首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harvested papaya fruit are perishable due to rapid ripening and softening and susceptibility to biotic or abiotic stresses. Hot water treatment (HWT) can preserve fruit quality by reducing decay. The present study investigated effects of HWT on controlling fungal pathogens of papaya fruit and the possible mechanism by which HWT induced disease resistance. HWT (54 °C, 4 min) of papaya fruit had a pronounced effect on reducing the carrier rate of Colletotrichum gloeosporioides (C. gloeosporioides) in fruit peel, significantly inhibited the incidence of anthracnose and stem-end rot, effectively delayed fruit softening, but slightly promoted the rate of fruit coloring. HWT reduced the anthracnose index and fruit ripeness to a certain extent and induced changes in the wax arrangement on the surface of treated fruit, causing the wax to melt. The cracks and most stomata appeared to be partially or completely plugged by the melted wax, thereby providing a mechanical barrier against wound pathogens. HWT induced the expression of CpPGIP and promptly induced the expression of CpNPR1, and then regulated the expression of the CpPR1 gene, which may enhance the resistance of the fruit to anthracnose disease and reduce the decay rate. Together, these results confirm that HWT could reduce disease incidence and induce resistance, and thus maintain postharvest quality during storage and prolong the shelf-life of papaya fruit.  相似文献   

2.
对青香蕉进行冷激(6℃,4 h)和热激(53℃,5 min)处理后,采用不同提取物料状态(干粉、鲜品)、不同提取方法(80%乙醇和冷、热水提取法),研究青香蕉果皮和果肉提取物对香蕉、芒果和番木瓜三种热带水果炭疽病菌的抑制效果,并筛选其最低抑菌浓度(MIC)。结果表明:青香蕉果皮和果肉的80%乙醇提取物对三种水果炭疽病菌均没有抑制效果;鲜品水提物的抑菌作用优于干粉水提物;青香蕉果皮水提物对香蕉炭疽病菌无明显的抑制效果,热激处理能增强果皮冷、热水提物对芒果和番木瓜炭疽病菌的抑制作用。青香蕉果肉水提物对三种水果的炭疽病菌具有微弱的抑制作用,而热激处理可增强果肉冷、热水提物对三种炭疽病菌的抑制作用,其中对香蕉炭疽病菌的抑制作用最强;冷激处理后,只有热水提取物表现出了对三种炭疽病菌的抑制作用。最低抑菌浓度试验结果表明,经热激处理的青香蕉鲜品水提取物对三种病原菌的最低抑菌浓度为10%。本研究结果对于了解香蕉采后病害系统防御机制及果蔬采后生物防治理论的扩展具有理论及现实意义。  相似文献   

3.
Anthracnose is the main postharvest disease in papaya fruit. Today, there is considerable interest on alternative methods of control to promote resistance against pathogens and supplement or replace the use of fungicides. The goal of this work was to evaluate the effects of gamma and UV-C irradiation on Colletotrichum gloeosporioides, the causal agent of anthracnose. Mycelial growth, sporulation, and conidial germination were evaluated in vitro after fungal exposition to different irradiation doses. In the in vivo assays, ‘Golden’ papaya fruit were inoculated through subcuticular injections of a conidial suspension or mycelium discs. Next, fruit were submitted to different irradiation doses (0, 0.12, 0.25, 0.5, 0.75, and 1 kGy), using Co60 as source, or UV-C (0, 0.2, 0.4, 0.84, 1.3, and 2.4 kJ m−2). To check the possibility of resistance induction by irradiation, papayas were also inoculated 24, 48, or 72 h after the treatments. The fruit were stored at 25 °C/80% RH for 7 days and evaluated for incidence and rot severity. The results showed that the 0.75 and 1 kGy doses inhibited conidial germination and mycelial growth in vitro. All doses increased fungal sporulation. The 0.75 and 1 kGy doses reduced anthracnose incidence and severity, but did not reduce them when the fruit were inoculated after irradiation. All UV-C doses inhibited conidial germination and those higher than 0.84 kJ m−2 inhibited mycelial growth. The 0.4, 0.84, and 1.3 kJ m−2 UV-C doses reduced fungal sporulation in vitro. There was no effect of UV-C doses and time intervals between treatment and inoculation on anthracnose control and fungal sporulation in fruit lesions. Moreover, all UV-C doses caused scald on the fruit. Thus, gamma irradiation can contribute for the reduction of postharvest losses caused by anthracnose and reduce the use or doses of fungicides on disease control.  相似文献   

