首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
探讨和分析不同播期条件下高产冬小麦(Triticum aestivum)品种的氮素吸收利用、转运和高效利用特征,确定不同高产小麦品种的适宜播期。采用大田试验方法,系统分析早播(10月3日)、适播(10月12日)和晚播(10月30日)3个水平对不同品种高产小麦主要生育期植株含氮率、氮素积累量、花前和花后植株营养器官氮素积累和分配、氮素再分配等特征及产量、品质和氮素利用效率等的影响。结果表明,播期影响生育期小麦植株的含氮率、氮的吸收和积累。小麦地上部营养器官氮积累量、氮再分配量、转运氮素对籽粒氮的贡献率花前高于花后。晚播条件下籽粒氮素的积累量主要依赖于花前氮吸收;适播和早播条件下花后吸收的氮素对籽粒氮素的积累占有较大比例。高产不同基因型小麦品种在不同生育期的氮素吸收强度和相对累积速率不同,花前氮素积累量、花前吸收氮素向籽粒的再分配以及转运率、花后氮素同化量以及花后吸收氮素对籽粒的贡献率等在不同小麦品种间差异显著。早播和适播条件下,不同品种小麦均获得比晚播较高的籽粒产量。氮素收获指数和籽粒吸氮量适播条件下较高,随播期的延迟籽粒吸氮量显著降低,相反,氮素利用效率晚播条件下最高。综合考虑,在农业生产中,3个高产小麦品种均适宜早播和适播;在晚播条件下应优先选择‘周麦22’。  相似文献   

2.
探讨和分析不同播期条件下高产冬小麦(Triticum aestivum)品种的氮素吸收利用、转运和高效利用特征,确定不同高产小麦品种的适宜播期.采用大田试验方法,系统分析早播(10月3日)、适播(10月12日)和晚播(10月30日)3个水平对不同品种高产小麦主要生育期植株含氮率、氮素积累量、花前和花后植株营养器官氮素积累和分配、氮素再分配等特征及产量、品质和氮素利用效率等的影响.结果表明,播期影响生育期小麦植株的含氮率、氮的吸收和积累.小麦地上部营养器官氮积累量、氮再分配量、转运氮素对籽粒氮的贡献率花前高于花后.晚播条件下籽粒氮素的积累量主要依赖于花前氮吸收;适播和早播条件下花后吸收的氮素对籽粒氮素的积累占有较大比例.高产不同基因型小麦品种在不同生育期的氮素吸收强度和相对累积速率不同,花前氮素积累量、花前吸收氮素向籽粒的再分配以及转运率、花后氮素同化量以及花后吸收氮素对籽粒的贡献率等在不同小麦品种间差异显著.早播和适播条件下,不同品种小麦均获得比晚播较高的籽粒产量.氮素收获指数和籽粒吸氮量适播条件下较高,随播期的延迟籽粒吸氮量显著降低,相反,氮素利用效率晚播条件下最高.综合考虑,在农业生产中,3个高产小麦品种均适宜早播和适播;在晚播条件下应优先选择‘周麦22’.  相似文献   

3.
于2004~2005年在大田条件下,研究了不同播期对冬小麦植株C-N的积累、运转规律及籽粒产量和蛋白质含量的影响.结果表明,适当晚播(10月22日播种)可以提高冬小麦成熟期单茎籽粒重和籽粒氮素积累量,提高开花前营养器官贮存干物质和氮素的转运量以及转运干物质和氮素对籽粒重和籽粒氮素积累的贡献率.适当晚播的小麦穗粒数、千粒重和蛋白质含量有所增加,籽粒产量和蛋白质产量显著提高.由此可见,高产小麦适当晚播有利于籽粒产量和蛋白质产量的提高.  相似文献   

