首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-seven laboratories from around the world agreed to participate in an intercomparison exercise for total Hg (Hgt) and methyl Hg (MMHg) in pristine lake water. Unfiltered samples from a remote brown water lake in northern Wisconsin (USA) were collected into acid cleaned Teflon® bottles using ultra-clean sample handling techniques. The samples were acidified in the field with 0.4% by volume of pre-analyzed HCl (12N; <5 pg Hg/mL), and sent to the primary reference laboratory (PRL) by overnight mail. Within one week of receipt, the samples were randomized, and 10% analyzed for Hgt and MMHg at the PRL to verify the homogeneity of the set. Each participating laboratory was then sent 3 randomly selected 1 L bottles, while the PRL retained 30, and the secondary reference laboratory (SRL) retained 12 samples. The participating laboratories were asked to analyze each bottle in triplicate for both Hgt and MMHg, reporting all QA data including blanks, spike recoveries, and detection limits. The PRL analyzed samples in triplicate at both the beginning and the end of the analytical window, to provide a controlled estimate of any changes in concentration or speciation over that time. Of the 23 laboratories that returned results, 18 utilized BrCl oxidation, gold trapping, and cold vapor atomic fluorescence (CVAFS) detection for Hgt. Four laboratories reported similar techniques, varying either in detector (cold vapor atomic absorption), or wet chemistry. Only 16 laboratories reported MMHg results, with 15 using a variation of the aqueous phase ethylation, GC separation, and CVAFS detection technique. The results show good convergence between the participating labs for both Hgt and MMHg. For Hgt 18 of 23 labs reported means within 20% of the consensus value and PRL results (1.27±0.18 ng/L and 1.27±0.14 ng/L respectively). For MMHg, 13 of the 16 labs reported results within 20% of either the consensus value (0.420±0.055 ng/L) or the PRL value (0.446±0.041 ng/L).  相似文献   

2.
In this study, we evaluated the relative contribution of atmospheric particulate mercury (Hg(p)) and divalent reactive gaseous mercury (RGM) to mercury dry deposition in Japan. The dry deposition fluxes (on a water surface sampler) and atmospheric PM concentrations of Hg, Cd, Cu, Mn, Ni, Pb and V, which were measured concurrently from April 2004 to March 2006 at 10 sites across the nation, were used in this evaluation. We considered that Hg(p) and RGM, but not Hg0, are deposited on the water surface, and that our method of sampling Hg(p) without the use of KCl-coated annular denuders enables the exclusion of a significant amount of RGM artifact. The monthly average dry deposition velocities (= deposition flux/atmospheric PM concentration) of Cd and Pb were found to be similar to each other (Cd/Pb deposition velocities?=?1.06?±?0.58). It was assumed that the deposition velocity of Hg(p) is identical to the mean deposition velocity of Cd and Pb, because the particle size distribution of Hg(p) is likely similar to those of both elements. Using this deposition velocity, the monthly dry deposition flux of Hg(p) was calculated. The average contribution (±1σ) of Hg(p) to the annual deposition flux at ten sites was 26?±?15%. The mercury dry deposition flux increased generally from spring to early summer, which was attributed mostly to the deposition of RGM. This seasonal change correlated to that in photochemical oxidant (primarily O3) concentration in air at most sites. These suggest that mercury dry deposition in Japan is predominantly deposition of RGM, which was formed via oxidation of Hg0 by O3 in the atmosphere.  相似文献   

