首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为探索杀菌剂防治浙贝母灰霉病的准确、高效、方便的药效调查方法,选择生产中常用的嘧霉胺、唑醚·氟酰胺、氟菌·肟菌酯3种杀菌剂,采用叶片病斑分级、整株病斑分级、整株病叶率分级、茎秆发病率、茎秆发病分级5种调查方法,对比不同方法对防治效果评价的影响。5种调查方法各有优缺点,叶片病斑分级法样本量大,采集数据多,其结果更接近实际;整株病斑分级法相对简便,可增加植株的取样量,使样本更具代表性,但操作中易产生判断误差;整株病叶率分级法和茎秆发病率法简便,但会放大病害的危害程度,高估或低估药剂防治效果;茎秆发病分级法结合病斑大小、形状等特征能较准确地评价植株发病情况。采用不同评价方法,3种杀菌剂对浙贝母灰霉病的防治效果表现较一致,唑醚·氟酰胺和氟菌·肟菌酯的防治效果较好,防效分别在75.22%~88.83%、68.87~86.82%之间,而嘧霉胺的防治效果略差(57.86%~77.89%)。  相似文献   

2.
香蕉枯萎病田间发病株的高效灭菌方法筛选   总被引:1,自引:0,他引:1  
为筛选有效防控香蕉枯萎病菌扩散蔓延的灭菌方法,采用含毒介质培养法测定咪鲜胺和多菌灵不同配比对枯萎病菌的毒力作用以筛选最佳混配液,比较最佳混配液与生石灰、草甘膦、咪鲜胺的平板抑菌和大田灭菌效果,并研究了大田不同施用方式对最佳混配液灭菌效果的影响。结果表明,咪鲜胺与多菌灵体积比为10∶1时得最佳混配液,可显著提高对香蕉枯萎病菌的抑制效果,增效系数为1.53,EC50值最小,为0.025 mg/L;4种药剂的EC50值由大到小为草甘膦生石灰咪鲜胺最佳混配液。1 000 mg/L最佳混配液喷施于大田病株5 d后根际土壤病菌含量下降了95.93%,10 d后球茎病菌含量减少了71.88%,综合灭菌效果显著优于其它处理。此外,应用打孔灌药法可显著提高最佳混配液对大田病株的灭菌效果,施用5 d后球茎病菌含量减少了95.95%。表明以打孔灌药法施用1 000 mg/L最佳混配液灭菌效果显著且操作便捷,易于推广应用。  相似文献   

3.
植物病原菌对杀菌剂抗性风险评估   总被引:16,自引:3,他引:16  
植物病原菌对杀菌剂的抗性风险由基本风险和治理风险组成。杀菌剂使用之前或之初可根据 人工诱变、药剂选择或驯化实验、田间野生敏感菌株敏感性变异、抗药菌株的生物及遗传特 征、杀菌剂作用方式等进行基本抗药风险预测;杀菌剂使用数年之后可根据人工诱变、药剂 选择或驯化、田间药效与抗药性发生、抗药菌株的生物及遗传特征、杀菌剂作用方式与使用 对策等已有资料进行抗药风险评估。目前已有4种方法用于抗药风险评估。由杀菌剂与病害 共同决定的基本抗药风险可分成低、中和高度。基本抗性风险高的药剂合理使用可延缓田间 抗药性发生,中度基本抗性风险药剂不合理使用也可引发田间抗药性发生和药效明显降低。  相似文献   