4.
稻茬晚播小麦高产群体氮素积累特性研究   总被引:3,自引:0,他引:3  
以扬麦20为材料,设计晚播条件下基本苗、施氮量以及氮肥分配时期试验构建不同产量群体,研究稻茬晚播小麦高产(≥7 500kg·hm-2)群体氮素积累特性。结果表明:籽粒产量与拔节期、开花至成熟期的氮素积累量均呈二次曲线关系,与开花期、成熟期的氮素积累量呈线性正相关。越冬始至返青期、孕穗至开花期氮素积累量与籽粒产量也呈线性正相关。稻茬晚播小麦实现高产的关键是增加花后营养器官氮素转运量。试验条件下,高产群体拔节期氮积累量为48~58kg·hm-2,开花期氮积累量为191kg·hm-2以上,其中开花期叶片的氮素积累量宜达46kg·hm-2以上,茎鞘氮素积累量宜达113kg·hm-2以上,穗氮素积累量宜达32kg·hm-2以上,成熟期氮积累量达257kg·hm-2以上;花后营养器官转运量宜达124kg·hm-2以上。  相似文献   

5.
为探索安徽省沿淮稻茬弱筋小麦提升产量、品质的适宜施氮量,在大田试验的条件下,设置0、75、150、225和300 kg·hm-2共5个施氮水平,研究施氮对安徽省沿淮稻茬麦区弱筋小麦产量、品质、干物质积累与转运,以及氮素利用效率的影响。结果表明,在0~300 kg·hm-2,随着施氮量的增加,小麦分蘖数、株高、叶面积指数(LAI)和叶绿素相对含量(SPAD)均呈上升趋势,花后21 d小麦冠层光谱反射率在760~925 nm逐渐上升,在925~1 300 nm先升后降。在孕穗至成熟期,小麦干物质积累量和花前营养器官干物质转运量随着施氮量的增加呈先升后降趋势,花前营养器官干物质转运对籽粒的贡献率不断下降,而花后干物质生产量和其对籽粒的贡献率均逐渐升高。增加施氮量能提高小麦穗粒数和有效穗数,而小麦千粒重和籽粒产量均呈先升后降趋势,小麦籽粒产量均在225 kg·hm-2施氮量处理下达到最大值,与不施氮处理相比,施氮量为75~300 kg·hm-2时,试验点1和试验点2的小麦籽粒产量分别增加了127.58%~2...  相似文献   

6.
通过15N微区试验,研究晚播条件下不同密度小麦氮素吸收与利用的差异,探索提高晚播小麦氮素利用效率的生理机制.结果 表明:稻茬晚播小麦开花期植株吸收的氮素67%~71%、成熟期植株吸收的氮素53%~70%来自土壤中氮素,15N微区试验结果表明开花期植株对肥料15N的吸收以基施15N为主,成熟期吸收追施15N比例则高于基施15N.花后营养器官中的肥料15N向籽粒中转运,其中茎鞘转移量最大,转移氮素以基施15N为主.增加密度可显著增加成熟期植株对追肥中肥料15N的吸收量及占总氮比例.高密度条件下籽粒中氮素的积累提高,主要是增加营养器官中追肥15N向籽粒中转运.这说明晚播条件下适度增加密度有利于提高植株对肥料氮的吸收,减少土壤中肥料残留,提高营养器官中氮素向籽粒中的运转量,结合氮肥后移措施有利于提高氮素利用率.  相似文献   

7.
施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响   总被引:24,自引:1,他引:23  
【目的】在黄淮冬麦区,研究施氮量对旱地小麦氮素利用规律的影响,为该区旱地小麦合理的氮肥运筹提供理论依据。【方法】于2009-2010和2010-2011两个小麦生长季,在大田条件下设置6个施氮量处理(0、90、120、150、180和210 kg•hm-2),研究施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响。【结果】在150 kg•hm-2及以下的处理增加施氮量,小麦各生育时期植株氮素积累量、成熟期籽粒氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量显著增加;在150 kg•hm-2基础上增加施氮量,小麦各生育时期植株氮素积累量、开花前吸收氮素向籽粒的转运量和开花后氮素吸收量与150 kg•hm-2处理无显著差异,成熟期籽粒氮素积累量及分配比例降低,营养器官氮素积累量及分配比例升高。施氮量为180 kg•hm-2和210 kg•hm-2,成熟期0-140 cm土层土壤硝态氮含量显著高于150 kg•hm-2处理,深层土壤硝态氮含量增加。施氮150 kg•hm-2处理小麦籽粒产量最高,氮素利用效率和氮肥生产效率较高。【结论】本试验条件下,施氮量为150 kg•hm-2,是兼顾产量和氮肥利用效率的适宜施氮量。  相似文献   

