were the dominant soil bacterial flora in the S. alterniflora zone, which ultimately strengthened the SMR. Different elevations and vegetation types leading to a change in the wetland soil characteristics such as waterlogging time and inorganic nitrogen may be important factors resulting in the differences in soil microbial characteristics of different successional stages in Jiuduansha wetland.  相似文献   

7.
In a Quercetum petraeaecerris forest in northeastern Hungary, we examined effects of litter input alterations on the quantity and quality soil carbon stocks and soil CO2 emissions. Treatments at the Síkfőkút DIRT (Detritus Input and Removal Treatments) experimental site include adding (by doubling) of either leaf litter (DL) or wood (DW) (including branches, twigs, bark), and removing all aboveground litter (NL), all root inputs by trenching (NR), or removing all litter inputs (NI). Within 4 years we saw a significant decrease in soil carbon (C) concentrations in the upper 15 cm for root exclusion plots. Decreases in C for the litter exclusion treatments appeared later, and were smaller than declines in root exclusion plots, highlighting the role of root detritus in the formation of soil organic matter in this forest. By year 8 of the experiment, surface soil C concentrations were lower than Control plots by 32% in NI, 23% in NR and 19% in NL. Increases in soil C in litter addition treatments were less than C losses from litter exclusion treatments, with surface C increasing by 12% in DL and 6% in DW. Detritus additions and removals had significant effects on soil microclimate, with decreases in seasonal variations in soil temperature (between summer and winter) in Double Litter plots but enhanced seasonal variation in detritus exclusion plots. Carbon dioxide (CO2) emissions were most influenced by detritus input quantity and soil organic matter concentration when soils were warm and moist. Clearly changes in detritus inputs from altered forest productivity, as well as altered litter impacts on soil microclimate, must be included in models of soil carbon fluxes and pools with expected future changes in climate.  相似文献   

8.
The effect of copper on the abundance, diversity and resistance of viable heterotrophic and copper resistant bacterial populations (CuR) was evaluated in soils differing only by their amount and type of organic matter. These soils have been obtained using a vineyard soil that had been subjected to three different organic matter managements (Not Amended (NA) or amended with Straw (S) or Conifer Compost (CC)) in a long term field experiment. Soil microcosms were artificially contaminated with copper (250 mg Cu kg?1 of soil) and incubated for 35 days. Throughout the incubation, a differential copper impact on viable heterotrophic and CuR bacterial enumeration was demonstrated according to the soil organic status with a magnitude which followed the order: NA > CC ≥ S. Diversity of CuR bacteria revealed no significant difference between the uncontaminated soils, as determined by 16S rRNA sequencing. However, copper spiking induced an enrichment of particular populations depending on soil, with Methylobacterium, Ralstonia and Staphylococcus like species becoming dominant in NA, S and CC soils, respectively. Evaluation of the copA gene distribution and diversity, through PCR detection and sequencing, revealed that few CuR bacteria (from 7 to 13%) possessed this genetic determinant before the addition of metal. Copper contamination induced an increase in the dissemination of homologous copA genes only in Ralstonia like species indigenous to S soils. From a functional point of view, copper minimum inhibitory concentration for each CuR strain was measured. It did not highlight variable copper resistance efficiency between strains belonging to different taxonomic groups, harboring or not the copA gene, and originating from different soils contaminated or not by copper.  相似文献   

9.
我国湿地碳循环的研究进展   总被引:3,自引:1,他引:3  
刘春英  周文斌 《土壤通报》2012,(5):1264-1270
湿地生态系统的碳循环正成为全球变化与陆地生态系统碳循环研究中的一大热点,在稳定全球气候变化中占有重要地位,其重要性主要表现在湿地土壤是陆地重要的有机碳库,土壤碳密度高,能够相对长期地储存碳,是多种温室气体的源和汇。目前湿地碳循环的研究主要集中在碳循环的影响因素方面,对我国湿地土壤有机碳储存的变化及其空间分布规律的特点研究较少。本文通过文献综述,研究我国不同气候区湿地土壤有机碳的储存变化及空间分布规律,对于了解湿地土壤有机碳的储存特点及其与陆地生态系统碳循环的关系,评价和保护湿地生态系统都具有重要的科学意义。  相似文献   

10.