4.
The effects of varying doses of fungicides, alone or in mixtures, on selection for triazole resistance were examined under field conditions. Two experiments were conducted using the triazole fungicide fluquinconazole with the strobilurin fungicide azoxystrobin as a mixture partner. Inoculated wheat plots with a known ratio of more sensitive to less sensitive isolates of the leaf blotch fungus Mycosphaerella graminicola were sprayed with fungicide and sampled once symptoms had appeared. Selection for fluquinconazole resistance increased in proportion to the dose, up to one-half of the full dose (the maximum tested) in both experiments. At the higher doses of fluquinconazole, the addition of azoxystrobin was associated with a decrease in selection (nonsignificant in the first experiment) for triazole resistance. Control by low doses of fluquinconazole was increased by mixture with azoxystrobin, but at higher doses mixture with azoxystrobin sometimes decreased control, so that reduced selection was obtained at the cost of some reduction in control. The effects on resistance are not necessarily general consequences of mixing fungicides, and suggest that the properties of any specific mixture may need to be demonstrated experimentally. Selection was inversely related to control in the unmixed treatments in both experiments, but the relationship was weaker in the mixtures with azoxystrobin.  相似文献   

5.
本文研究枯草芽孢杆菌Bacillus subtilis BAB-1水剂、解淀粉芽孢杆菌B.amylololiquefaciens SAB-1水剂、大花旋覆花内酯乳油与化学杀菌剂交替或混合使用对温室黄瓜病害发展的影响.寿光试验包括以下处理:交替或混合喷施50%啶酰菌胺WG、68.75%氟吡菌胺·霜霉威SC的桶混液、60%唑醚·代森联WG、40%嘧霉胺SC、50%烯酰吗啉WP、10%苯醚甲环唑WG、69%烯酰·锰锌WP、68.75%噁唑·锰锌WG、52.5%噁唑·霜脲氰WG等不同作用机理和防治谱的化学杀菌剂;混施生防菌剂BAB-1水剂、SAB-1水剂及68.75%氟吡菌胺·霜霉威SC、50%烯酰吗啉WP、25%双炔酰菌胺SC、25%吡唑醚菌酯EC等对霜霉病特效化学杀菌剂;将不同化学杀菌剂桶混液与BAB-1水剂、SAB-1水剂和化学杀菌剂桶混液交替喷施.其对黄瓜霜霉病的防效分别为94.5%、92.3%和93.6%,对黄瓜白粉病分别为90.7%、89.9%和90.4%,对灰霉病的防效分别为69.3%、85.6%和85.7%,每种病害的病害发展曲线下面积(AUDPC)相当.在定州试验中,化学杀菌剂与SAB-1混施对白粉病的防效(84%)明显高于其与BAB-1混施的防效(72.8%),对灰霉病的防效(61.3%)明显低于后者的防效(95.1%),与SAB-1、BAB-1混施后对白粉病、灰霉病及霜霉病防效分别为90.2%、89.3%和92.6%.在保定郊区试验中,将大花旋覆花内酯乳油与化学杀菌剂及BAB-1水剂、SAB-1水剂交替喷施显著降低霜霉病、白粉病及灰霉病的严重度及AUDPC,对其防效分别为83.5%、87.4%和88.5%,AUDPC分别为219、352和249,延缓了3种黄瓜病害的发展.  相似文献   

6.
Integrating cultivars that are partially resistant with reduced fungicide doses offers growers an opportunity to decrease fungicide input but still maintain disease control. To use integrated control strategies in practice requires a method to determine the combined effectiveness of particular cultivar and fungicide dose combinations. Simple models, such as additive dose models (ADM) and multiplicative survival models (MSM), have been used previously to determine the joint action of two or more pesticides. This study tests whether a model based on multiplicative survival principles can predict the joint action of fungicide doses combined with cultivars of differing partial host resistance. Data from eight field experiments on potato late blight (Phytophthora infestans) were used to test the model; the severity of foliar blight was assessed and scores used to calculate the area under the disease progress curve (AUDPC). A subset of data, derived from the most susceptible cultivar, King Edward, was used to produce dose–response curves from which parameter values were estimated, quantifying fungicide efficacy. These values, along with the untreated values for the more resistant cultivars, Cara and Sarpo Mira, were used to predict the combined efficacy of the remaining cultivar by fungicide dose combinations. Predicted efficacy was compared against observations from an independent subset of treatments from the field experiments. The analysis demonstrated that multiplicative survival principles can be applied to describe the joint efficacy of host resistance and fungicide dose combinations.  相似文献   