8.
施氮量对弱筋小麦籽粒品质与氮素利用的影响   总被引:1,自引:0,他引:1  
为探究施氮量对弱筋小麦籽粒品质和氮素利用的影响,以弱筋品种宁麦13与皖西麦0638为材料,设置4个施氮量(折纯N 0、120、180、240 kg·hm-2),研究其对弱筋小麦籽粒产量、品质性状与氮素吸收利用的影响。结果表明,在0~240 kg·hm-2的施氮量范围内,随着施氮量增加,供试弱筋小麦的籽粒产量先增加后减少,当施氮量为180 kg·hm-2时产量最高;随着施氮量增加,供试弱筋小麦籽粒的蛋白质含量、湿面筋含量、硬度、沉降值、面团稳定时间等品质性状均呈上升趋势。供试的弱筋小麦,开花期、成熟期植株与籽粒中积累的氮均主要来源于土壤。当施氮量为120~240 kg·hm-2时,随着施氮量增加,供试弱筋小麦成熟期籽粒中积累的氮来源于肥料的量呈先增加后降低的趋势,当施氮量为180 kg·hm-2时,来源于肥料的量最高。当施氮量为120~240 kg·hm-2时,供试弱筋小麦的氮素利用效率为25.68~44.76 kg·kg-1,氮肥生产效率为25.16~50.82 kg·kg-1,随着施氮量增加,供试弱筋小麦的氮肥生产效率下降。  相似文献   

9.
【目的】针对黄土高原旱地小麦降水少且分配不均、水分和氮素利用效率低的问题,探索旱地小麦覆盖保水和氮肥施用的最佳技术途径。【方法】于2010—2013年在山西省闻喜县邱家岭村开展试验,主区为覆盖方式,设夏闲期深翻后覆盖与不覆盖2个水平,副区为施氮量,设低(纯氮75 kg·hm~(-2))、中(纯氮150 kg·hm~(-2))、高(纯氮225 kg·hm~(-2))3个水平,明确年际间夏闲期深翻覆盖配施氮肥对旱地麦田土壤水分、植株氮素利用、产量的影响。【结果】各生育时期土壤水分、植株氮素积累量、花前氮素转运量及其对籽粒的贡献率均以丰水年最高,欠水年最低,丰水年、平水年较欠水年分别提高产量80%、69%,提高水分利用效率7%、20%,提高氮素利用效率6%、5%。夏闲期覆盖较不覆盖,播种期0—300 cm土壤蓄水量显著提高,达50—62 mm;花前各生育时期土壤蓄水量显著提高,各生育时期植株氮素积累量提高,籽粒氮素积累量显著提高;丰水年和平水年拔节后各阶段氮素积累量显著提高,花前叶片和穗氮素转运量对籽粒贡献率提高;欠水年花前各阶段氮素积累量及其所占比例提高,花前茎秆+茎鞘氮素转运量对籽粒贡献率显著提高;产量显著提高,达23%—41%;水分利用效率提高3%—15%;丰水年和平水年氮素利用效率显著提高,达14%—26%,欠水年低氮条件下也显著提高,达10%。丰水年配施高氮,平水年和覆盖条件下的欠水年配施中氮,不覆盖条件下的欠水年配施低氮,孕穗期前土壤蓄水量、产量和水分利用效率均较高。丰水年配施高氮,花前氮素转运量和花后氮素积累量均最高,且各处理间差异显著,主要是由于促进花前叶片和穗中氮素向籽粒转运;平水年和覆盖条件下的欠水年配施中氮,花前氮素转运量和籽粒氮素积累量最高,且各处理间差异显著,平水年主要促进叶片和穗中氮素向籽粒转运,穗叶片,覆盖条件下的欠水年主要促进茎秆+茎鞘和穗中氮素向籽粒中转运,茎秆+茎鞘穗;不覆盖条件下的欠水年配施低氮,籽粒氮素积累量最高,且各处理间差异显著,花前氮素转运量及其对籽粒贡献率最高,茎秆+茎鞘和穗氮素转运量及其对籽粒贡献率最高,且各处理间差异显著。【结论】旱地麦田夏闲期覆盖有利于蓄积降水,有利于促进丰水年和平水年小麦生育中后期氮素积累,促进叶片和穗中氮素向籽粒转运;有利于促进欠水年生育前中期氮素积累,促进茎秆+茎鞘中氮素向籽粒转运。丰水年施氮225kg·hm~(-2),平水年和覆盖条件下的欠水年施氮150 kg·hm~(-2),不覆盖条件下的欠水年施氮量75 kg·hm~(-2)可实现产量和水分利用效率的同步提升。  相似文献   