3.
Source-oriented models are ideally suited to examine the impact of terrain and meteorology and source factors such as stack height when evaluating exposures to air pollutants. A source-oriented, Gaussian plume air pollution dispersion model AERMOD was used to estimate the spatial distribution of elemental mercury (Hg0) from a typical coal-fired boiler emitting 0.001 g Hg0/s. Hg0 was chosen because of its health impact related to potential neurological and reproductive effects which may be especially important for high-risk populations. Results from four simulations using meteorological data from 2004 were compared for flat and hilly terrain from 20- and 55-m stacks at a distance of 1,350 m from the source. Variations within a quadrant were affected primarily by topography. For the 20-m stack, the average annual ambient concentration for individuals living within the northeast (NE) quadrant was significantly lower at 2.5 ng Hg0/m3 (P?<?0.001; confidence interval (CI), 2.4?C2.6) in flat terrain versus 3.3 ng Hg0/m3 in hilly (P?<?0.001; CI, 1.2?C1.3). NE concentrations of the source showed high spatial variability attributed to topography with 1-h maximums of 4.0 ng Hg0/m3 flat versus 7.1 ng Hg0/m3 hilly. Not unexpectedly, average annual concentrations were considerably lower for the 55-m stack although topography remained a significant variable with 0.1 ng Hg0/m3 in flat terrain (p?<?0.001; CI, 0.11?C0.13) and double that exposure at 0.2 ng Hg0/m3 in hilly terrain (p?<?0.001; CI, 0.16?C0.18). Annual average mercury concentrations due to emissions from the 20-m stack were ~20 times higher than ambient concentrations associated with the 55-m stack. A sensitivity analysis was performed for meteorological effects, using meteorological data from years 2001?C2005. Varying the roughness factor had no significant effect on the results. For all simulations, the highest concentrations were located in the NE quadrant. During 2001?C2005, the highest average annual ambient Hg concentration ranged from 6.2 to 7.0 ng Hg0/m3 for the 20-m stack and 0.3?C0.5 ng Hg0/m3 for the 55-m stack. Thus, this model is robust. These results demonstrate the usefulness of a source-oriented model such as AERMOD for incorporating multiple factors for estimating air pollution exposures for communities near point sources. The importance of considering topography, meteorology, and source characteristics when placing air samplers to measure air quality and when using buffer zones to estimate ambient residential exposures is also illustrated. Residential communities in hilly terrain near industrial point sources may have between two to three times the exposures as those in flat terrain. Exposures will vary depending on the stack height of the point source.  相似文献   

4.
The forest floor was shown to be an effective sink of atmospherically deposited methylmercury (MeHg) but less for total mercury (Hgtotal). We studied factors controlling the difference in dynamics of MeHg and Hgtotal in the forest floor by doubling the throughfall input and manipulating aboveground litter inputs (litter removal and doubling litter addition) in the snow‐free period in a Norway spruce forest in NE Bavaria, Germany, for 14 weeks. The MeHg concentrations in the forest‐floor percolates were not affected by any of the manipulation and ranged between 0.03 (Oa horizon) and 0.11 (Oi horizon) ng Hg L–1. The Hgtotal concentrations were largest in the Oa horizon (24 ng Hg L–1) and increased under double litterfall (statistically significant in the Oi horizon). Similarly, concentrations of dissolved organic C (DOC) increased after doubling of litterfall. The concentrations of Hgtotal and DOC correlated significantly in forest‐floor percolates from all plots. However, we did not find any effect of DOC on MeHg concentrations. The difference in the coupling of Hgtotal and MeHg to DOC might be one reason for the differences in the mobility of Hg species in forest floors with a lower mobility of MeHg not controlled by DOC.  相似文献   

5.
Chemical speciation of mercury (Hg) in a wide variety of combustion flue gas matrices has been determined using the mercury speciation adsorption (MESA) method. The MESA sampling system for gas phase Hg species employs a series of heated, solid phase adsorbent traps. Flue gas oxidized Hg species (Hg(II) and MMHg) are adsorbed by a potassium chloride (KCl) impregnated soda lime sorbent. Elemental Hg (Hg0) is collected by an iodated carbon sorbent after passing through the KCl/soda lime sorbent. Total Hg (Hgt) is determined by summation of species. In the laboratory, cold vapor atomic fluorescence spectroscopy (CVAFS) is used for detection of Hg collected on the solid sorbents, after appropriate sample digestion and preparation. The MESA method has been evaluated for species stability, matrix effects, breakthrough, artifacts and precision. Based on eight duplicate samples a mean precision of 6.8% 11% and 4.5% (relative percent difference) has been calculated for Hg0, Hg(II) and Hgt respectively. Intercomparison of the MESA method with other methods shows very good agreement for Hgt. Mass balance calculations at 5 sites range from 75 to 140%, with a mean of 97±25%. Overall mean speciation results from 19 separate determinations suggest that Hg(II) has a 1 sigma range of 40 to 94% in coal combustion flue gas at, the inlet to pollution control devices.  相似文献   