4.
Anthracnose caused by Colletotrichum gloeosporioides is a major postharvest disease in avocados that causes significant losses during transportation and storage. Complete inhibition of the radial mycelia growth of C. gloeosporioides in vitro was observed with citronella or peppermint oils at 8 μL plate−1 and thyme oil at 5 μL plate−1. Thyme oil at 66.7 μL L−1 significantly reduced anthracnose from 100% (untreated control) to 8.3% after 4 days, and to 13.9% after 6 days in artificially wounded and inoculated ‘Fuerte’ and ‘Hass’ fruit with C. gloeosporioides. GC/MS analysis revealed thymol (53.19% RA), menthol (41.62% RA) and citronellal (23.54% RA) as the dominant compounds in thyme, peppermint and citronella oils respectively. The activities of defence enzymes including chitinase, 1, 3-β-glucanase, phenylalanine ammonia-lyase and peroxidase were enhanced by thyme oil (66.7 μL L−1) treatment and the level of total phenolics in thyme oil treated fruit was higher than that in untreated (control) fruit. In addition, the thyme oil (66.7 μL L−1) treatment enhanced the antioxidant enzymes such as superoxide dismutase and catalase. These observations suggest that the effects of thyme oil on anthracnose in the avocado fruit are due to the elicitation of biochemical defence responses in the fruit and inducing the activities of antioxidant enzymes. Thus postharvest thyme oil treatment has positive effects on reducing anthracnose in avocados.  相似文献   

5.
Chili anthracnose, caused by Colletotrichum spp., is one of the major diseases to chili production in the tropics and subtropics worldwide. Breeding for durable anthracnose resistance requires a good understanding of the resistance mechanisms to different pathotypes and inoculation methods. This study aimed to investigate the inheritances of differential resistances as responding to two different Colletotrichum pathotypes, PCa2 and PCa3 and as by two different inoculation methods, microinjection (MI) and high pressure spray (HP). Detached ripe fruit of Capsicum baccatum ‘PBC80’ derived F2 and BC1s populations was assessed for anthracnose resistance. Two dominant genes were identified responsible for the differential resistance to anthracnose. One was responsible for the resistance to PCa2 and PCa3 by MI and the other was responsible for the resistance to PCa3 by HP. The two genes were linked with 16.7 cM distance.  相似文献   

6.
分析27个代表番茄不同发育阶段和生物反应的组织特异性、含有152 635个独立EST数据库的数码表达,发现果胶裂解酶基因 (pectate lyase, SlPEL) 和番茄AP2 Like (SlAPL)的转录受果实成熟的调节。以授粉后不同发育时期的番茄(品种为美味樱桃)果实为试材, 用半定量PCR和荧光实时定量PCR分析SlPEL的表达模式,结果表明,授粉后12 d,其表达水平明显上升;授粉后16~18 d,达到第一个小高峰;28 d到最高峰;从28 d到完全成熟逐步下降到第一个小高峰的水平。SlAPL的表达模式与SlPEL类似,但其表达启动的时期迟于SlPEL。从授粉后25 d,SlAPL转录启动;授粉后28~32 d,其转录水平上升到第一个小高峰;39 d达到最高峰,以后到完全成熟略有下降。该研究也印证利用EST的数据库进行基因数码表达分析的可行性。  相似文献   

