首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
摘要:采用纸卡法在室内对TEPEC-B1型高压静电喷雾器进行了雾滴大小,喷雾距离,喷雾密度和喷雾量的测试,同时与常规喷雾器进行了比较。测试结果表明:TEPEC-B1型高压静电喷雾器荷电喷雾的雾滴密度显著高于非荷电喷雾,在靶标背面的雾滴密度明显增大。荷电喷雾的雾滴粒径只有常规喷雾雾滴粒径的1/3~1/4,且粒径谱较常规喷雾器窄,雾滴均匀度较高。TEPEC-B1型高压静电喷雾器通过不同档位调节可以控制喷雾量和喷雾距离,适于保护地不同类型蔬菜的病虫害防治。  相似文献   

2.
为评价所设计的双风送静电果园喷雾机室外性能,测试喷雾机在Y形梨树园内的雾量分布。以纸卡为样本、丽春红溶液为示踪剂,测试区域采样与断面采样对试验结果影响及不同作业速度下的田间雾量分布,分析静电喷雾效果。结果表明,区域采样策略和断面采样对冠层平均雾滴覆盖密度的结果影响不大,但断面采样策略比区域采样策略所得的雾滴覆盖密度具有更大的变异系数;作业速度是影响静电喷雾效果的一个重要因素,Ⅱ、Ⅳ档速度下静电喷雾的反面雾滴覆盖率分别提高40%、17%,但对正面的雾滴覆盖密度基本没有影响,甚至略低于非静电喷雾;静电喷雾有助于抑制雾滴飘移,试验结果显示在5.0~12.5 m的采样区域内,静电喷雾的的飘移量比非静电喷雾减少18%;该喷雾机在同类型果园应用中,防虫时可以采用Ⅲ档及以下作业速度,防病选用Ⅱ档及以下速度可以满足防治要求,但Ⅰ档作业时地面沉积量明显高于其他作业速度,不建议使用。  相似文献   

3.
不同植保机械喷雾雾滴沉积分布对小麦病害的防治效果   总被引:3,自引:0,他引:3  
通过比较自走式喷杆喷雾机、无人植保飞行器、背负式弥雾机3种植保机械喷雾在小麦上的农药雾滴沉积分布,分析其对小麦病害防治效果的影响。结果表明,自走式喷杆喷雾机雾滴沉积密度和雾滴覆盖率都较高,是植保飞行器的8~10倍,自走式喷杆喷雾机雾滴沉积密度为136.19~167.53个/cm~2,雾滴覆盖率为12.96%~28.13%,雾滴覆盖率上部与中部高于下部叶片。对小麦病害防治效果较好,小麦纹枯病病指防效达61.60%,赤霉病防效达71.43%,白粉病防效达78.02%。植保飞行器喷雾在小麦上、中、下部位的雾滴沉积密度分别为14.28、13.15、18.42个/cm~2,雾滴覆盖率分别为2.45%、2.08%、1.46%,植保飞行器喷雾在小麦上、中、下部雾滴分布均匀。植保飞行器喷雾对小麦病害防效较好,纹枯病病指防效达63.26%~75.20%,赤霉病病指防效达85.71%,白粉病病指防效达70.33%。背负式弥雾机喷雾在小麦上的雾滴沉积密度为81.21~147.12个/cm~2,雾滴覆盖率为7.26%~28.76%,总体表现为上部中部下部,且差异性显著。  相似文献   

4.
雾滴参数是衡量喷雾效果的重要指标,为了解喷雾压力对远射程及宽喷幅风送式喷雾机雾滴参数的影响,分别以远射程及宽喷幅风送式喷雾机为试验平台,利用激光粒度仪分别测量6种喷雾压力下2种喷雾机的雾滴参数,分析雾滴粒径的大小、分布及均匀性随喷雾压力变化的规律。结果表明,喷雾压力对2种喷雾机的雾滴参数均有一定的影响。远射程风送式喷雾机射程方向7 m处没有50μm的小雾滴,400μm粗雾滴出现的比例随喷雾压力的增加而变小,粗雾滴出现的比例0.400%。雾滴扩散比随压力的增大而增大,介于0.62~0.68。喷雾压力的增加有利于喷雾质量的提升。宽喷幅风送式喷雾机射程方向2.5 m处的雾滴中,50μm小雾滴出现的比例为4.772%~22.603%,没有出现400μm的粗雾滴。雾滴扩散比介于0.77~0.88。喷雾压力的改变对喷雾质量的影响不明显。  相似文献   