6.
Due to the inherent differences in bioavailability and transport properties of particulate and dissolved mercury (HgP and HgD), it is important to understand the processes by which each is mobilized from soil to stream. Currently, there is a paucity of HgP data in the literature despite the fact that it can be the dominant fraction in some systems. We analyzed HgP in conjunction with volatile solids (VS, an estimate of organic content) and total suspended solids (TSS) and investigated the viability of using turbidity as a surrogate measure of HgP. Samples were collected for flow conditions ranging from 72 to 8,223 L?s?1 during October 2009 through March 2010 in a 10.5-km2 forested headwater catchment. Total Hg concentrations ranged from 0.28 to 49.60 ng L?1, with the relative amount of HgP increasing with discharge from approximately 40% to 97%. Storm dynamics of HgP and HgD were not consistent, indicating unique controls on the export of each fraction. During high-flow events, HgP was consistently higher on the rising limb of the hydrograph compared with the receding limb for a range of discharge events, with this hysteresis contributing to a degraded relationship between HgP and streamflow. Overall, HgP was strongly positively correlated with VS (r 2?=?0.97), confirming the known association with organic carbon. Due to a consistent organic fraction of the suspended solids (34?±?6%), HgP was also well correlated with TSS (r 2?=?0.95), with an average of 0.10 ng of HgP per milligram of TSS in this system. Stream turbidity measured with an in situ sonde also had a strong correlation with TSS (r 2?=?0.91), enabling commutative association with VS (r 2?=?0.86) and HgP (r 2?=?0.76). Turbidity can explain more than twice the temporal variance in HgP concentrations (n?=?50) compared with discharge (r 2?=?0.76 versus 0.36), which leads to improved monitoring of HgP dynamics and quantification of mass fluxes.  相似文献   

7.
Concentrations of mercury (Hg) in live foliage increased ten-fold from spring bud break (mean ± std. dev. from bothsites: 3.5±1.3 ng g-1) to autumn litterfall(36±8 ng g-1). Mercury in foliage did not behavesimilarly to eight other elements with known soil or aerosolsources (Aluminum (Al), Vanadium (V), Strontium (Sr), Rubidium(Rb), Copper (Cu), Zinc (Zn), Barium (Ba), and lead (Pb)),suggesting that Hg originated from a distinct pathway. Based onmeasured and modeled data, uptake of only 25% of the availableambient dry deposited Hg0 could explain all of the Hgmeasured in foliage throughout the growing season. Estimates ofgaseous elemental Hg (Hg0) uptake from soil water accountedfor 3–14%% of the Hg in litterfall. Mercury deposition toforested sites in the Lake Champlain and Lake Huron basins washighest in litterfall (40%), followed by total throughfall(33%), and precipitation (27%). The Hg flux in litterfall was15.8±1.9~μg m-2 yr-1 to the Lake ChamplainWatershed in 1995 and was 11.4±2.8~μg m-2 yr-1 to the Lake Huron Watershed in 1996. In comparison, the Hg fluxes in precipitation and total throughfall were 9.0±0.6 and 11.6±0.7~μg m-2 yr-1in the Lake Champlain Watershed (1995), and 8.7±0.5 and 10.5±1.0~μg m-2 yr-1 in the Lake Huron Watershed (1996).  相似文献   