Purpose

Soil organic carbon (SOC) stock is one of the most important carbon reservoirs on the earth and plays a vital role in the global climate change. However, research on the carbon sequestration and storage of coastal wetland soil is very scarce. Therefore, a study in the coastal wetland was conducted to investigate the SOC distribution, storage, and variation under the influence of human activities.

Materials and methods

Surface soil samples in different seasons and profile soil samples were collected in the Changyi coastal wetland. SOC content, soil physicochemical properties, and sedimentation rate were determined. Organic carbon storage and burial flux were calculated. On the basis of correlation analysis and comparative study, factors affecting the distribution and storage of SOC were investigated.

Results and discussion

The average SOC content of the surface soil in June and November was 4.65 and 6.13 g kg?1, respectively. The distribution of surface SOC content was consistent with the distribution of vegetation and was affected by the soil particle size. In plant-covered area, the relationship between SOC content and depth could be expressed by the power function y?=?ax b . The contribution of plants to SOC was only significant in the shallow layer. As for the deep layer, the SOC content was higher in the mudflat. The organic carbon storage in the upper 1 m soil was estimated at 1.795 kg m?2 in average and the total organic carbon storage of Changyi wetland was estimated at 6.373?×?107 kg. The sedimentation rate was very low and the average organic carbon burial flux of the whole wetland was 17.5 g m?2 a?1.

Conclusions

Low sedimentation rate, weak downward migration, and high decomposition rate of organic matter caused by poor hydrological condition were the reasons why the SOC storage in Changyi wetland was low. Under intensive human activities, the Changyi wetland was drying and the organic carbon storage was reducing. Strategies were proposed to be taken urgently to restore the wetland for the long-term benefit.
  相似文献   

11.
The Sanjiang Plain, one of the largest freshwater marshes in China, has experienced intensive cultivation over the past 50 years. However, there were few reports of short-term dynamics of soil carbon and nitrogen and CO2 emission after tillage. In this paper, we studied the short-term dynamics of carbon and nitrogen after tillage in a freshwater marsh of northeast China. The results showed that response of carbon and nitrogen dynamic to tillage was different for intact wetland and soil cultivated for 10 years. Tillage was followed by immediate and significant increases in CO2 efflux, which peaked at 0.25 h after tillage, four times higher than control in the wetland soils; while, only 2.5 times higher than control in the cultivated soils. Although, dissolved organic C (DOC) increased, the relative stability of microbial biomass C (MBC) pools together with the decreased respiration in the wetland soil suggested that the tillage did not lead to a burst in microbial activity and growth. Other factors such as moisture content before and after tillage may play an important role in determining microbial activity in the intact wetland. On the contrary, although dissolved organic C did not change, MBC pools, and soil respiration increase after tillage, suggesting tillage led to an increase in microbial activity and growth in the cultivated soil. Tillage initiated changes in soil aeration that was an important factor affecting soil microbiology in the long history of cultivation. Net N mineralization and nitrification occurred in both wetland and cultivated soils, but at different rates after tillage that in the intact wetland soil was higher than cultivated soil. Macroaggregates in the wetland soil would be expected to contain larger amounts of organic matter, and thus release a larger source of newly available substrate for microbes after tillage. In the intact wetland soil, ammonium, nitrate, and dissolved organic N (DON) concentrations were significantly negatively correlated to soil moisture (p < 0.01), suggesting high soil moisture in the natural wetland was not in favor of N mineralization.  相似文献   

12.
Microorganisms in acid mine drainage are typically acidophiles that mediate the oxidation of reduced compounds of iron and sulfur. However, microbial populations in wetland systems constructed to treat acid mine drainage are not well characterized. The purpose of this study was to analyze bacterial diversity, using cultivation-independent molecular ecological techniques, in a constructed wetland that received acid drainage from an abandoned underground coal mine. DNA was purified from Fe(III)-precipitates from the oxidized surface zone of wetland sediments and 16S rRNA gene sequences were amplified and cloned. A total of 200 clones were analyzed by restriction fragment length polymorphism (RFLP) and 77 unique RFLP patterns were obtained with four restriction enzymes. Of these patterns, 30 most dominant unique clones were selected for sequencing of their 16S rRNA genes. Half of these 30 clones could be matched with autotrophic iron- and sulfur-oxidizing bacteria (Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans). Several clones also formed a clade with heterotrophic iron-oxidizing bacteria (TRA2-10, TRA3-20, and TRA5-3) and heterotrophic bacteria (Stenotrophomas maltophilia, Bordetella spp., Alcaligenes sp., Alcaligenes faecalis, and Alcaligenes xylosoxidans). Approximately 40% and 35% of the analyzed RFLP restriction patterns were consistent with A. ferrooxidans and A. thiooxidans, respectively. The relatively high frequency of acidithiobacilli is consistent with the chemical and physical characteristics of this site—i.e., continuous, abundant supply of reduced iron and sulfur compounds, pH 3–4, ambient temperature, and limited organics originating from the coal seam and from vegetation or soil surrounding the inlet channel to the wetland. The RFLP results were consistent with our previous culture-independent PCR-DGGE and FISH study, showing relatively low bacterial diversity and predominance of mesophilic acidithiobacilli in oxic wetland sediments.  相似文献   