7.
Results are reported for four experimental trials carried out against Botrytis cinerea on wine grapes in Piedmont (Northern Italy) during 1979 and 1980, using fungicides with different mechanisms of action, alternately or in mixture. Good effectiveness was obtained not only with the exclusive use of dicarboximide fungicides but also with alternated spray programmes, for example using benomyl or captafol or dichlofluanid for the first two sprays and the dicarboximides only for the last two sprays. It was possible to reduce the number of sprays with the dicarboximides to only one (at beginning of ripening), by, for example, alternating dichlofluanid, vinclozolin and benomyl. Good results were also obtained using half-rate mixtures of fungicides with different mechanisms of action, for example benomyl or dichlofluanid mixed with one of the dicarboximides. In this way the selection pressure exercised by the dicarboximides is decreased. Moreover, the cost of treatments is reduced owing to the lower price of benomyl, dichlofluanid and captafol and because these fungicides are effective not only against B. cinerea but also against powdery mildew (benomyl) or downy mildew (dichlofluanid and captafol).  相似文献   

8.
 为明确黄瓜霜霉病菌对烯酰吗啉及双炔酰菌胺的抗性时空动态及这两种药剂对黄瓜霜霉病的田间防效,采用叶盘漂浮法检测了2011~2016年采自河北省和山东省黄瓜主产区的霜霉病菌1 821个菌株对烯酰吗啉及双炔酰菌胺的敏感性,并采用茎叶喷雾法对这两种药剂的田间防效进行评估。结果表明:黄瓜霜霉病菌1 821个菌株对烯酰吗啉和双炔酰菌胺抗性频率分别为88.5%和34.3%,供试菌株中对烯酰吗啉的低抗菌株及对双炔酰菌胺的敏感菌株占优势,平均抗性倍数分别为8.92和2.44,抗性指数分别为0.42和0.27。黄瓜霜霉病菌对这两种药剂的抗性频率、抗性倍数及抗性指数随着监测年限及地域的不同而波动。在河北定兴和山东寿光日光温室进行的田间药效试验中,按照药剂田间推荐剂量喷施4次,50%烯酰吗啉可湿性粉剂和250 g·L-1双炔酰菌胺悬浮剂对黄瓜霜霉病表现出良好的防效(85%以上),与两地黄瓜霜霉病菌对烯酰吗啉产生低抗、对双炔酰菌胺敏感的监测结果一致。由此推断,50%烯酰吗啉可湿性粉剂和250 g·L-1双炔酰菌胺悬浮剂可在对甲霜灵(或精甲霜灵)、噁霜灵及嘧菌酯普遍产生抗性的地区,作为58%甲霜灵·代森锰锌WP、68%精甲霜灵·代森锰锌WG、64%噁霜灵·代森锰锌WP 和250 g·L-1嘧菌酯SC的替代药剂单独使用或与不同作用机理的杀菌剂混用,防治黄瓜霜霉病。  相似文献   

9.
M. WADE  C. J. DELP 《EPPO Bulletin》1985,15(4):577-583
FRAC is a GIFAP-sponsored inter-company committee dedicated to prolonging the effectiveness of fungicides liable to encounter resistance problems and to limit crop damage during the emergence of resistance. Through FRAC and the Working Groups it co-ordinates, companies are striving to establish more effective communications to alert all people involved in the research, production, marketing, registration and use of fungicides to the problems of resistance. With an enlightened attitude, effective strategies can be conceived and adopted. Co-operative action is deemed essential if the invaluable option of chemical disease control for crops is to be preserved. Working Groups for acylalanines, benzimidazoles, dicarboximides and sterol inhibitors are well organized and functioning in various monitoring studies and cooperative actions. FRAC meets regularly to review the activities of the Working Groups and to deal with the wider aspects of fungicide resistance. FRAC initiates, stimulates and monitors Working Groups, provides guidelines and co-ordinates the efforts of the Working Groups, helps Working Groups communicate their conclusions, publicises guidelines on procedures/definitions of practical resistance research, provides technical counsel for fungicide-resistance courses and research studies, and liaises with universities, advisers, farmers, distributors, governments.  相似文献   

