首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to assess the effects of grazing a perennial ryegrass (Lolium perenne) / white clover (Trifolium repens) sward by sheep or goats on sward composition and structure and on subsequent diet selection, herbage intake and liveweight gain by weaned lambs. From mid-May to late July (phase 1), ewes with twin lambs or yearling Scottish Cashmere goats grazed continuously swards maintained at 4- or 8-cm sward surface height. From mid-August to the end of September (phase 2), weaned lambs continuously grazed the same swards maintained at 4 cm (treatment 4–4) or at 8 cm (treatment 8–8) or which had been allowed to increase from 4 cm to 8 cm (treatment 4–8). By the end of phase 1, swards grazed by goats had higher proportions of white clover in the whole sward (0.377 vs. 0.181; s.e.d 0.0382; P < 0.001) than those grazed by sheep, irrespective of sward height treatment. This resulted in phase 2 in a higher proportion of white clover selected ( P <0.001), higher herbage intakes ( P < 0.001) and higher liveweight gains ( P < 0.001) by weaned lambs grazing swards previously grazed by goats compared with those previously grazed by sheep. There were higher proportions of clover present in the swards from treatment 4–8 at the beginning of phase 2 compared with the other sward height treatments and consequently weaned lambs had, on this treatment, a higher proportion of clover in their diet ( P <0.001), higher herbage intakes ( P <0001) and higher liveweight gains ( P <0.001). It is concluded that goats can be integrated into sequential grazing systems with sheep on grass/clover swards and this can result in an increase in the proportion of clover in swards and increased sheep performance.  相似文献   

2.
The study was designed to test the hypothesis that grazing management in early season could alter sward structure to facilitate greater animal performance during critical periods. The effects of grazing a mixed perennial ryegrass/white clover sward at different sward surface heights, by cattle or sheep, in early season on sward composition and structure, and on the performance of weaned lambs when they subsequently grazed these swards in late season were determined. In two consecutive years, from mid‐May until mid‐July, replicate plots (three plots per treatment) were grazed by either suckler cows and calves or ewes and lambs at 4 or 8 cm sward surface heights (Phase 1). From mid‐August (Year 1) or early August (Year 2), weaned lambs continuously grazed, for a period of 36 d (Year 1) or 43 d (Year 2) (Phase 2), the same swards maintained at 4 cm (treatment 4–4), 8 cm (treatment 8–8) or swards which had been allowed to increase from 4 to 8 cm (treatment 4–8). Grazing by both cattle and sheep at a sward surface height of 4 cm compared with 8 cm in Phase 1 resulted in a higher (P < 0·001) number of vegetative grass tillers per m2 in Phase 2, although the effect was more pronounced after grazing by sheep. Sheep grazing at 8 cm in Phase 1 produced a higher number of reproductive tillers per m2 and a greater mass of reproductive stem (P < 0·001) than the other treatment combinations. The mass of white clover lamina was higher under cattle grazing (P < 0·05), especially on the 8‐cm treatment, and white clover accounted for a greater proportion of the herbage mass. These effects had mainly disappeared by the end of Phase 2. On the 4–4 and 8–8 sward height treatments the liveweight gain of the weaned lambs was higher (P < 0·05) on the swards previously grazed by cattle than those grazed by sheep. The proportion of white clover in the diet and the herbage intake also tended to be higher when the weaned lambs followed cattle. However, there was no difference in liveweight gain, proportion of white clover in the diet or herbage intake between swards previously grazed by cattle or sheep on the 4–8 sward height treatment. It is concluded that grazing grass/white clover swards by cattle compared with sheep for the first half of the grazing season resulted in less reproductive grass stem and a slightly higher white clover content in the sward, but these effects are transient and disappear from the sward by the end of the grazing season. They can also be eliminated by a short period of rest from grazing in mid‐season. Nevertheless these changes in sward structure can increase the performance of weaned lambs when they graze these swards in late season.  相似文献   