10.
【目的】研究“1管6滴灌模式”下,滴灌春小麦水分截获量及不同品种远近行氮素积累与转运特征,分析其对籽粒蛋白质含量的影响。【方法】在“1管6滴灌模式”下,春小麦品种来自新疆、内蒙古、宁夏等不同地区的7个品种(系),研究距滴管带远近不同行(距滴管带最近行记为R1、中间行记为R2、最远行记为R3)在小麦发育关键时期开花期与成熟期植株各部位的氮素积累量。【结果】“1管6滴灌模式”下,小麦生长的重要阶段拔节期-孕穗期与孕穗期-开花期远行R3灌水截获量为59与56 mm,与该时段最大蒸散量62与43 mm相近;小麦品种开花期各器官氮营养指数、开花期与成熟期各器官氮素积累量、转运氮、籽粒蛋白质的行间降低幅度均小于灌水截获量的降低幅度(R2与R3相对于R1依次降低33.6%与60.3%);小麦花前氮素转运率、转运氮对籽粒的贡献率、氮收获指数R2与R3相对于R1依次升高(津强7号花前氮素转运率、转运氮对籽粒的贡献率依次降低);各器官开花期氮素积累量与再转运氮素呈正相关,相关系数为0.811,茎鞘、叶片、穗的再转运氮与对应的开花期氮营养指数呈正相关,相关系数分别为0.403、0.643、0.717,籽粒氮素积累量与再转运氮、花后氮素积累均呈正相关,相关系数分别为0.498与0.737。【结论】“1管6滴灌模式”下,小麦各行作物生长的关键时期不会受到水分胁迫;植株体内营养状况越好,花前氮素转运量越大;籽粒氮素主要来源于花前氮素的转运,“1管6滴灌模式”下,远行R2与R3的花前氮素转运率、转运氮对籽粒的贡献率、氮收获指数相对于R1会升高。  相似文献   

11.
【目的】探讨开花期渍水对土壤不同形态氮素含量的影响及其与小麦籽粒产量、植株氮素积累量的关系,以期为江汉平原小麦抗渍栽培提供理论依据。【方法】采用大田裂区试验,以襄麦55和郑麦9023为试验材料,设不渍水(CK)和开花期连续渍水7 d(WL)处理,测定土壤不同形态氮素含量、小麦植株氮素积累量及产量和产量结构等指标,并分析土壤不同形态氮素含量变化与籽粒产量、植株氮素积累量的关系。【结果】 0~20 cm土层各形态氮素含量对渍水的反应强度较20~40 cm和40~60 cm表现更剧烈。与CK相比,WL处理下(渍水后0~7 d),0~20 cm土层硝态氮含量显著下降,下降幅度达65.7%~81.2%,铵态氮含量则上升48.7%~54.8%;碱解氮含量有所下降,总氮含量上升,但变化幅度较小。当撤去水分处理后(渍水后7~14 d),硝态氮含量急剧上升,甚至恢复至与CK相同水平,铵态氮含量逐渐下降,与CK变化趋势相反;总氮和碱解氮含量变化与CK趋势一致。随后至小麦成熟期,CK和WL处理下各氮素含量总体上均逐渐降低。开花期渍水显著降低了襄麦55和郑麦9023的花后氮素积累量(P<0.05,下同),并导致成熟期营养器官氮素积累量和籽粒氮素积累量均显著下降;襄麦55花后氮素积累量下降幅度显著小于郑麦9023。此外,WL处理显著降低了襄麦55和郑麦9023的千粒重和籽粒产量,与CK相比襄麦55和郑麦9023的产量分别降低25.24%和34.81%。通过对渍水条件下土壤各形态氮素含量与产量及成熟期植株氮素积累量的冗余分析可知,渍水第7 d (渍水终止当天)土壤硝态氮含量与小麦产量和成熟期植株氮素积累量均呈正相关,铵态氮和总氮含量与小麦籽粒产量和成熟期植株氮素积累量呈负相关,与土层深度关系较小;碱解氮含量与小麦籽粒产量和成熟期植株氮素积累量的关系存在土层间差异。【结论】开花期渍水显著降低小麦产量和花后氮素积累量,对土壤各形态氮素的影响主要在0~20 cm土层,以硝态氮和铵态氮含量变化对渍水的响应最敏感,其中硝态氮含量与成熟期植株氮素积累和籽粒产量呈正相关,而铵态氮与成熟期植株氮素积累和籽粒产量呈负相关。  相似文献   