5.
喷雾器及施液量对水稻冠层农药雾滴沉积特性的影响   总被引:3,自引:0,他引:3  
【目的】分析弥雾机和手动喷雾器在不同施液量条件下喷雾,农药雾滴在水稻冠层沉积分布特征,阐明农药剂量的沉积结构及空间分布对药剂防治效果的影响。【方法】以农药雾滴采集装置和水敏纸收集农药雾滴,通过DepositScan软件分析雾滴覆盖率和雾滴密度,并利用示踪剂估测农药沉积量。【结果】弥雾机和手动喷雾器不同施液量条件下喷雾,叶角45°和0°水稻叶片正面的雾滴覆盖率显著高于叶片反面。弥雾机在225、450、600 L•hm-2施液量条件下喷雾,叶角0°水稻叶片反面的雾滴密度均大于200个/cm2,施液量间差异显著。手动喷雾器在600、900、1 200 L•hm-2施液量条件下喷雾,叶角0°和45°水稻叶片反面的雾滴密度均小于15个/cm2,施液量间无显著差异。相同剂量,弥雾机在450 L•hm-2施液量条件下喷雾,水稻冠层各位点上的农药沉积量最高;而手动喷雾器不同施液量条件下喷雾,水稻冠层各位点上的农药沉积量无显著差异。手动喷雾器喷雾叶片反面的农药沉积量均低于弥雾机喷雾。用15 g a.i.•hm-2氯虫苯甲酰胺防治纵卷叶螟,弥雾机在施液量450 L•hm-2条件下喷雾的防治效果最高,手动喷雾器在施液量1 200 L•hm-2条件下喷雾的防治效果最差。【结论】弥雾机和手动喷雾器稻田喷雾,农药雾滴在水稻叶片正面的覆盖率均高于叶片反面。弥雾机喷雾时增加施液量,能提高水稻叶片反面的雾滴密度和覆盖率;手动喷雾器喷雾时增加施液量,无显著效应。与手动喷雾器相比,弥雾机喷雾显著增加了叶片反面的雾滴密度、雾滴覆盖率及农药沉积量,能显著提高药剂的防治效果。  相似文献   

6.
农药雾滴在麦田的沉积分布及其对灰飞虱防效的影响   总被引:1,自引:0,他引:1  
为科学用药防治灰飞虱提供理论依据,采用雾滴采集装置和水敏纸采集农药雾滴,通过Deposit Scan软件分析雾滴覆盖率和雾滴密度,并以示踪剂估测农药沉积量,从而分析两种喷雾方式下农药雾滴在小麦基部2个位点上的沉积分布与对灰飞虱防效的关系。结果表明,弥雾机下倾喷雾获得的雾滴覆盖率频次分布多倾向于高值区间,平均雾滴覆盖率分别为2.52%和0.48%,与弥雾机飘移喷雾下的雾滴覆盖率相比,差异分别达到显著和不显著水平;从雾滴密度来看,两种喷雾方式之间无显著差异。沉积量的结果表明,弥雾机下倾喷雾获得的沉积量均大于弥雾飘移方式下获得的沉积剂量,平均沉积剂量分别为0.427和0.422 mg·m-2,均显著高于弥雾飘移方式下获得的沉积量。由于较高的雾滴覆盖率和沉积量,使得弥雾下倾喷雾田间防治灰飞虱的效果要显著高于弥雾飘移喷雾下的防效,且在药后5 d达到防效最高值86.10%。  相似文献   

7.
料液密度影响雾滴喷射的初速度和雾滴运动速度的衰减。本文在分析料液密度对喷雾初速度影响的基础上,利用牛顿第二运动定律推导出雾滴向上飞行时间的计算公式。以相同初速度向上运动的雾滴,随着直径和密度的增加,飞行时间延长。该公式考虑了料液密度对雾滴初速度以及速度衰减的影响,故计算结果更加精确。  相似文献   

8.
为了研究静电喷雾雾滴飘移规律,减少喷杆静电喷雾雾滴飘移潜力,以水敏纸雾滴飘移测试框架为采集方法,进行雾滴飘移田间试验,定量分析了2种烟株高度(0.2、0.4 m)与3种喷雾速度(0.4、0.6、0.8 m/s)条件下,3种侧风区间(0.1~0.4、0.5~0.8、0.9~1.2 m/s)对静电喷雾雾滴飘移潜力与烟用喷雾罩减少雾滴飘移效果的影响.结果表明:侧风风速1.0 m/s、喷雾速度0.4 m/s条件下,烟株高度为0.2 m时与0.4 m时相比,雾滴飘移潜力增幅最大为97%;烟株高度0.2 m时,侧风风速与雾滴飘移潜力极显著相关(P<0.01);侧风风速与雾滴飘移潜力的二次函数拟合决定系数大于0.93;风速0.6~1.0 m/s条件下,烟用喷雾罩减飘效果显著,雾滴飘移潜力减少率为72%~88%;喷雾速度0.4 m/s时,喷雾罩减飘效果最好.  相似文献   