3.
To investigate the effect of sward height on liveweight change in goats grazing grass/white clover swards, an experiment was conducted from mid-August to mid-November with groups of non-lactating female cashmere goats that continuously grazed perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) swards. Three replicated different sward height treatments — 10–8 cm (high), 7–5 cm (medium) and 5–3 cm (low) — were used to examine the effects on the competitive ability of grass and clover components within the sward canopy and their effect on liveweight. The pasture after grazing by goats had relatively higher ryegrass leaf (+0·26, high; +0·32, medium; and +0·18, low) and lower dead ryegrass proportions (?0·28, high; ?0·23, medium; and ?0·18, low) than at the beginning of the experiment, whereas the white clover fraction in the sward remained constant (+0·04, high; ?0·02, medium; and +0·03, low). Higher proportions of the white clover leaf lamina and petiole were found near the top of the sward canopy and were negatively correlated with the rate of liveweight gain by goats (P < 0·05). Goats gained 50·2 g Live weight (LW) d?1 on the tallest treatment (high) but lost 0·01 and 42·3 g LW d?1 on the medium and low sward height treatments respectively (s.e.d. 13·21, P < 0·001). Liveweight changes that occurred between sampling periods were also correlated (R2= 0·858, P < 0·001) with changes in the mean sward height and proportion of white clover lamina-petiole at the sward surface in relation to the proportion found within the whole sward. These results suggest that goat liveweight gains would be increased if another species was introduced to reduce the white clover proportion in the surface horizon.  相似文献   

4.
The selection by sheep (six Coopworth ewe hoggets, 44·3 ± 4·6 kg live weight) and goats (six Saanen/Anglo‐Nubian yearling males, 38·1 ± 3·8 kg live weight) for perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and for sward height was measured in two experiments involving paired turves. Pairs of turves with herbage of differing height and of either the same or different plant species were offered. One sward (fixed height species, FHS) was always offered at 130 mm and the other (variable height species, VHS) at 130, 90 or 50 mm. Turves (450 mm × 220 mm) were cut to a soil depth of 100–150 mm from areas of perennial ryegrass and white clover regrown to the desired height after previously being cut to 30 mm. Each turf in a pair was weighed (±1 g) before and after grazing by penned animals maintained on a barley‐based pelleted diet. The number of prehending bites taken from each turf was recorded over a grazing period (128 ± 12 s). Bite mass, bite rate and intake rate were calculated. As the sward height of the VHS turf declined, an increasing proportion of the diet was selected from the 130 mm turf. When averaged over all height contrasts, both animal species selected a higher proportion (0·776 ± 0·026) of their diet from 130‐mm white clover than from 130‐mm perennial ryegrass (0·591 ± 0·018) turves. On average, goats selected a higher proportion (0·721 ± 0·022) of their dry‐matter (DM) intake from the 130‐mm turf than sheep (0·646 ± 0·019), but the effect was not consistent. In contrasts with perennial ryegrass as the VHS (and both perennial ryegrass and white clover as FHS), the proportion of the diet selected from the 130‐mm turf was very similar for both animal species. However, with white clover as the VHS (and both perennial ryegrass and white clover as FHS), goats selected a higher proportion of their intake from the 130‐mm turf to the extent that in the 130‐mm perennial ryegrass/50‐mm white clover contrast sheep showed as strong selection for 50‐mm white clover as goats did for 130‐mm perennial ryegrass. This lesser selection of goats for white clover as its height in a sward declines is likely to contribute to the higher white clover content observed in swards grazed by goats. Bite mass was greater on white clover (246 ± 5 mg DM bite–1) than on perennial ryegrass (173 ± 5 mg DM bite–1) and was greater for goats (255 ± 6 mg DM bite–1) than for sheep (195 ± 5 mg DM bite–1). Bite rate was greater on perennial ryegrass (45·9 ± 1·0 bites min–1) than on white clover (39·9 ± 1·0 bites min–1) and was greater for sheep (45·5 ± 1·1 bites min–1) than for goats (42·5 ± 1·1 bites min–1). Apparent intake rate by both sheep and goats was lower (mean, 5·0 ± 0·29 g DM min–1) on 130 mm perennial ryegrass/white clover than on 130 mm perennial ryegrass/perennial ryegrass (7·0 ± 0·27 g DM min–1), but was higher (9·62 ± 0·29 g DM min–1) on 130‐mm white clover/perennial ryegrass than on 130‐mm white clover/white clover (8·2 ± 0·29 g DM min–1) combinations.  相似文献   