13.
We studied the isotopic composition of organic matter in the sediments of eight mountain lakes located in the Tatra Mountains (Western Carpathians, Poland). The sediments of the lakes were fine and course detritus gyttja, mud, and sand. The total organic carbon content varied from 0.5 to 53 %. The C/N ratio indicated that in-lake primary production is the major source of the organic matter in the lakes located above the treeline, whereas terrestrial plant fragments are the major organic compounds in the sediments of dystrophic forest lakes. We also found that a clear trend of isotopic curves toward lower values of δ 13C and δ 15N (both ~3 ‰) began in the 1960s. This trend is a sign of the deposition of greater amounts of NO x from the combustion of fossil fuels, mainly by vehicle engines. The combustion of fossil fuels in electric plants and other factories had a smaller influence on the isotopic composition. This trend has been weaker since the 1990s. Animal and human wastes from pastures and tourism had a surprisingly minor effect on lake environments. These data are contrary to previous data regarding lake biota and suggest the high sensitivity of living organisms to organic pollution.  相似文献   

14.
《Applied soil ecology》2007,35(2):272-280
Microorganisms have been proposed as early indicators of wetland change; however, there is often too little information to reliably use microbial parameters for this purpose. The objective of this study was to document how nutrient loading, plant community, and season affected arbuscular mycorrhizal (AM) fungi (expressed as percent colonized root length), other fungi (estimated by ergosterol concentration), and bacteria (quantified by direct counts) in soil and detritus, and thereby to broadly evaluate the potential of native microorganisms to serve as indicators of wetland integrity. Dominant wetland plant communities (Panicum, Cladium, Typha, Salix, mixed herbaceous, and deep-water slough) were sampled seasonally from nutrient-impacted and reference areas of a central Florida wetland with historic nutrient loading (only Cladium occurred in both impacted and reference areas). Nutrient impact increased soil and detrital ergosterol and bacterial counts in some plant communities and seasons (e.g., Cladium sampled in the fall); however, the nutrient effect was confounded by interactions with the plant community and season. Nutrient impact reduced AM root colonization in samples from impacted compared to reference Cladium communities during summer and fall; however, there were again significant interactions with season and other plant communities. We conclude that before soil fungi and bacteria can be used as indicators of wetland integrity background values for each plant community and season need to be well documented.  相似文献   

15.
Climate change and human activity have led to the degradation of desert wetlands. Free-living diazotrophs are vital for soil nitrogen input. However, a comprehensive understanding of how soil free-living diazotrophic communities and their co-occurrence patterns respond to desert wetland degradation is lacking. Here, quantitative polymerase chain reaction (qPCR), amplicon sequencing targeting nitrogenase gene (nifH), and network analysis were used to investigate the abundance, diversity, community composition, and co-occurrence patterns of soil free-living diazotrophs along the wetland degradation gradient, i.e., non-degraded (ND), lightly degraded (LD), moderately degraded (MD), and severely degraded (SD), in the southeastern Mu Us Desert, northern China. The abundance and Shannon, Simpson, Chao 1, and ACE indexes decreased (P < 0.05) by 14.6%, 20.7%, 2.1%, 46.5%, and 45.0%, respectively, in SD wetland, whereas no significant difference (P > 0.05) was observed between ND and LD wetlands. The relative abundance of Proteobacteria generally decreased (by 53.5%–19.7%) across the different degradation levels, while the relative abundance of Cyanobacteria increased (by 6.2%–40.1%) from ND to MD levels. The abundance, diversity, and community composition of diazotrophs were most strongly related to soil organic carbon, followed by total nitrogen, moisture, and pH. The least number of network nodes and edges and the lowest density were observed for MD and SD wetlands, indicating that the complexity of free-living diazotrophic networks was reduced by continued degeneration. Overall, severe desert wetland degradation affected the abundance, diversity, and network complexity of soil free-living diazotrophs more negatively than light degradation. This degradation promoted the growth of autotrophic diazotrophs and inhibited the growth of heterotrophic diazotrophs. These changes were mostly related to the loss of soil organic carbon.  相似文献   