9.
为探索无人机喷雾参数对雾滴在香梨花期冠层沉积分布的影响,以密植库尔勒香梨为试材,选用四旋翼电动植保无人机为喷施器械,采用三因素(飞行高度、亩喷液量、飞行速度)三水平正交试验方法,以授粉液雾滴沉积密度、均匀性及雾滴覆盖率为评价指标,进行了无人机喷雾参数对雾滴在香梨花期冠层沉积分布的影响试验。结果表明,雾滴沉积密度和均匀性以处理6的飞行参数较优(飞行高度1.5 m、亩喷液量4.0 L/亩、飞行速度3.0 m/s),从雾滴沉积密度极差分析结果可以看出,影响雾滴沉积密度的主要因素依次是亩喷液量、飞行高度、飞行速度。  相似文献   

10.
阿维菌素无人机喷施的沉积特征及防效研究   总被引:1,自引:0,他引:1  
分析不同剂型农药使用植保无人机和电动喷雾器喷雾后,农药雾滴在水稻冠层的沉积分布特征,阐明不同剂型的沉积结构及空间分布对药剂防治效果的影响。以农药雾滴采集器械和水敏纸采集农药雾滴,通过DepositScan软件分析雾滴覆盖率和雾滴密度,并利用高效液相色谱测定农药沉积量。在施药量(a.i.)45 g/hm~2条件下,植保无人机喷雾的雾滴体积中径和雾滴密度低于电动喷雾器。无人机喷雾在水稻冠层的沉积分布为由上到下递减,电动喷雾器在水稻冠层的沉积由上到下分布均匀。5种剂型应用于植保无人机喷雾的雾滴粒径由小到大依次为干悬浮剂、悬浮剂、水乳剂、乳油和水分散粒剂,沉积密度从大到小依次为干悬浮剂、水分散粒剂、水乳剂、乳油和悬浮剂,沉积量由高到低依次为干悬浮剂、乳油、水乳剂、水分散粒剂和悬浮剂。在施药量(a.i.)45 g/hm~2条件下,植保无人机干悬浮剂防效最高,电动喷雾器各剂型防效无显著性差异。植保无人机和电动喷雾器稻田喷雾,5种剂型中干悬浮剂在无人机喷雾中效果最好,同一施药量下干悬浮剂防效最高,与其他剂型差异显著。与植保无人机相比,5种剂型在电动喷雾器上的喷雾效果和防效无显著性差异。  相似文献   

11.
针对电动喷雾装置雾滴大小不可调节、易漂移等关键问题,文中分析了影响电动喷雾装置雾滴大小的主要因素是电机转速(N)和喷雾流量(Q),用脉宽调制(PWM)方式控制喷头电机转速、电磁阀的通断时间以调节电机转速和喷雾流量;影响雾滴漂移的主要因素是外界风力,用离心风机产生垂直地面的风压,控制雾滴的漂移;该喷雾装置已应用于3WD-12和3WD-4型喷雾机械,并申请了发明专利(发明专利中请号:200810108124.6)。试验结果表明,根据喷雾作业对象及作物生长密度的不同而改变喷雾方式,以达到节省农药、保护环境的目的。  相似文献   

12.
针对荷电雾滴在喷头处易吸附,且荷电量在射程方向上易衰减等问题,结合气流辅助喷雾与静电喷雾技术,设计双气流道辅助静电喷头。采用理论分析与公式方法,计算感应电极结构参数与位置、气流道结构与参数;采用静电喷雾试验测试喷头压力的流量特性,工作参数对荷质比的影响,雾滴的空间分布和飘移特性等。喷雾量与喷雾压力的关系为y=0.366 7x~(0.467 3);在1.0 m以内的喷雾距离下,荷质比与喷雾压力、气流速度、感应电压呈正相关关系,喷雾距离越小荷电雾滴的荷电量衰减越剧烈。荷质比沿射程方向逐步衰减,在0.6~1.0 m处衰减最剧烈,而后趋于平缓;气流速度在15、22、32 m/s时,静电喷雾的飘移率分别降低50.0%、22.5%、10.7%。当喷头在额定喷雾压力为0.4 MPa、感应电压为6 k V,采集距离在1.0 m以内时,静电喷雾的反面雾滴覆盖密度比非静电喷雾提高15%以上;当采集距离在1.0~2.0 m之间时,静电喷雾的反面雾滴覆盖密度提高10%左右;当采集距离大于2.0 m时,静电喷雾的反面雾滴覆盖密度反而低于非静电喷雾。因此,风送静电喷雾应用时的气流速度和喷雾高度须根据作物冠层特征选择。本研究可为喷头的应用和大型静电喷雾机的设计提供依据。  相似文献   