12.
研究了种植密度对晚播小麦氮素同化积累分配及氮素利用效率的影响。以重穗型冬小麦品种兰考矮早八为材料,在晚播期(10-24—10-26)设低(150万株/hm2)、中(225万株/hm2)、高(300万株/hm2)3个种植密度进行了2年大田试验。传统播期(10-10—10-12)为对照。结果表明,晚播小麦旗叶的硝酸还原酶活性和可溶性蛋白含量显著提高,单茎氮素积累量、营养器官转移氮素对籽粒氮素积累的贡献率以及植株的氮素收获指数和氮素吸收效率均提高,而氮素利用效率和籽粒产量降低。对照播期的低、中密度处理的氮代谢酶活性、氮素积累量和氮素利用效率及籽粒产量较高,而晚播处理则以中、高密度处理较高。不同播期的中密度处理的蛋白质含量和籽粒产量高于其他2个密度处理。因此,晚播条件下兰考矮早八兼顾高产和高效利用氮素的适宜播种密度为225~300万株/hm2。  相似文献   

13.
减氮适墒对冬小麦土壤硝态氮分布和氮素吸收利用的影响   总被引:3,自引:0,他引:3  
【目的】针对黄淮冬麦区过量施氮的现象,研究了适量减氮在不同土壤墒情下硝态氮分布以及冬小麦对氮素吸收利用效率和籽粒产量的变化,为该地区小麦生产上科学施用氮肥提供理论依据。【方法】于2014—2015和2015—2016两个小麦生长季,在大田条件下设置3个灌水处理,自然降水(W1)、适墒(W2,70%±5%)、足墒(W3,80%±5%)和3个施氮量处理(不施氮,N1;减氮施肥,N2:195 kg·hm~(-2);常规高量氮肥,N3:270 kg·hm~(-2)),测定了0—100 cm土层硝态氮含量、冬小麦植株氮素吸收转运量和籽粒产量。【结果】0—60 cm土层硝态氮(NO_3-N)的分布随土层加深而减少,随施氮量增加而提高,随土壤墒情的增大而减少;60 cm又出现不同程度的回升,尤其是足墒(W3)加大了NO_3-N的淋溶,N2、N3水平下80—100 cm土层W3平均比W1高出了3.8 mg·kg~(-1)和4.2 mg·kg~(-1);减氮处理(N2)促进了NO_3-N吸收,成熟期0—20 cm土层NO_3-N比开花期平均降幅为2.3 mg·kg~(-1),高氮处理(N3)收获后土层中NO_3-N却有较多的富集。减氮适墒处理(W2N2)显著增加了开花期营养器官氮素积累量(P0.05),并促进氮素向籽粒的有效转运,尤其表现在叶片中;花前氮素转移量和对籽粒的贡献率均达最大,籽粒产量和籽粒中的氮素积累量分别比其他处理平均高出15.4%、27.3%,从而极显著提高了氮素吸收率和生产效率(P0.05)。【结论】本试验条件下,施氮量195 kg·hm~(-2),拔节后土壤相对含水量维持在70%±5%,是兼顾产量、氮肥吸收和生产效率的最佳处理。  相似文献   