16.
Interest in the potential use of constructed and naturally-occurring wetland systems as a low-cost, low-maintenance method for the treatment of metal-polluted water has increased considerably in recent years. Because metal cation binding to organic matter represents one mechanism by which metals are retained in wetlands, laboratory studies were conducted of the binding of metal cations to Sphagnum peat and sawdust, two substrates used in wetland construction for treatment of metal-polluted waters. The two substrates differed in initial cation exchange characteristics, organic matter fractionation, affinities for ten different metal cations, and metal binding capacities. Results suggest a simple method for quantitatively assessing the potential for different types of organic substrates to retain metals by binding when exposed to metal-polluted water of a particular chemical composition. For metals that are retained in wetlands principally by binding to organic matter, application of the method could lead to an improved ability to formulate a priori cost-benefit analyses for contemplated wetland treatment of metal-polluted waters.  相似文献   

17.
Emergent wetland plant species may exhibit different capacity for phytoremediation when used in constructed wetlands. To evaluate cadmium (Cd) remediation capacity of four emergent wetland species [Baumea juncea (R.Br.) Palla, Baumea articulata (R.Br.) S.T. Blake, Schoenoplectus validus (M.Vahl) A. & D.Löve, and Juncus subsecundus N.A. Wakef.], a glasshouse experiment was conducted in hydroponics to investigate the effects of Cd (0, 5, 10, and 20 mg L?1) on plant growth and Cd uptake and translocation as well as uptake of other nutrients after 14 days. The relative growth rates of the three species changed little in various Cd treatments, but was severely inhibited for B. juncea at 20 mg Cd per liter treatment. Hence, the Cd tolerance index (root length in Cd treatment vs. control) was significantly lower in B. juncea compared to other species. Among the species, the highest concentration of Cd was in the roots of J. subsecundus, followed by S. validus, B. articulata, and B. juncea, while the lowest concentration of Cd was in the S. validus shoots. Of all the species, J. subsecundus had the highest bioconcentration factor (BCF) in shoots, whereas S. validus and B. juncea had the lowest BCF in rhizomes and roots, respectively. The translocation factor was significantly lower in S. validus compared to the other species. J. subsecundus had a higher Cd accumulation rate than the other species regardless of the Cd supply. The lowest allocation of Cd in shoots was recorded for S. validus and in roots for B. juncea. The concentrations of other elements (P, S, Ca, Fe, Cu, and Zn) in shoots decreased with Cd additions, but the interactions between Cd and other elements in roots varied with the different species. These results indicate that the four wetland species have good tolerance to Cd stress (except B. juncea at high Cd exposure), varying in Cd accumulation and translocation in tissues. These properties need to be taken into account when selecting species for wetlands constructed for phytoremediation.  相似文献   

18.
The Antarctic dry valleys are characterized by extremely low temperatures, dry conditions and lack of conspicuous terrestrial autotrophs, but the soils contain organic C, emit CO2 and support communities of heterotrophic soil organisms. We have examined the role of modern lacustrine detritus as a driver of soil respiration in the Garwood Valley, Antarctica, by characterizing the composition and mineralization of both lacustrine detritus and soil organic matter, and relating these properties to soil respiration and the abiotic controls on soil respiration. Laboratory mineralization of organic C in soils from different, geomorphically defined, landscape elements at 10 °C was comparable with decomposition of lacustrine detritus (mean residence times between 115 and 345 d for the detritus and 410 and 1670 d for soil organic matter). The chemical composition of the detritus (C-to-N ratio=9:1-12:1 and low alkyl-C-to-O-alkyl-C ratio in solid-state 13C nuclear magnetic resonance spectroscopy) indicated that it was a labile, high quality resource for micro-organisms. Initial (0-6 d at 10 °C) respiratory responses to glucose, glycine and NH4Cl addition were positive in all the soils tested, indicating both C and N limitations on soil respiration. However, over the longer term (up to 48 d at 10 °C) differential responses occurred. Glucose addition led to net C mineralization in most of the soils. In the lake shore soils, which contained accumulated lacustrine organic matter, glucose led to substantial priming of the decomposition of the indigenous organic matter, indicating a C or energetic limitation to mineralization in that soil. By contrast, over 48 d, glycine addition led to no net C mineralization in all soils except stream edge and lake shore soils, indicating either substantial assimilation of the added C (and N), or no detectable utilization of the glycine. The Q10 values for basal respiration over the −0.5-20 °C temperature range were between 1.4 and 3.3 for the different soils, increasing to between 3.4 and 6.9 for glucose-induced respiration, and showed a temperature dependence with Q10 increasing with declining temperature. Taken together, our results strongly support contemporaneous lacustrine detritus, blown from the lake shore, as an important driver of soil respiration in the Antarctic dry valley soils.  相似文献   