13.
雾滴密度及大小对氯虫苯甲酰胺防治稻纵卷叶螟效果的影响   总被引:14,自引:3,他引:11  
【目的】分析不同剂量条件下,雾滴密度和雾滴大小对氯虫苯甲酰胺防治稻纵卷叶螟效果的影响,为稻田农药的高效施用提供科学依据。【方法】采用自动行走式喷雾塔模拟田间喷液量,通过添加表面活性剂使不同浓度的氯虫苯甲酰胺药液在水稻叶面上有同等润湿展布能力,利用图像处理方法计算水敏纸上收集到的雾滴密度。【结果】氯虫苯甲酰胺剂量为2.00 mg•m-2,增加雾滴密度能显著提高防治效果。剂量增加到4.00 mg•m-2,雾滴体积中径VMD 200 μm和VMD 75 μm的雾滴密度在分别达到26.06和66.96 个/cm2后,防治效果即可与高密度处理效果相当。VMD 200 μm的雾滴密度为82.09 个/cm2时,剂量从4.00 mg•m-2减少至2.00 mg•m-2,防治效果没有显著降低。VMD 75 μm的雾滴密度为140.06 个/cm2,剂量从4.00 mg•m-2减少至2.50 mg•m-2,防治效果同样没有显著降低。相同喷液量条件下喷施相同浓度的氯虫苯甲酰胺药液,VMD 75 μm的喷头增加了雾滴密度,提高了防治效果。【结论】氯虫苯甲酰胺低用量时,雾滴密度与防治稻纵卷叶螟的效果密切相关。雾滴密度超过一定数量,减少氯虫苯甲酰胺剂量仍可保证对稻纵卷叶螟的防治效果;低容量喷雾时,可通过减小雾滴粒径,增加雾滴密度提高氯虫苯甲酰胺的防治效果。  相似文献   

14.
[目的]针对雾滴在叶背面覆盖密度低的问题,设计了一种风送静电喷头。[方法]根据感应充电模型,同时进行理论计算,从而设计出电极及电极帽的尺寸。电极设计成锥形电极,开角为80°,高10 mm,厚2 mm,材料为铜,具有高导电性;电极帽设计成仿锥形,防止电极被药液腐蚀,材料选用环氧树脂制作,可提高介电常数,增大感应充电电场电荷。并对喷头进行了3个方面的性能试验,包括荷质比测量、静电雾滴覆盖密度对比试验和田间验证试验。[结果]荷质比测量表明:雾滴在喷头处的最大荷质比为1.167 m C·kg-1,并且距离喷头1 m处的雾滴仍然带电。雾滴覆盖密度对比试验表明:静电及喷雾距离对正、背面覆盖密度影响显著,在喷雾距离1~2 m内,背面覆盖密度相对增幅可达70%以上。田间验证试验证明:静电作用同时作用了叶片正、背沉积;风机转速对荷质比的影响与对叶片正、背沉积量的影响结果一致。[结论]研究证明该静电喷头具有明显的静电喷雾效果,可为果园风送静电喷头的设计与效果检验提供参考。  相似文献   

15.
喷雾雾滴滤纸率定法研究初探   总被引:6,自引:0,他引:6  
本文论述了用滤纸率定法,测定喷雾雾滴的试验研究方法,并根据试验数据,应用回归分析,找出滤纸率定色斑直径与喷雾雾滴直径之间的对应函数关系,Y=0.334x0.7495。为新型植保机械及高速风机的喷雾(雾滴直径为60~400μm)的研究;采集试样资料;取样;进行雾滴定量测定及均匀性对比分析;提供了一种简捷的方法  相似文献   

16.
以人工背负式电动喷雾器作为对照,比较2种植保无人机和3种自走式喷雾机的喷雾性能,评价施药后稻飞虱的防治效果,并计算各植保机械的作业成本,以评价新型植保机械防治稻田病虫害的综合效能.结果表明,植保无人机雾滴密度显著小于其他机型,但稻丛雾滴穿透能力较强,久保田自走式喷雾机喷雾密度最大并且均一.各机型7 d的校正防效为96....  相似文献   