7.
The antifungal activities of cinnamon extract (CE), piper extract (PE) and garlic extract (GE) were evaluated on banana crown rot fungi (Colletotrichum musae, Fusarium spp. and Lasiodiplodia theobromae) in vitro. The assay was conducted with extracts of CE, PE and GE with concentrations of 0, 0.1, 0.5, 1.0, 5.0, 10.0 and 0.75 g L−1 of carbendazim (CBZ) on potato dextrose agar at room temperature. CE completely inhibited conidial germination and mycelial growth of all fungi at 5.0 g L−1. PE totally suppressed mycelial growth of all fungi at 5.0 g L−1 and conidial germination at 10.0 g L−1 except for Fusarium spp. GE had no significant effects but low concentrations (0.1 and 0.5 g L−1) enhanced germ tube elongation of the three fungi. The ED50 values were higher for mycelial growth than for conidia except for Fusarium spp. Combined treatments were investigated on crown rot development in banana fruit (Musa AAA group ‘Kluai Hom thong’). Treatments included 5.0 g L−1 CE, 1% (w/v) chitosan solution, hot water treatment (HWT, 45 °C for 20 min), CE plus chitosan, CE plus HWT and 0.75 g L−1 of CBZ, applied before and after inoculation of the fruit. Crown rot development was assessed during storage at 13 °C for 7 weeks. Disease development was least (25%) on CE treated fruit after inoculation compared to CBZ but was higher when CE was applied before inoculation. Chitosan significantly delayed ripening as in terms of peel color, firmness, soluble solids and disease severity. CE showed no negative effects on quality of fruit. CE plus HWT caused unacceptable peel browning.  相似文献   

8.
A conducting polymer gas sensor array (electronic nose) was evaluated for detecting and classifying three common postharvest diseases of blueberry fruit: gray mold caused by Botrytis cinerea, anthracnose caused by Colletotrichum gloeosporioides, and Alternaria rot caused by Alternaria sp. Samples of ripe rabbiteye blueberries (Vaccinium virgatum cv. Brightwell) were inoculated individually with one of the three pathogens or left non-inoculated, and volatiles emanating from the fruit were assessed using the gas sensor array 6–10 d after inoculation in two separate experiments. Principal component analysis of volatile profiles revealed four distinct groups corresponding to the four inoculation treatments. MANOVA, conducted on profiles from individual assessment days or from combined data, confirmed that the four treatments were significantly different (P < 0.0001). A hierarchical cluster analysis indicated two super-clusters, i.e., control cluster (non-inoculated fruit) vs. pathogen cluster (inoculated fruit). Within the pathogen cluster, fruit infected by B. cinerea and Alternaria sp. were more similar to each other than to fruit infected by C. gloeosporioides. A linear Bayesian classifier achieved 90% overall correct classification for data from experiment 1. Tenax? trapping of volatiles with short-path thermal desorption and quantification by gas chromatography–mass spectrometry was used to characterize volatile compounds emanated from the four groups of berries. Six compounds [styrene, 1-methyl-2-(1-methylethyl) benzene, eucalyptol, undecane, 5-methyl-2-(1-methylethyl)-2-cyclohexen-1-one, and thujopsene] were identified as contributing most in distinguishing differences in the volatiles emanating from the fruit due to infection. A canonical discriminant analysis model using the relative concentration of each of these compounds was developed and successfully classified the four categories of berries. This study underscores the potential feasibility of using a gas sensor array for blueberry postharvest quality assessment and fungal disease detection.  相似文献   

9.
Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars ‘Orin’ and ‘Akane’ using F1 seedlings derived from a cross between these cultivars. The ‘Orin’ map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the ‘Akane’ map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by ‘Akane’ are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose.  相似文献   

10.
Phomopsis blight in Lupinus albus is caused by a fungal pathogen, Diaporthe toxica. It can invade all plant parts, leading to plant material becoming toxic to grazing animals, and potentially resulting in lupinosis. Identifying sources of resistance and breeding for resistance remains the best strategy for controlling Phomopsis and reducing lupinosis risks. However, loci associated with resistance to Phomopsis blight have not yet been identified. In this study, quantitative trait locus (QTL) analysis identified genomic regions associated with resistance to Phomopsis pod blight (PPB) using a linkage map of L. albus constructed previously from an F8 recombinant inbred line population derived from a cross between Kiev-Mutant (susceptible to PPB) and P27174 (resistant to PPB). Phenotyping was undertaken using a detached pod assay. In total, we identified eight QTLs for resistance to PPB on linkage group (LG) 3, LG6, LG10, LG12, LG17 and LG27 from different phenotyping environments. However, at least one QTL, QTL-5 on LG10 was consistently detected in both phenotyping environments and accounted for up to 28.2% of the total phenotypic variance. The results of this study showed that the QTL-2 on LG3 interacts epistatically with QTL-5 and QTL-6, which map on LG10 and LG12, respectively.  相似文献   