19.
Abstract

Soil nitrogen (N) supply plays a dominant role in the N nutrition of wetland rice. Organic matter has been proposed as an index of soil N availability to wetland rice. This is based on the finding that mineralizable N produced under waterlogged conditions is related to soil organic carbon (C) and total N. The relationship between organic matter and mineralizable N is a prerequisite for determining the N requirement of wetland rice. However, no critical analysis of recent literature on organic matter–mineralizable N relationships has been made. This article evaluates current literature on the relationships of mineralizable N or ammonium N production with soil organic C in wetland rice soils. A number of studies with diverse wetland rice soils demonstrate a close relationship of N mineralized (ammonium‐N) under anaerobic conditions with organic C or total N. However, a few recent studies made on sites under long‐term intensive wetland rice cropping showed that strong positive relationships of mineralizable N with organic C or total N do not hold. Clearly, both quantity and quality of organic matter affect N mineralization in wetland rice soils. Future research is needed to clarify the role of quality of organic matter, especially its chemistry, as modified by the chemical environment of submerged soils, on the mineralization of organic N in wetland rice soils.  相似文献   

20.
Background and Objective  Largely influenced by the passage of the Swamp Land Act of 1849, many wetlands have been lost in the coastal plain region of southeastern United States primarily as a result of drainage to convert land for agriculture. While further wetland conversion or loss is universally acknowledged, the process continues with little public recognition of the causes or consequences. This study examined changes in soil carbon, pH, and Mehlich extractable nutrients in soils following conversion of wetland to beef cattle pasture. Methods  To better understand the chemical response of soils during wetland conversion to beef cattle pasture, soil samples were collected from the converted beef cattle pastures and from the adjoining reference wetland. Soil samples were collected from eleven sites in the beef cattle pasture, and from four in the adjoining reference wetland. Data that were collected from the reference wetland sites were used as the reference/baseline data to detect potential changes in soil properties associated with the conversion of wetlands to beef cattle pastures from 1940 to 2002. Results and Discussion  Compared with the adjoining reference wetland, the beef cattle pasture soils in 2002, 62 years after being drained, exhibited: (1) a decrease in organic carbon, TOC (-172.3 g kg-1), nitrogen, TN (-10.1 g kg-1), water soluble phosphorus, WSP (-5.1mg kg-1), and potassium, K (-0.7 mg kg-1); (2) an increase in soil pH (+1.8 pH unit), calcium, Ca (+88.4 mg kg-1), magnesium, Mg (+7.5 mg kgc), manganese, Mn (+0.3 mg kg-1), and iron, Fe (+6.9 mg kg-1); and (3) no significant changes in sodium (Na), zinc (Zn), copper (Cu), and aluminum (Al). In 2002, the amount of TOC and the concentration of soil organic matter (OM) in pasture fields were significantly lower than the concentration in the reference wetland with average values of 7.8 ± 8 g kg-1 and 36 ± 26 g kg-1 and 180.1 ± 188 g kg-1 and 257 ± 168 g kg-1, respectively. It appeared that conversion of wetlands was proceeding toward a soil condition/composition like that of mineral soils. Conclusion and Outlook  Overall, conversion of wetland had significant effects on soil carbon, pH, nitrogen, phosphorus, and extractable nutrients. Results of our study have shown a decrease in TOC, TN, WSP, and K and an increase in soil pH, Ca, Mg, Mn, and Fe. These results are important in establishing useful baseline information on soil properties in pasture and adjoining reference wetland prior to restoring and converting pasture back to its original wetland conditions as a major part of the restoration effort being underway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号