10.
BACKGROUND:Grey mould (Botrytis cinerea Pers. ex Fr.) is a damaging disease affecting container-grown Calluna vulgaris (L.) Hull. Trials were conducted to test anilinopyrimidine fungicides (pyrimethanil, cyprodinil and mepanipyrim), azoxystrobin and tolylfluanid for crop safety on cultivars, and to evaluate spray programmes based on alternating these fungicides with different modes of action for disease control. Timing and application at different spray intervals were also investigated. RESULTS:Cyprodinil was slightly phytotoxic on only one of the seven cvs tested. Alternating nine-spray programmes of azoxystrobin with an anilinopyrimidine or tolylfluanid, or an anilinopyrimidine with tolylfluanid, with the first spray applied immediately after potting, were equally effective in reducing disease incidence and severity compared with untreated plants. Spray programmes of five or eight sprays, using an anilinopyrimidine and at least one other fungicide with a different mode of action, applied alternately or in blocks of two sprays of the same fungicide and immediately after potting, were equally effective in reducing disease. Omission of early fungicide sprays until 9 weeks after potting and subsequent alternate application of pyrimethanil and tolylfluanid with a different mode of action at 6 week intervals gave reduced disease control. CONCLUSION:There is potential to use spray programmes based on alternating anilinopyrimidines with fungicides with a different mode of action to provide effective control of B. cinerea on C. vulgaris.  相似文献   

11.
M. S. WOLFE 《EPPO Bulletin》1985,15(4):563-570
The current strategies for using host resistances and fungicides encourage the increase of pathogen strains with matching pathogenicity or insensitivity. Diversification of cultivars and fungicides is recommended, but involves only diversification between crops and does not include integration of the two methods of control. A strategy of complete or total diversification requires diversification within as well as between crops. For example, the system of using cultivar mixtures can provide assured high yields, even though control of pathogen development is incomplete. Within-crop diversification of fungicides applied to seed is becoming a practical possibility with the development of film-coating of carriers that can adhere different materials firmly to different seeds whilst maintaining uniform seed-flow characteristics. An ideal system would involve integrated total diversification of host cultivars and fungicides. Field data indicate that this can provide excellent profit margins and disease control, while maximising evolutionary problems for the pathogen. The system is technically feasible using developed methods of cultivar mixing together with the new technique of film-coating.  相似文献   