11.
Water yam (Dioscorea alata L.) is the most widely cultivated food yams. Despite its importance, its production is limited by anthracnose disease caused by Colletotrichum gloeosporioides (Penz.). The use of resistant yam varieties is the most reliable approach of management of this disease. The speed and precision of breeding can be improved by the development of genetic linkage maps which would provide the basis for locating and hence manipulating quantitative traits such as anthracnose resistance in breeding programmes. An F1 diploid population was developed by crossing ‘Boutou’ a female clone (with field resistance to anthracnose) with ‘Pyramide’ (susceptible). A linkage map was generated with 523 polymorphic markers from 26 AFLP primer combinations. The resulting map covered a total length of 1538 cM and included 20 linkage groups. It is the most saturated of all genetic linkage maps of yam to date. QTL analysis of anthracnose resistance was performed based on response to two isolates of C. gloeosporioides. Resistance to anthracnose appeared to be inherited quantitatively. Using a LOD significance threshold of 2.6 we identified a total of nine QTLs for anthracnose resistance. The phenotypic variance explained by each QTL ranged from 7.0 to 32.9% whereas the total amount of phenotypic variation for anthracnose resistance explained by all significant QTLs varied from 26.4 to 73.7% depending on the isolate and the variable considered. These QTLs displayed isolate-specific resistance as well as broad spectrum resistance. The availability of molecular markers linked to the QTLs of anthracnose resistance will facilitate marker-assisted selection in breeding programmes.  相似文献   

12.
The effect of penetration speed on flesh firmness (FF) measurement by motorised penetrometer was examined for ‘Hayward’ (Actinidia deliciosa var. deliciosa) and ‘Hort16A’ (Actinidia chinensis Planch. var. chinensis) kiwifruit. Data was collected for penetration speeds varying from 4 to 40 mm s−1 using stored fruit of FF ∼10 N; a typical minimum FF threshold for export from New Zealand. Measurements were made on a number of instruments (Instron, GUSS FTA, HortPlus, TA.XTplus), using fruit from different orchards and in each of two different seasons. As expected, FF values increased with increasing penetration speed. A firmness-speed model was developed, based on the Maxwell rheological model for viscoelastic materials, which proved adequate in describing the FF data in terms of the effect of penetration speed. The effect of penetration speed was not adversely influenced by cultivar, season or instrument type. Within the range of fruit firmness examined - stored fruit below 20 N - it was concluded that the firmness-speed model could be successfully used to compare firmness values generated using instruments operating at different penetration speeds.  相似文献   

13.
C.-S. Jiang    X.-R. Ma    D.-M. Zhou    Y.-Z. Zhang 《Plant Breeding》2005,124(6):595-598
Stylosanthes guianensis, belonging to the genus Stylosanthes, is one of the most important tropical forage legumes and is native to South and Central America and Africa. Anthracnose, caused by the fungus Colletotrichum gloeosporioides (Penz.) Sacc., is a major constraint to the extensive use of Stylosanthes as tropical forage. Forty‐two accessions of S. guianensis were assessed with amplified fragment length polymorphism (AFLP) for genetic diversity and for resistance to anthracnose. In AFLP analysis, four selective primer combinations screened from 96 primer combinations were used to analyse these accessions, and a total of 225 clear bands were used for genetic similarity (GS) analysis, showing a 95.5% level of polymorphism on average. GS from 31.0% to 95.0% among the accessions was calculated with ntsys ‐pc software. The dendrogram was constructed with unweighted pair group method of averages (UPGMA) based on the AFLP data, and five clusters were defined at 48% GS. Two typical strains of C. gloeosporioides from Stylosanthes in China were used for anthracnose resistance screening. Most of the plant accessions showed variation in the reaction to two strains, and the correlation of resistance had a value of 0.904 (P < 0.01), suggesting common resistance to the two strains. The resistance accessions were randomly distributed in different groups of UPGMA clustering. These results demonstrate that AFLP analysis is an efficient method for evaluating the genetic diversity among S. guianensis accessions.  相似文献   