17.
【目的】研究磁化作用对除草剂溶液表面张力及除草剂喷雾雾滴粒径的影响规律,探索新型除草剂喷雾雾滴粒径控制方法。【方法】设计磁化除草剂溶液表面张力试验和磁化喷雾雾滴粒径试验,记录不同磁场强度和磁化时长2个影响因素下除草剂溶液表面张力和喷雾雾滴粒径,观测数据变化规律;并对数据进行拟合,给出符合数据变化的函数关系式。【结果】在磁场强度为50~500 mT、磁化时长为5.0~25.0 min范围内,溶液表面张力和喷雾雾滴粒径均随磁场强度和磁化时长的增加呈现先下降后回升的趋势;当磁场强度为350 mT、磁化时长为15.0 min时,表面张力和雾滴粒径下降幅度最大,表面张力为54.0 m N/m,下降14.96%,喷雾雾滴粒径为108.75μm,下降11.20%。对表面张力数据进行拟合,洛伦兹拟合函数的决定系数(R2)为0.816 4,调整后R2为0.794 0,均方根误差(Root mean square error,RMSE)为1.105 9;雾滴粒径数据拟合中,多项式拟合函数的R2为0.833 6,调整后R2  相似文献   

18.
植保无人机棉田喷洒农药沉积分布研究   总被引:3,自引:0,他引:3  
采用3WQF120-12型油动单旋翼植保无人机进行喷雾试验,探索植保无人机在棉花上喷洒的雾滴沉积分布规律。以吡虫啉(imidacloprid)和丁硫克百威(carbosulfan)为试验药剂,在2种施药量(常规剂量和减量20%)、2种喷雾量(12、15L/hm~2)条件下喷雾,以诱惑红水溶液为药剂沉积指示剂,采用雾滴测试卡检测雾滴沉积分布情况,并利用图像分析软件DepositScan分析雾滴沉积分布状况。试验结果显示:喷液量对吡虫啉在棉花冠层的雾滴沉积分布影响较大,90g/hm~2吡虫啉施药时,采用12、15L/hm~2的喷液量进行无人机喷雾,在棉花冠层的沉积量分别为99.64、128.04μg/cm~2;按照72g/hm~2剂量喷雾时,2种喷液量处理在棉花上的沉积量分别为75.09、101.32μg/cm~2。施药量影响丁硫克百威在棉花上的沉积,喷液量为12L/hm~2时,施药量为480、600g/hm~2的喷雾处理在棉花上的沉积量分别为613.92、801.59μg/cm~2;喷液量为15L/hm~2时,2种施药量处理在棉花上的沉积量分别为620.17、870.64μg/cm~2。雾滴沉积分布结果显示,15L/hm~2的喷雾处理在棉花叶片背面的雾滴沉积密度较大,为0.8~238.9个/cm~2;12L/hm~2的处理在叶片正面和背面的雾滴密度较小,分别为1.4~65.9、1.1~110.7个/cm~2;上述2种喷雾处理在棉花叶片正面的雾滴粒径较大,分别为83~441、113~418μm,而在棉花叶片背面的雾滴粒径较小,仅为72~242、102~252μm。  相似文献   

19.
为探究多旋翼植保无人机作业参数对火龙果树冠层雾滴沉积分布的影响,应用极飞P20多旋翼植保无人机对火龙果树进行喷雾作业,采用正交试验对主要作业参数(航线方向、作业高度与作业速度)进行优选。结果表明,植保无人机对火龙果树施药在航线平行于种植行、作业高度为1.5 m (距离冠层顶部高度)、作业速度为1.5 m·s-1条件下,雾滴在火龙果树各个冠层的雾滴沉积密度,覆盖率最大。极差分析结果显示,作业速度是雾滴沉积密度和火龙果树上层雾滴覆盖率的最主要影响因素;而作业高度是火龙果树中层、下层雾滴覆盖率和雾滴分布均匀性的最主要影响因素,当作业高度为1.5 m 时雾滴分布均匀性最好。根据P20多旋翼植保无人机喷雾在火龙果树冠层的雾滴沉积分布情况,对植保无人机的作业参数进行了优选,为提高植保无人机施药雾滴在火龙果树冠层的有效沉积分布,实现所选机型在火龙果树病虫害防控中的高效应用奠定了基础。  相似文献   

20.
喷雾助剂可以多方面改善农药的使用性能,常见类型有油类喷雾助剂、有机硅类喷雾助剂、液体肥料类喷雾助剂。在农业航空喷施过程中添加喷雾助剂,可大幅度提高农药利用率。本文介绍了喷雾助剂的类型,论述了加入喷雾助剂在农业航空喷施方面对药液雾滴粒径、雾滴沉积、雾滴飘移及药效的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号