12.
BACKGROUND: Systemicity is an important attribute of fungicides that is difficult to measure in early‐stage screening without labeling the compound with a radioisotope. A method of measuring translocation that does not require potent fungicidal activity or a radiolabel would guide identification of compounds with desirable attributes. RESULTS: The authors developed an analytical technique that mimics field application, using LC‐MS/MS to screen compounds for translocation in wheat leaves. The method sorted commercial and experimental fungicides appropriately into systemic and non‐systemic categories. A model using LC‐MS/MS data was equivalent to a lipophilicity model and superior to a water solubility model at predicting compound systemicity. CONCLUSION: Early‐stage compounds can be screened for systemicity on whole plants using LC‐MS/MS. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
 为明确多种新型作用机制杀菌剂与引起梨树褐斑病、黑星病、白粉病等病原菌的有效对靶关系及制定梨树主要病害防治流程,采用菌丝生长速率法、离体叶片法与田间药效方法研究新型杀菌剂对靶标病原菌的毒力、对靶标病害的防效及其田间有效应用,建立替代梨树主要病害传统化学杀菌剂的防治流程技术。结果显示,双胍三辛烷基苯磺酸盐在离体叶片法下对褐斑病的防效大于85%,田间药效验证3次用药后7 d防效大于85%、30 d防效大于80%、90 d防效仍大于60%,兼治轮纹病菌其毒力EC50值均小于1 μg·mL-1。双胍三辛烷基苯磺酸盐、辛菌胺醋酸盐、吩嗪α-2羧酸在离体叶片法下对黑星病防效大于90%且毒力EC50值小于1 μg·mL-1;田间药效验证1次用药后7 d防效大于80%、30 d防效仍大于75%。噻肟菌酯、硝苯菌酯、丙硫菌唑在离体叶片法下对白粉病的防效大于85%;田间药效验证3次用药后7 d铲除效果大于70%、30 d仍大于60%。丙硫菌唑对黑斑、轮纹病菌毒力EC50值均小于1 μg·mL-1;吩嗪α-2羧酸同时对褐斑、黑斑、轮纹病菌毒力EC50值小于1 μg·mL-1。针对梨树主要病害发生期,选用新型杀菌剂替代传统杀菌剂制定防治技术流程,其综合防效达到88.94%。不同新型作用机制杀菌剂在防治梨树主要病害上的应用,能够降低抗药性产生,同时达到有效防治的目的。  相似文献   

14.
 为明确多种新型作用机制杀菌剂与引起梨树褐斑病、黑星病、白粉病等病原菌的有效对靶关系及制定梨树主要病害防治流程,采用菌丝生长速率法、离体叶片法与田间药效方法研究新型杀菌剂对靶标病原菌的毒力、对靶标病害的防效及其田间有效应用,建立替代梨树主要病害传统化学杀菌剂的防治流程技术。结果显示,双胍三辛烷基苯磺酸盐在离体叶片法下对褐斑病的防效大于85%,田间药效验证3次用药后7 d防效大于85%、30 d防效大于80%、90 d防效仍大于60%,兼治轮纹病菌其毒力EC50值均小于1 μg·mL-1。双胍三辛烷基苯磺酸盐、辛菌胺醋酸盐、吩嗪α-2羧酸在离体叶片法下对黑星病防效大于90%且毒力EC50值小于1 μg·mL-1;田间药效验证1次用药后7 d防效大于80%、30 d防效仍大于75%。噻肟菌酯、硝苯菌酯、丙硫菌唑在离体叶片法下对白粉病的防效大于85%;田间药效验证3次用药后7 d铲除效果大于70%、30 d仍大于60%。丙硫菌唑对黑斑、轮纹病菌毒力EC50值均小于1 μg·mL-1;吩嗪α-2羧酸同时对褐斑、黑斑、轮纹病菌毒力EC50值小于1 μg·mL-1。针对梨树主要病害发生期,选用新型杀菌剂替代传统杀菌剂制定防治技术流程,其综合防效达到88.94%。不同新型作用机制杀菌剂在防治梨树主要病害上的应用,能够降低抗药性产生,同时达到有效防治的目的。  相似文献   

15.
Plant disease control can, in principle, be achieved by direct and indirect methods. Novel approaches in direct plant disease control are illustrated by the group of ergosterol biosynthesis inhibitors. Consideration of their stereochemistry leads to speculations on a more rational design of chiral fungicides, with possibly optimised activity against a wider range of fungi. Studies on the mode of action of ergosterol biosynthesis inhibitors, and of the mechanism of resistance to them in fungi, suggest that these phenomena are not causally related. At least in laboratory mutants, resistance seems to be associated with altered membrane function, which may account for reduced fitness, and, in pathogens, for reduced virulence as well. The results of these studies strengthen the conclusion that knowledge of the modes of action and mechanisms of resistance, at the physiological, biochemical and molecular level, should provide a rationale on which to base the design of new systemic fungicides. As a matter of more immediate practical importance, the implications of the use of fungicide-synergist combinations in plant disease control are briefly discussed. With respect to indirect plant disease control, novel approaches should be directed towards the activation of host resistance. However, prospects seem to be limited for the successful application of alternative chemicals that act on host resistance mechanisms by, for instance, inducing phytoalexin synthesis. Controlled activation of host resistance by localised sensitisation of resistance mechanisms may, however, become a promising new method of plant disease control in the future.  相似文献   