14.
15.
Areca catechu L., a member of the Palmaceae family, is one of the most commonly used drugs in the world. Compounds obtained from the hexane, ethyl acetate and methanol extracts of the pericarp of A. catechu L. were assessed in vitro and in mango fruit for antifungal activity against Colletotrichum gloeosporioides Penz. In vitro studies also indicated that three triterpenes, namely fernenol (fern-9(11)-en-3α-ol), arundoin (fern-9(11)-en-3α-ol ME), and a mixture of stigmasterol and β-sitosterol, and one fatty acid, lauric acid, could inhibit the mycelial growth of C. gloeosporioides with EC50 values of 36.7, 47.5, 56.7 and 111.5 mg L?1, respectively. Furthermore, fernenol, arundoin, and the mixture of stigmasterol and β-sitosterol highly inhibited spore germination and germtube elongation. Mango fruit studies suggested that fernenol, arundoin and the mixture of stigmasterol and β-sitosterol were significantly more effective than benomyl for controlling postharvest anthracnose disease when used at 100 and 200 mg L?1.  相似文献   

16.
Postharvest decay, caused by various fungal pathogens, is an important concern in commercial blueberry production, but current options for managing postharvest diseases are limited for this crop. Four plant essential oils (cinnamon oil, linalool, p-cymene, and peppermint leaf oil) and the plant oil-derived biofungicides Sporan (rosemary and wintergreen oils) and Sporatec (rosemary, clove, and thyme oils) were evaluated as postharvest biofumigants to manage fungal decay under refrigerated holding conditions. Hand-harvested Tifblue rabbiteye blueberry fruit were inoculated at the stem end with conidial suspensions of Alternaria alternata, Botrytis cinerea, Colletotrichum acutatum, or sterile deionized water (check inoculation) and subjected to biofumigation treatments under refrigeration (7 °C) for 1 wk. Sporatec volatiles reduced disease incidence significantly (P < 0.05) in most cases, whereas other treatments had no consistent effect on postharvest decay. Sensory analysis of uninoculated, biofumigated berries was performed utilizing a trained sensory panel, and biofumigation was found to have significant negative impacts on several sensory attributes such as sourness, astringency, juiciness, bitterness, and blueberry-like flavor. Biofumigated fruit were also analyzed for antioxidant capacity and individual anthocyanins, and no consistent effects on these antioxidant-related variables were found in treated berries. Because of limited efficacy in reducing postharvest decay, negative impacts on sensory qualities, and failure to increase antioxidant levels, the potential for postharvest biofumigation of blueberries under refrigerated holding conditions appears limited.  相似文献   

17.
Blue mold and bitter rot, caused by Penicillium expansum and Colletotrichum gloeosporioides, respectively, are two of the most devastating diseases during and after storage of apple. The present project was conducted to evaluate the level of tolerance to these diseases in apple germplasm, and investigate possible associations with other fruit characteristics such as harvest date, firmness at harvest, softening (loss of firmness during storage) and sun-exposure. Apples were harvested at a maturation stage suitable for storage, inoculated with spore suspensions of P. expansum (127 cultivars) or C. gloeosporioides (70 cultivars), and stored for 6 or 12 weeks for early- and late-maturing cultivars, respectively. Fruit firmness was measured after harvest and after storage, and the difference was used as a measure of fruit softening. Average lesion diameter varied significantly among both early- and late-maturing cultivars. The amount of damage caused by the two diseases was significantly correlated across cultivars. Regression analyses indicated that lesion diameter was positively affected by fruit softening and negatively affected by harvest date and firmness at harvest. Impact of the independent variables was quantified with partial least squares discriminant analysis; approximately 40% of the genetic variation could be explained by these variables with harvest date being the most important. The effect of sun-exposure was analyzed on six bi-colored cultivars but the results were not conclusive. Cultivars that showed relatively small symptoms in spite of being early-maturing and/or only medium firm, may have other traits that are beneficial for storage and could therefore be especially useful in breeding programs.  相似文献   