8.
Mercury (total and methyl) was evaluated in snow samples collected near a major mercury emission source on the Idaho National Engineering and Environmental Laboratory (INEEL) insoutheastern Idaho and 160 km downwind in Teton Range in westernWyoming. The sampling was done to assess near-field (<12 km)deposition rates around the source, compare them to those measured in a relatively remote, pristine downwind location, andto use the measurements to develop improved, site-specific modelinput parameters for precipitation scavenging coefficient and thefraction of Hg emissions deposited locally. Measured snow waterconcentrations (ng L-1) were converted to deposition (ugm-2) using the sample location snow water equivalent. Thedeposition was then compared to that predicted using the ISC3 airdispersion/deposition model which was run with a range ofparticle and vapor scavenging coefficient input values. Acceptedmodel statistical performance measures (fractional bias andnormalized mean square error) were calculated for the differentmodeling runs, and the best model performance was selected. Measured concentrations close to the source (average = 5.3 ngL-1) were about twice those measured in the Teton Range(average = 2.7 ng L-1) which were within the expected rangeof values for remote background areas. For most of the samplinglocations, the ISC3 model predicted within a factor of two of theobserved deposition. The best modeling performance was obtainedusing a scavenging coefficient value for 0.25 μm diameterparticulate and the assumption that all of the mercury isreactive Hg(II) and subject to local deposition. A 0.1 μm particle assumption provided conservative overprediction of thedata, while a vapor assumption resulted in highly variable predictions. Partitioning a fraction of the Hg emissions to elemental Hg(0) (a U.S. EPA default assumption for combustion facility risk assessments) would have underpredicted the observed fallout.  相似文献   

9.
Research on mercury (Hg) distribution and speciation was carried out in Lake Baikal, a large, strong-oligotrophic freshwater reservoir in Siberia, Russia, during June 1992 and march 1993. In summer, total Hg in the water column ranged from 0.14 to 0.77 ng Hg/L, with the highest concentrations observed in the central basin of the lake in surface water samples. Labile inorganic Hg was found to be 7 to 20 % of the total Hg content. Highest total Hg concentrations were found in river waters: up to 2 ng Hg/L. Labile methylmercury (MeHg) concentrations ranged from 2 to 38 pg Hg/L in the water column, with the higher concentrations in the central part of the lake, and showing a slight increase in near bottom waters. Labile MeHg makes up 1 to 15 % of the total Hg content in the water column, with larger fractions in deep waters. The slight increase of the MeHg gradient with depth corresponds with the O2 minimum region. Highest MeHg concentrations were observed in river waters (up to 145 pg Hg/L) and in some bays of the lake (up to 160 pg Hg/L). In these high temperature- and phytoplankton-rich water masses, the MeHg-fraction increased up to 35 % of total Hg. Labile MeHg concentrations in water samples taken in winter in the southern basin (under the ice cover), showed slightly higher concentrations than in summer, possibly due to an early spring bloom. In rainwater, total Hg ranged from 3 to 20 ng Hg/L and MeHg from 0.1 to 0.25 ng Hg/L. In snow, a large fraction of total Hg is bound to particulate matter; concentrations of total Hg ranged from 8 to 60 ng Hg/L and labile MeHg from 0.1 to 0.25 ng Hg/L. Atmospheric Hg was found to be 0.73 to 2.31 ng/m3 as gaseous Hg and 0.005 to 0.02 ng/m3 in its particulate form. Spatial distribution patterns of atmospheric Hg show slightly higher concentrations over the central part of the lake and the Selenga river delta. In winter, atmospheric Hg values (measured in the southern region), ranged from 1.2 to 6.1 ng/m3 as total gaseous Hg and 0.02 to 0.09 ng/m3 as total particulate Hg, and are higher than in summer, probably influenced by coal burning and traffic by the local population. MeHg contents in fish ranged from 20 ng Hg/g dry weight in small Cottocomephorus to 300 ng Hg/g dry weight in pike and trout species, which were caught in organic-rich waters.  相似文献   