14.
黄土高原旱地小麦覆膜增产与氮肥增效分析   总被引:8,自引:3,他引:5  
【目的】研究覆膜栽培条件下黄土高原旱地冬小麦产量形成规律和氮肥吸收运移特征,为旱地小麦高产高效生产提供理论依据。【方法】于2012-2016年在晋南黄土旱塬冬小麦种植区,通过农户模式(FP)、农户施肥+垄膜沟播模式(RFSF1)、监控施肥+垄膜沟播处理(RFSF2)和监控施肥+全膜覆土穴播处理(WFFHS)4种不同栽培模式,具体分析不同施肥和覆膜措施互作对黄土旱塬冬小麦产量形成、地上部氮素积累转移、土壤硝态氮残留以及土壤氮素平衡的影响。【结果】试验期间,农户模式冬小麦平均产量为3 367 kg·hm-2,通过监控施肥覆膜种植,平均产量可提升至4 491 kg·hm-2,监控施肥对籽粒产量形成的贡献率为14.8%,监控施肥和覆膜协同贡献率达24.7%-42.1%。黄土旱塬冬小麦产量形成主要取决于公顷穗数,其次是千粒重。WFFHS处理因其合理的群体构建和良好水肥条件具有最高公顷穗数、千粒重和籽粒产量,平均分别为581×104穗/hm2、44.3 g和4 785 kg·hm-2。从地上部氮素转运看,冬小麦地上部吸收氮素的花后转运量与生物产量和经济产量呈极显著正相关,相关系数分别为0.959**和0.960**。农户模式小麦籽粒中3/4氮素来源于花前营养器官的转移,1/4氮素来源于花后根系土壤吸收。通过监控施肥覆膜种植可显著提高花前营养器官氮素向籽粒的转移量,其转运贡献率在81.4%-88.8%。从土壤氮素残留看,长期过量施氮已导致黄土旱塬麦田土壤硝态氮在1 m 土层的累积,累积量在100 kg·hm-2 以上,20-60 cm土层为累积峰值。经过连续4年种植,农户模式2 m土壤硝态氮累积量达277 kg·hm-2,较2012年播前增加了87.7%,其中75%的硝态氮集中在0-120 cm 土层,监控施肥覆膜种植处理2 m土壤硝态氮累积量较2012年播前仅增加15.7%-24.2%。试验期间土壤残留硝态氮有随降水向下淋移的趋势,表现为2016年收获期各处理在120-200 cm土层较2012年播前有10.2%-133.7%的增幅。从4年土壤氮平衡角度总体评价,土壤残留氮素具有一定后效作用,各处理氮肥表观利用率在28.8%-56.7%,氮肥表观残留率在12.1%-28.9%,氮肥表观损失率在31.2%-49.6%。监控施肥覆膜种植可减少土壤氮表观损失量和土壤残留量,增加氮表观矿化量。其中WFFHS处理更大程度上利用了历年土壤残留硝态氮和有机质的矿化氮,具有相对低的氮素表观残留率(12.1%)和氮素表观损失率(31.2%)以及相对高的氮素表观利用率(56.7%)。【结论】全膜覆土穴播监控施肥种植可更好地改善土壤水肥供应条件,更大程度利用历年土壤残留硝态氮,增加地上部氮素积累量、积累氮素向籽粒的转移贡献率,构建合理群体,最终获得显著的增产效应和较高的氮素利用效率,是黄土高原冬小麦区有效的栽培措施。  相似文献   