18.
Persimmon (Diospyros kaki Thunb.) fruit undergoes intensive cell wall modification during postharvest fruit softening. Xyloglucan metabolism is important in cell wall disassembly. We cloned cDNAs for two xyloglucan endotransglycosylase/hydrolase genes (DkXTH1 and DkXTH2) from ‘Saijo’ persimmon fruit treated with dry ice to remove astringency. In order to determine the ethylene dependence of XTH gene expression, fruit were exposed to 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, prior to removal of astringency. Ethylene production increased in mature control and 1-MCP-pretreated fruit after dry-ice treatment, and flesh firmness decreased to the same extent during dry-ice treatment in the control and 1-MCP-pretreated fruit. After dry-ice treatment, control fruit softened completely, but fruit firmness was maintained in 1-MCP-pretreated fruit. Accumulation of DkXTH1 mRNA was induced simultaneously with commencement of ethylene production in mature control fruit. Pretreatment with 1-MCP delayed accumulation of DkXTH1 mRNA. DkXTH2 expression also coincided with fruit softening but was intensified by 1-MCP treatment during the deastringency treatment. These results indicate that fruit softening was related to both DkXTH1 and DkXTH2 expression in ‘Saijo’ persimmons.  相似文献   

19.
Skin spot is an important physiological disorder of ‘Elstar’ apples (Malus × domestica Borkh.) that occurs after fruit have been removed from controlled atmosphere storage. Skin spots are irregular patches of small, round, brown blemishes. Cross-sections reveal a browning of protoplasts (coagulated) and of cell walls that extends into the hypodermis. Skin spots are always associated with linear, gaping and non-gaping microcracks in the cuticle. Staining of apple skin with calcofluor white usually results in white fluorescence of cell walls but, within a skin spot, the white fluorescence is weak or absent. Cell walls within, and in the immediate vicinity of skin spots stain with phloroglucin/HCl indicating the presence of lignin. The area of skin affected by skin spots was positively and linearly correlated with the area of the non-blush fruit surface infiltrated by acridine orange. In general, skin spots were limited to the non-blush fruit surface and occurred more frequently near the stem-end than the calyx region of the fruit. Skin spot areas were correlated with a 2.5-fold increase in water vapour permeability compared with unaffected areas (23.8 ± 4.0 m s−1 with skin spots, 9.6 ± 2.1 × 10−5 m s−1 without skin spots). Strips of the fruit skin from regions with skin spots had an increased maximum force and modulus of elasticity. Dipping fruit in ascorbic acid (0.1 or 0.3 mM for 10 min) before storage decreased the area affected by skin spots. There was no effect of dipping in ethanol/water (70%, v/v, 15 min) or in solutions of captan (1.5 g L−1, 10 min) or trifloxystrobin (0.1 g L−1, 10 min). In contrast, prestorage treatment with 1-methylcyclopropene (630 nL L−1 for 24 h) or poststorage incubation in H2O2 (10% for 2, 6, 10 and 16 h) increased skin spots. Our data are consistent with a typical cell response to an oxidative burst that seems to be focussed on particular regions of the ‘Elstar’ fruit surface by concentrations of cuticular microcracks, and that is possibly caused by reoxygenation injury upon removal from CA storage.  相似文献   

20.
The mode of action of nitric oxide (NO) in inhibiting ethylene biosynthesis and fruit softening during ripening and cool storage of mango fruit was investigated. Hard mature green mango (Mangifera indica L. cv. ‘Kensington Pride’) fruit were fumigated with 20 μL L−1 NO for 2 h at 21 °C and allowed to ripen at 21 ± 1 °C for 10 d, or stored at 13 ± 1 °C for 21 d. During ripening and cool storage, ethylene production and respiration rate from whole fruit were determined daily. The 1-aminocyclopropane-1-carboxylic acid (ACC) content, activities of ACC synthase (ACS), ACC oxidase (ACO), and fruit softening enzymes such as pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), exo- and endo-polygalacturonase (exo-PG, endo-PG) as well as firmness and rheological properties of pulp were determined at two- and seven-day intervals during ripening and cool storage, respectively. NO fumigation inhibited ethylene biosynthesis and respiration rate, and maintained higher pulp firmness, springiness, cohesiveness, chewiness, adhesiveness, and stiffness. NO-fumigated fruit during cool storage and ripening had lower ACC contents through inhibiting the activities of both ACS and ACO in the fruit pulp. NO-fumigated fruit showed decreased activities of exo-PG, endo-PG, EGase, but maintained higher PE activity in pulp tissues during ripening and cool storage. In conclusion, NO fumigation inhibited ethylene biosynthesis through inhibition of ACS and ACO activities leading to reduced ACC content in the fruit pulp which consequently, reduced the activities of fruit softening enzymes during ripening and cool storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号