10.
This study compares mercury (Hg) and methylmercury (MeHg) distribution in the soils of two forested stream watersheds at Acadia National Park, Maine, U.S.A. Cadillac Brook watershed, which burned in 1947, has thin soils and predominantly deciduous vegetation. It was compared to the unburned Hadlock Brook watershed, with thicker soil and predominantly coniferous vegetation. Soils in both watersheds were primarily well drained. The fire had a significant impact on the Cadillac watershed, by raising the soil pH, altering the vegetation, and reducing carbon and Hg pools. Total Hg content was significantly higher (P > 0.05) in Hadlock soils (0.18 kg Hg ha-1) compared to Cadillac soils (0.13 kg Hg ha-1). Hadlock O horizon had an average Hg concentration of 134±48 ng Hg g-1 dry weight, compared to 103±23 ng Hg g-1 dry weight in Cadillac O horizon. Soil pH was significantly higher in all soil horizons at Cadillac compared to Hadlock soils. This difference was especially significant in the O horizon, where Cadillac soils had an average pH of 3.41±0.22 compared to Hadlock soils with an average pH of 2.99±0.13.To study the mobilization potential of Hg in the O horizons of the two watersheds, batch adsorption experiments were conducted, and the results were modeled using surface complexation modeling. The results of Hg adsorption experiments indicated that the dissolved Hg concentration was controlled by the dissolved organic carbon (DOC) concentration. The adsorption isotherms suggest that Hg is more mobile in the O horizon of the unburned Hadlock watershed because of higher solubility of organic carbon resulting in higher DOC concentrations in that watershed.Methylmercury concentrations, however, were consistently higher in the burned Cadillac O horizon (0.20±0.13 ng Hg g-1 dry weight) than in the unburned Hadlock O horizon (0.07±0.07 ng Hg g-1 dry weight). Similarly, Cadillac soils possessed a higher MeHg content (0.30 g MeHg ha-1) than Hadlock soils (0.16 g MeHg ha-1). The higher MeHg concentrations in Cadillac soils may reflect generally faster rates of microbial metabolism due to more rapid nutrient cycling and higher soil pH in the deciduous forest. In this research, we have shown that the amount of MeHg is not a function of the total pool of Hg in the watershed. Indeed, MeHg was inversely proportional to total Hg, suggesting that landscape factors such as soil pH, vegetation type, or land use history (e.g., fire) may be the determining factors for susceptibility to high Hg in biota.  相似文献   

11.
Litterfall can be an important flux of mercury (Hg) to soils in forested landscapes, yet typically the only available data to evaluate Hg deposition is from precipitation Hg monitoring. Litterfall was collected at 39 sampling sites in two small research watersheds, in 2003 and 2004, and analyzed for total Hg. Four vegetation classes were designated in this study as hardwoods, softwoods, mixed and scrub. The mean litter Hg concentration in softwoods (58.8 ± 3.3 ng Hg g?1 was significantly greater than in mixed (41.7 ± 2.8 ng Hg g?1 and scrub (40.6 ± 2.7 ng Hg g?1, and significantly lower than in hardwoods (31.6 ± 2.6 ng Hg g?1. In contrast, the mean weighted litter Hg flux was not significantly different among vegetation classes. The lack of a significant difference in litter Hg flux between hardwoods and softwoods was attributable to the large autumnal hardwood litter Hg flux being balanced by the higher softwood litter Hg concentrations, along with the higher chronic litterfall flux throughout the winter and spring in softwoods. The estimated annual deposition of Hg via litterfall in Hadlock Brook watershed (10.1 μg m?2 and Cadillac Brook watershed (10.0 μg m?2 was greater than precipitation Hg deposition and similar to or greater than the magnitude of Hg deposition via throughfall. These results demonstrate that litterfall Hg flux to forested landscapes can be at least as important as precipitation Hg inputs.  相似文献   