15.
【目的】探明啤酒大麦氮素积累与转运分配的关系.【方法】以甘肃啤酒大麦‘甘啤5号’‘甘啤6号’和‘甘啤7号’为材料,在施氮量分别为7.5g/m2、15g/m2、22.5g/m2并分区正交试验条件下,研究了大麦茎、叶和穗氮素积累和转运分配模型并进行了回归分析.【结果】施氮量不同,从扬花期到成熟期大麦叶片、茎秆、穗颖以及籽粒中氮含量变化显著.随着施氮量的增加,大麦氮素积累和转运量呈近似直线上升的趋势,但在施氮量超过15g/m2之后,氮素积累和转运趋向饱和.氮素转运贡献率随施氮水平的提高呈二次曲线型变化规律,营养器官对籽粒氮的贡献率在58.23%至64.58%之间.【结论】本试验条件下,甘啤大麦合理施氮量为15.81~16.51g/m2.  相似文献   

16.
不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响   总被引:31,自引:4,他引:27  
王小燕  于振文 《中国农业科学》2008,41(10):3015-3024
【目的】研究灌溉量和施氮量对氮素吸收转运特性的影响及其与籽粒蛋白质含量的关系。【方法】试验在山东农业大学实验农场防雨池栽条件下进行,选取高产强筋小麦品种济麦20为试验材料。利用15N同位素示踪技术,于开花期和收获期分别测定各器官中不同来源氮素的吸收量与分配比例、成熟期籽粒产量、水分利用率等。【结果】施氮量和灌溉量对植株吸氮量、籽粒产量、籽粒蛋白质含量的影响存在互作,其中灌溉量的效应大于施氮量的效应,是影响以上诸项指标的主导因素。同一施氮量条件下,增加灌溉量,成熟期氮素吸收总量增加,但籽粒蛋白质含量降低;随灌溉量增加,土壤氮的吸收量和占总氮量的比例增大,肥料氮的吸收量和占总氮量的比例减小,表明增加灌溉量导致氮素吸收总量的增加主要是通过提高土壤氮的吸收量和占总氮量的比例实现的;增加灌溉量对籽粒蛋白质含量的稀释效应则主要表现为,增加灌溉量抑制开花后营养器官中积累的氮素向籽粒的转移,最终不利于籽粒蛋白质含量的提高。灌溉量不变,施氮量由120 kg&#8226;ha-1增加到240 kg&#8226;ha-1,各营养器官中氮素的积累量增加,但开花后营养器官中积累的氮素向籽粒的转移率降低,最终籽粒蛋白质含量亦不高。【结论】施氮量为120 kg&#8226;ha-1,全生育期灌溉底墒水和拔节水(W2N1)的处理,小麦植株吸收的氮素向籽粒分配量大,开花前营养器官中积累的氮素向籽粒转移率高,籽粒蛋白质含量最高,水分利用率亦最高,但籽粒产量仅为5 534.26 kg&#8226;ha-1;施氮量为120 kg&#8226;ha-1,全生育期灌溉底墒水、拔节水和开花水(W3N1)的处理,小麦植株吸收的氮素向籽粒分配量、氮素向籽粒转移率、水分利用率均较高,籽粒蛋白质含量达14.54%,籽粒产量达7 411.37 kg&#8226;ha-1,是本试验的最佳处理。  相似文献   

17.
施氮时期对冬小麦植株-土壤体系肥料氮去向的影响   总被引:1,自引:0,他引:1  
通过15N示踪试验,研究了黄淮地区施氮时期对冬小麦植株-土壤体系肥料氮去向的影响。结果表明:随着施氮时期后移,小麦籽粒中的氮素含量增加,叶和茎中氮素含量降低。小麦植株氮素总积累量以拔节期追氮最高。拔节期追氮更有利于提高籽粒的氮素积累量,降低营养器官的氮素积累量,促进营养器官中的氮素向籽粒中转运。不同施氮时期条件下,冬小麦的氮肥生产效率和氮素收获指数均表现为拔节期追氮最高。拔节期追氮更有利于促进强筋小麦品种氮素的吸收,提高中弱筋小麦品种氮素的利用。小麦植株氮素总积累量来源于肥料氮的比例随施氮时期的后移呈降低趋势。推迟施氮时期,植株氮素总积累量来自基肥氮的比例增加,来自追肥氮的比例减少。随施氮时期后移,肥料氮在0~100 cm土壤中的残留呈现增加趋势。与起身期和孕穗期追氮相比,拔节期灌溉后追施氮肥,肥料氮在20~60 cm土壤中残留量最大。综合分析肥料氮在小麦季的去向得出,拔节期追氮肥料氮去向更均衡。  相似文献   