16.
The major mycotoxigenic species of Fusarium and Aspergillus phytopathogens have been identified in this review. Since fungicides are widely used to control crop diseases caused by these fungi, it is pertinent to assess efficacy with respect to mycotoxin production. In both laboratory studies with pure cultures of phytopathogens and field trials with crop plants, the overall evidence concerning the effectiveness of fungicides is contradictory and in certain cases somewhat unexpected. In particular, at sub-lethal doses of a number of fungicides including carbendazim, tridemorph, difenoconazole and tebuconazole with triadimenol, mycotoxin production from Fusarium phytopathogens may increase. Furthermore, the efficacy of propiconazole and thiabendazole in the control of deoxynivalenol production from F. graminearum is not consistent. Evidence has been presented to suggest, for the first time, that fungicide-resistance in F. culmorum may be accompanied by a more persistent pattern of mycotoxin production. The limited evidence on the effects of fungicides on mycotoxin production in Aspergillus species is also conflicting. Under laboratory conditions, miconazole and fenpropimorph have been shown to increase aflatoxin production from A. parasiticus. Moreover, fenpropimorph increased production of the more toxic aflatoxin B1. Since fungal infection of plant products is often preceded by insect damage, there is interest in the effectiveness of insecticides to reduce infestation, infection and mycotoxin contamination. Additionally, insecticides may be effective in their own right, causing a direct effect on mycotoxin synthesis. The bulk of the evidence relates to effects on aflatoxin (AF) components B1, B2, G1 and G2. Under laboratory conditions, AFB1 production was most resistant to inhibition by insecticides, followed by AFG1, AFG2 and AFB2. This pattern of inhibition was particularly consistent for the organophosphorus insecticides. In one field study, Bux and carbaryl were considerably more effective than naled in reducing AFB1 contamination of maize kernels. It is concluded that if pesticide control is to be more effective in the future, additional criteria may be required in developing evaluation protocols for candidate compounds. In particular, the issue of fungicide-resistance in relation to mycotoxin production needs to be addressed in a concerted programme of research. Additionally, the potential of breeding and selecting cultivars resistant to disease caused by toxigenic fungi needs to be exploited in a parallel search for an environmentally acceptable solution to the question of mycotoxin contamination of plant products.  相似文献   

17.
马铃薯早疫病菌室内杀菌剂筛选及配比试验   总被引:7,自引:0,他引:7  
采用生长速率法,对18种杀菌剂及药剂配比进行室内毒力测定,结果表明,杀菌剂苯醚甲环唑、嘧菌酯、腐霉利和异菌脲对马铃薯早疫病菌抑制效果好,有效中浓度(EC50)小于1 μg/mL;代森锰锌与嘧菌酯混配,配比为 4∶6、5∶5、6∶4、7∶3、8∶2、9∶1 均有增效作用,其中配比9∶1 增效作用最好,其次是配比6∶4。  相似文献   