5.
A series of twenty-four swards containing different proportions of white clover (0·20-0·25) and perennial ryegrass were created by using different seed mixtures, herbicide applications and previous cutting Frequencies. These swards were used to study the diet of oesophageally-fistulated wether sheep which grazed the various swards for a 30-min period after 1, 2 and 3 weeks of regrowth.
The proportion of white clover in the diet was generally greater than that in the sward. Fifty-seven percent of the variation in the proportion of white clover in the diet could be attributed to the proportion of white clover in the sward. White clover and perennial ryegrass leaf and stem were grazed to the same height and the proportion of white clover in the grazed horizon of the sward explained 83% of the variation in the proportion of white clover in the diet. The proportion of white clover in the diet was greater than the proportion in the grazed horizon of the sward in week 3 of regrowth, but not in weeks 1 and 2, and greater when the proportion of white clover in the grazed horizon was lower than 0·20. Both these observations were interpreted as indicating selection for white clover by the sheep within the grazed horizon.
There was a positive and linear relationship between the depth of the grazed horizon and sward height which, together with the relationship between the proportion of white clover in the grazed horizon and in the diet, would allow the prediction of the proportion of white clover of the diet from the height and the white clover content of the grazed horizon of the sward.  相似文献   

6.
Mixtures of perennial ryegrass ( Lolium perenne L.) and white clover ( Trifolium repens L.) sown in alternate rows or in a thoroughly mixed matrix were grazed by sheep, either continuously or during short grazing tests, and were used to investigate the influence of the vertical and horizontal components of the sward structure on defoliation by sheep.
In an experiment under continuous grazing, the defoliation intensity was greater for white clover compared with perennial ryegrass leaves (0·80 and 0·58 respectively). In spring, perennial ryegrass leaves were more defoliated than white clover leaves, whereas the reverse was observed in summer. The ratio of the proportion of white clover to perennial ryegrass leaves grazed was negatively correlated with the difference between the surface height of the perennial ryegrass and white clover rows in spring. In both spring and summer, white clover leaves of the same extended leaf length had a higher proportion of them grazed than perennial ryegrass leaves.
In another experiment, during short grazing tests with perennial ryegrass–white clover swards that were grazed at the same sward surface height and at the same white clover content as in the previous experiment, there were no significant differences in the proportion of white clover and perennial ryegrass leaves grazed between strips of the two species and thoroughly mixed structures. The proportion of white clover leaves grazed was higher than that of perennial ryegrass leaves.
These results show that the differential defoliation by sheep of perennial ryegrass and white clover leaves varies according to their vertical distribution in the mixed canopy, but is little affected by their horizontal distribution. Even small differences in sward surface height between mixed perennial ryegrass and white clover can affect diet selection by sheep to a rather large extent.  相似文献   