18.
《天津农业科学》2020,(1):63-67
为探讨氮肥施用对中筋小麦氮素利用的影响,以衡观35为试材,采用田间小区试验,研究不同氮肥施用量(0,180,300kg·hm~(-2),分别记为N_0,N_1,N_2)小麦的籽粒产量、品质及氮利用率。结果表明,施用氮肥可增加衡观35小麦单位面积成穗数并提高籽粒产量,与N_0相比,N_1、N_2处理小麦籽粒产量分别显著增加38.3%和37.6%(P<0.05),成穗数分别显著增加33.4%和29.9%(P<0.05);随施氮量增加,小麦穗粒数没有变化,而千粒质量呈下降趋势。与N_0相比,N_1、N_2处理衡观35小麦籽粒蛋白含量提高6.8%和23.6%,其中N_2与N_0和N_1差异显著(P<0.05);不同施氮水平衡观35籽粒湿面筋含量与面筋持水率均无显著差异(P>0.05)。施用氮肥可促进小麦茎、叶累积氮向籽粒转移,与N_0相比,N_1和N_2茎、叶转移量增加8.9~17.7 kg·hm~(-2),转移率增加1.1~6.8个百分点。随施氮量增加,衡观35小麦叶片中的氮对籽粒氮的贡献率、植株氮肥利用效率、氮肥偏生产力及氮肥表观利用率均下降,植株氮素收获指数升高,花前运转氮素贡献率下降,花后积累氮素贡献率升高,成熟期营养器官氮素累积量增加。综合而言,当地肥力水平下,中筋小麦衡观35适宜施氮量约在150 kg·hm~(-2),过量施用氮肥,不利于植株营养器官累积氮向籽粒转移,氮肥利用率降低。  相似文献   

19.
以强筋小麦烟农21号和中筋小麦鲁麦21为材料。研究了灌溉处理对小麦植株及籽粒氮的积累、运转特性的影响,以期为优质小麦的高产优质栽培提供理论依据。结果表明:在冬小麦各营养器官中,小麦花前氮积累量以叶鞘中最高,其次是其他叶、茎、颖壳和穗轴,旗叶最低。成熟期小麦各器官氮素分配以茎中积累量较高。叶鞘花前氮转移效率以及转移氮对籽粒氮的贡献率最高。适当灌水拔节水与开花水有利于强筋小麦烟农21号氮素的积累与转移,有利于小麦面团品质的改善。面团形成时间.稳定时间延长。随着灌溉次数的增加,中筋小麦鲁麦21的各营养器官的花前氮积累量。转移氮对籽粒氮的贡献率逐渐增加,但其沉降值,面团形成时间,稳定时间处理间无显著差异。强筋小麦烟农21号氮素的吸收.转运能力明显优于中筋小麦鲁麦21。  相似文献   

20.
氮磷配施对冬小麦干物质积累、分配及产量的影响   总被引:7,自引:0,他引:7  
为了探究氮磷配施对小麦干物质向籽粒分配的调控效应,以高产小麦品种‘鲁原502'为试验材料,比较不同氮磷处理干物质积累、分配、产量及构成因素等性状差异。结果表明,适量增加施氮量和施磷量可促进小麦起身期至成熟期干物质积累以及开花期、成熟期干物质向营养器官的分配,对越冬前干物质积累量无显著影响。增加施氮量可提高花前营养器官贮藏同化物转运量、花后同化物输入籽粒量以及对籽粒贡献率,同时降低花前营养器官总转运量对籽粒贡献率;增加施磷量则可提高花前营养器官贮藏同化物总转运量以及花后同化物输入籽粒量。增加施氮量和施磷量均可提高小麦穗数、穗粒数,进而增加产量。研究结果表明,240kg·hm~(-2) N、100kg·hm~(-2) P_2O_5(N_2P_2)处理可作为黄淮麦区干物质积累分配及获得高产的施肥参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号