12.
Mercury (Hg) transport was studied in a river in Kobbefjord, near Nuuk in West Greenland, during the 2009 and 2010 summer periods. The river drains an area of 32?km2, and the Kobbefjord area is considered representative to low-Arctic West Greenland. The river water origins from both precipitation and melting of small glaciers and annual water discharges for 2009 and 2010 were estimated to be 29 and 26 million?m3, respectively. Mean Hg concentrations (±SD) were 0.46?±?0.17 and 0.26?±?0.17?ng?L?1 for 2009 and 2010. The annual Hg transport was estimated to 14 and 6.4?g, corresponding to a transport rate of 0.45 and 0.20?g Hg km?2?year?1 from the river basin. The highest Hg concentrations (up to 1.0?ng?L?1) and discharges were measured in spring 2009 along with melting of extensive amounts of snow deposited during the 2008?C2009 winter period. In contrast, the following 2009?C2010 winter period was relatively dry with less snowfall. This indicates that a major fraction of the Hg in this area is likely to come from Hg deposited along with winter precipitation (as wet deposition) released upon snowmelt. Also, the results show that while Hg concentrations were low in Kobbefjord River compared to other sub-Arctic/Arctic rivers, the annual Hg transport rates from the basin area were within the range reported for other sub-Arctic/Arctic areas.  相似文献   

13.
Dissolved and particulate Hg speciation was determined on four occasions in the Spring to Fall interval of 1989, at three depths of the water column of Onondaga Lake, New York; an urban system in which the sediments and fish flesh are contaminated with Hg. Species determined included total Hg (Hgt), reactive (‘ionic’) Hg (Hgi), monomethylmercury (CH3HgX), elemental Hg (Hg°) and dimethylmercury (CH3)2Hg). Onondaga Lake was found to contain very high levels of Hgt (2 to 25 ng L?1 Hg), Hgj (0.5 to 10 ng L?1 Hg), and CH3HgX (0.3 to 7 ng L?1 Hg), which generally increased with depth in the lake. These concentrations represent a significant level of contamination, based upon comparisons with other polluted and pristine sites. Elemental Hg levels were typically about 0.05 ng L?1 and (CH3)2Hg was near the limits of detection (?0.001 ng) L?1 in most samples. The greatest CH3HgX concentrations in the hypolimnion, as well as the largest gradients of both CH3HgX and (Hgt), were observed upon the first onset of stratification, in early summer. These concentrations did not become more pronounced, however, as stratification and H2S levels in the hypolimnion increased throughout the summer. The very low concentrations of (CH3)2Hg in these MeHg and sulfide-rich waters calls into question the belief that CH3HgX and H2S will react to yield volatile dimethyl-mercury, which can then escape to the atmosphere by diffusion. Mercury speciation was highly dynamic, indicating active cycling within the lake, and an apparent sensitivity to changes in attendant Iimnological conditions that track the stratification cycle.  相似文献   

14.
A thorough assessment of Canadian exposure to mercury (Hg) has not been undertaken since 1970. A multimedia approach was used to update estimates of Hg exposure to members of the general population in Canada, based on currently available information. Adult Canadians have an estimated intake of all Hg species via all routes of 7.7μg/day (0.11μg/kg body weight/day), which equated to an absorbed dose of 5.3μg/day (0.076μg/kg bw/day). Fish consumption accounts for much of this exposure (27% of intake, 40% of absorbed dose), in the form of methylmercury. However, dental amalgam appears to account for a greater proportion of total Hg exposure than fish consumption. Exposure from amalgam was estimated for intake and absorbed doses (of Hg0) at 2.81 and 2.25μg/day, respectively. This represents 36% of total Hg intake and 42% of absorbed dose. Hg2+ arises principally from foods other than fish. Intake of Hg2+ by adults was determined to be 1.82μg/day and absorbed dose only 0.18μg/day. Exposures for four other age groups of the population were also evaluated.  相似文献   