18.
20%唑胺菌酯EC、20%SYP-3998 SC是甲氧基丙烯酸酯类候选杀菌剂,为探索两药剂对黄瓜霜霉病的作用方式,采用盆栽植株喷雾-叶碟法、叶碟喷雾法、盆栽植株喷雾-叶碟法分别测定两药剂对黄瓜霜霉病的保护、治疗及持效期,并采用离体叶片法、叶碟法测定二者对黄瓜霜霉病的铲除作用.结果表明:20%唑胺菌酯EC和20%SYP-3998 SC具有良好的保护、治疗及铲除作用.两药剂的铲除作用表现在能抑制黄瓜霜霉病菌病斑扩展、孢子囊产生及孢子囊再侵染,与孢子囊混合接种能显著降低孢子囊的致病性.此外,20%唑胺茵酯EC和20%SYP-3998 SC具有7~10天的持效期;20%唑胺茵酯EC预防、治疗、铲除效果及持效性均优于20%SYP-3998 SC及对照药剂25%嘧菌酯SC.  相似文献   

19.
Chemical control of plant diseases   总被引:2,自引:0,他引:2  
As the world population increases, we also need to increase food production. Chemical control has been critical in preventing losses due to plant diseases, especially with the development of numerous specific-action fungicides since the 1960s. In Japan, a host-defense inducer has been used to control rice blast since the 1970s without any problems with resistance development in the pathogen. Leaf blast has been controlled using a labor-saving method such as the one-shot application of a granular mixture of fungicide and insecticide to nursery boxes, which became mainstream in the 2000s. However, the need for many choices of fungicides that have several modes of action was demonstrated by the development of resistance to cytalone dehydratase inhibitors. In Europe, many pathogens have threatened cereals since the great increase in cereal production in 1970s, creating a large market for broad-spectrum fungicides. In Brazil, Phakopsora pachyrhizi was distributed to large soybean acreages during 2000s, and the outbreak of soybean rust resulted in a large increase in fungicide use. While the importance of chemical control is recognized, fungicide resistance is an avoidable problem; published guidelines on countermeasure and manuals on testing sensitivity to fungicides are available. Since chemical regulations have become stricter, new fungicides are less likely to be developed. Our task is to maintain the effectiveness and diversity of the present modes of action for fungicides and implement countermeasures against the development of fungicide resistance.  相似文献   

20.
Articles on chemigation with fungicides targeting foliage have been reviewed. They included 23 fungicides tested on 10 crops. Many studies compared chemigation to a check treatment, while others also included conventional methods. Chlorothalonil, followed by mancozeb, fentin hydroxide and captafol were the most studied fungicides, while peanut (Arachis hypogaea), potato (Solanum tuberosum), tomato (Lycopersicon esculentum ), and dry beans (Phaseolus vulgaris) were the most studied crops. Center pivot, followed by solid set, were the irrigation systems most frequently used. The minimum volume of water applied by some center pivots (25 000 litre ha−1 ) is 25 times the maximum volume of water used by conventional ground sprayers. The reduction of fungicide residue on foliage caused by the very large volume of water used by chemigation might be offset by the following factors: (1) fungicide application at the time of maximum leaf wetness when fungi are most active, (2) complete coverage of plants, (3) reducing greatly the inoculum on plant and soil surface, (4) better control of some soil pathogens, and (5) more uniform distribution of fungicides by center pivot. Furthermore, chemigation avoids mechanical damage and soil compaction. Additionally, some systemic fungicides seem to be absorbed rapidly by the leaves, by root uptake from the soil, or by both. In general, all fungicides applied through irrigation water can lessen disease severity. However, when compared to conventional methods, chemigation with fungicides can be less, equally or more effective depending on crop, pathogen, disease severity, fungicide and volume of water. For Cercosporidium personatum control on peanuts, application of protectant fungicides through irrigation water is less effective than conventional methods, but the results with some systemic fungicides mixed with non-emulsified oil and applied through a relatively low volume of water (2.5 mm) are encouraging. Important diseases of potato and tomato can be controlled nearly as well by chemigation as by conventional methods without impairing yield. The main advantage of chemigation for these crops is avoiding a large number of tractor trips through the field and reduced costs of fungicide application. Chemigation has also been shown to be a good option for control of white mold [ Sclerotinia sclerotiorum] on dry beans. © 1999 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号