15.
Most technologies used for decontamination presents good results for high concentrations, but limitations for lower ones. The desirable Hg concentration in the water is extremely low because of its toxicity. The aims of this study were to evaluate inorganic mercury (Hg2+) and methylmercury (CH3Hg+) toxicity in Nostoc paludosum, to assess the potential of this cyanobacteria strain to remove these Hg species from aqueous medium and also to investigate Hg methylation by the cyanobacteria. CH3Hg+ determination was performed by gas chromatography-pyrolysis-atomic fluorescence spectrometry in cultures exposed to a concentration of 20 μg L?1 for 30 days. Both Hg species were removed from the supernatant, ranging from 73 to 96% of Hg2+ and from 73 to 95% of CH3Hg+. Ultrastructural Hg2+ effects in the cyanobacteria cells investigated by transmission electron microscopy revealed higher production of glycogen, cyanophycin, and intrathylacoidal spaces than the control group. When Hg was added to the culture in the form of CH3Hg+, a decrease corresponding to approximately 60% of the initial concentration due to Hg volatilization was observed. The production of CH3Hg+ by the cyanobacteria was detected in concentrations near the limit of detection (0.0025%) of the bioaccumulated THg. This is an advantage for biotechnological decontamination applications, as CH3Hg+ is a very toxic specie and can be bioaccumulated and biomagnified. The results demonstrated that cyanobacteria cells are an efficient alternative to retain and/or remove Hg at low concentrations and they constitute a potential tool for a “final cleaning” of contaminated waste water.  相似文献   

16.
When balancing the element mercury (Hg) two coal-fired power plant units — one with slag tap boilers (ST, 2 × 220 MW) and one with a dry bottom boiler (DB, 475 MW) were compared. Both systems are provided with electrostatic precipitators (ESP), nitrogen oxides removal (DeNOx) and flue gas desulfurization (FGD) systems. The Hg in the flue gas is predominantly in gas phase. Only 15 % of the Hg introduced by the coal leaves the unit with the bottom or fly ash. Depending on the operating mode, 30 to 40 % of the Hg is separated in the FGD systems. The overall separation rate for the total system ranges between 45 to 55 %, the residue is emitted in the form of gaseous Hg species. At full load, the Hg concentration in the cleaned gas is less than 6 μg/m3. In the flue gas path of another dry bottom boiler (DB1, 480 MW) the concentrations of the gaseous species of bivalent mercury (Hg2+), elemental mercury (Hg0), and total mercury content (Σ Hg) were determined. The sum of the concentrations of Hg2+ and Hg0 is in agreement with the measurement of Σ Hg. Directly downstream of the boiler Hg2+ dominates with 77 %, while Hg0 amounts to 23 %. In the high-dust DeNOx system Hg0 is oxidized almost completely to Hg2+ (96 %). Air heater and electrostatic precipitator do not influence the Hg species concentrations. The FGD system eliminates approximately 80 % of the Hg2+. At the same time the quantity of Hg0 increases by the factor 10. In the cleaned gas Hg0 dominates with 76 % as compared to Hg2+ with 24 %. At full load the concentration of Σ Hg in the cleaned gas is also below 6 μg/m3.  相似文献   

17.
Schwesig  D.  Ilgen  G.  Matzner  E. 《Water, air, and soil pollution》1999,113(1-4):141-154
Mercury (Hg) and methylmercury (CH3Hg+) are global pollutants, but little information is available on their distribution and mobility in soils and catchments of Central Europe. The objective of this study was to investigate the pools and mobility of Hg and CH3Hg+ in different forest soils. Upland and wetland forest soils, soil solutions and runoff were sampled. In upland soils the highest contents of total-Hg were found in the Oh layer of the forest floor (>400 ng g-1) and the storage of non geogenic total-Hg (calculated for 60 cm depth) was about 120 mg/m2. The storage of total-Hg was one order of magnitude lower in wetland soils as compared to the upland soils. By far the largest proportion of total-Hg in soils was bound in immobile fractions. The depth gradients of CH3Hg+ did not correspond to those of total-Hg and the highest contents of CH3Hg+ in upland soils were observed in the litter layer of the forest floor and in the Bsv horizon. The CH3Hg+ content of the wetland soils was generally much higher in comparison with upland soils. CH3Hg+ in solution was found in the forest floor percolates of upland soils and in wetland soils, but not in soil solutions from mineral soil horizons. Gaseous losses of Hg as well as methylation of Hg are likely in wetland soils. The latter might be highly relevant for CH3Hg+ levels in runoff.  相似文献   

18.
To assess the sources, transport and deposition of atmospheric mercury (Hg) in Michigan, a multi-site network was implemented in which Hg concentrations in event precipitation and ambient samples (vapor and participate phases) were determined. Results from the analysis of 2 years of event precipitation samples for Hg are reported here. The volume-weighted average Hg concentration in precipitation was 7.9, 10.8 and 10.2 ng/L for the Pellston, South Haven and Dexter sites, respectively. Yearly wet deposition of Hg for 1992–93 and 1993–94 was 5.8 and 5.5 μg/m2 at Pellston, 9.5 and 12.7 μg/m2 at South Haven and 8.7 and 9.1 μg/m at Dexter. A spatial gradient in both the Hg concentration and wet deposition was observed. Northern Michigan received almost half the deposition of Hg recorded at the southern Michigan sites. The concentration of Hg in precipitation exhibited a strong seasonal behavior with low values of 1.0 to 2.0 ng/L in winter and maximum values greater than 40 ng/L in summer. The spring, summer and autumn precipitation accounted for 89 to 91% of the total yearly Hg deposition. Mixed-layer back trajectories were calculated for each precipitation event to investigate the meteorological history and transport from potential Hg source regions. Elevated Hg concentrations were observed with air mass transport from the west, southwest, south, and southeast. At each of the sites precipitation events for which the Hg concentration was in the 90th and 10th percentile were-analyzed for trace elements by ICP-MS to investigate source impacts.  相似文献   

19.

Purpose

Soil-plant transfer models are needed to predict levels of mercury (Hg) in vegetables when evaluating food chain risks of Hg contamination in agricultural soils.

Materials and methods

A total of 21 soils covering a wide range of soil properties were spiked with HgCl2 to investigate the transfer characteristics of Hg from soil to carrot in a greenhouse experiment. The major controlling factors and prediction models were identified and developed using path analysis and stepwise multiple linear regression analysis.

Results and discussion

Carrot Hg concentration was positively correlated with soil total Hg concentration (R 2?=?0.54, P?<?0.001), and the log-transformation greatly improved the correlation (R 2?=?0.76, P?<?0.001). Acidic soil exhibited the highest bioconcentration factor (BCF) (ratio of Hg concentration in carrot to that in soil), while calcareous soil showed the lowest BCF among the 21 soil types. The significant direct effects of soil total Hg (Hgsoil), pH, and free Al oxide (AlOX) on the carrot Hg concentration (Hgcarrot) as revealed by path analysis were consistent with the result from stepwise multiple linear regression that yielded a three-term regression model: log [Hgcarrot]?=?0.52log [Hgsoil]???0.06pH???0.64log [AlOX]???1.05 (R 2?=?0.81, P?<?0.001).

Conclusions

Soil Hg concentration, pH, and AlOX content were the three most important variables associated with carrot Hg concentration. The extended Freundlich-type function could well describe Hg transfer from soil to carrot.  相似文献   

20.
The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg?=?44?±?15 ng L?1, DOC?=?63.0?±?31.3 mg L?1, pH?=?4.05?±?0.53) than at the northern site (Hg?=?22?±?6 ng L?1, DOC?=?41.8?±?12.1 mg L?1, pH?=?4.28?±?0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34?±?0.06 μg g?1 dw and 0.76?±?0.14 μg g?1 C, respectively) than at the northern site (0.31?±?0.05 μg g?1 dw and 0.70?±?0.12 μg g?1 C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号