7.
The implications for UK upland sheep systems of reducing nitrogen fertilizer application to perennial ryegrass/white clover swards were studied over 3 years. Sward height (3·5–5·5 cm) was controlled for ewes with lambs until weaning using surplus pasture areas for silage; thereafter, ewes and weaned lambs were grazed on separate areas, and sward height was controlled by adjusting the size of the areas grazed and using surplus pasture areas for silage if necessary. Combinations from three stocking rates [10, 6 and 4 ewes ha−1 on the total area (grazed and ensiled)] and four nitrogen fertilizer levels (150, 100, 50 and 0 kg ha−1) provided six treatments that were replicated three times. Average white clover content was negatively correlated with level of nitrogen fertilizer. The proportion of white clover in the swards increased over the duration of the experiment. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain on all treatments. All treatments provided adequate winter fodder as silage. It is concluded that the application of nitrogen fertilizer can be reduced or removed from upland sheep pastures without compromising individual animal performance provided that white clover content and sward height are maintained. Resting pastures from grazing by changing ensiled and grazed areas from year to year sustained white clover content over a 3-year period.  相似文献   

8.
Swards of Phalaris aquatica-Trifolium subterraneum were subjected to four defoliation treatments—zero, low (11 sheep ha−1) and high (22 sheep ha−1) stocking rates, and weekly cutting. At high stocking rate the annual grass Hordeum leporinum dominated while clover was dominant at low and zero stocking rates. Weekly cutting suppressed species other than clover and so failed to simulate grazing.
There were similarities in net herbage production between zero and lightly grazed swards and between heavily grazed and repeatedly cut swards. Net herbage production decreased in the order undisturbed sward < lightly grazed sward < heavily grazed sward < repeatedly cut sward.
When sheep grazed swards where herbage mass was low their daily consumption of herbage, and therefore liveweight change, depended on their recent grazing experience. Sheep accustomed to swards where herbage mass was low ate more because they grazed for much longer each day than unaccustomed sheep, although they selected a diet of similar digestibility.  相似文献   

9.
The potential productivity of perennial ryegrass/ white clover swards (GC) under continuous stocking management was assessed by comparing their performance, when grazed by sheep at sward surface heights of 3, 6 and 9 cm, with that of an all–grass sward (G) maintained at 6 cm and fertilized with 420 kg N ha–1 The grass/clover swards received no nitrogen fertilizer. The different grazing treatments had a marked effect on animal performance. In the first year for example, for treatments GC3, GC6, GC9 and G6–420 respectively, mean stocking rates to weaning were 19–7, 14–3, 8–9 and 18–4 ewes ha–1 (plus twin lambs); lamb growth rates were 223, 268, 295 and 260 g d–1and so total lamb live weight gain was 1054, 920, 630 and 1148 kg h a–1. The relative performance of the treatments was similar in all three years. All three grazing treatments had a similar effect on the composition of the grass/clover swards. Clover content increased in 1985, and was sustained in 1986 and 1987 during the main grazing season, although a marked decline in clover content during the winter led to a progressive long–term decline in both the proportion and the amount of clover.
It is suggested that a management based on maintaining a sward surface height close to 6 cm (as in all–grass swards) leads to optimum performance in grass/white clover swards grazed using continuous stocking with sheep. Despite the presence of a small and declining clover content, the output of the mixed grass/clover sward managed in this way was 80%, 80% and 82% of that of a grass sward supplied with 420 kg N ha–1 in 1985, 1986, and 1987 respectively and, similarly, 83% of the output in 1987 of a grass sward receiving 210 kg N ha–1.  相似文献   

10.
This experiment was carried out to study the responses of sward components (particularly white clover, Trifolium repens ) to grazing management in a natural sward dominated by smooth-stalked meadowgrass ( Poa pratensis ) syn. Kentucky bluegrass. Treatments during two grazing seasons (1989–90) were: cattle grazing alone (C); cattle grazing followed by topping (CT); cattle grazing followed by sheep grazing (CS); and sheep grazing alone (S). Mean target pre- and post-grazing herbage masses were 2200 and 1100 kg DM ha−1, estimated by single-probe electronic capacitance meter. Sward component dynamics were monitored using turf dissections, marked white clover stolons, and ring-toss white clover leaf counts. Component and sward data for the C, CT, CS and S treatments respectively, were: number of white clover leaves m−2, 1295, 1384, 1408, 900 (s.e. ± 108); number of leaves per growing point, 3·2, 3·4, 3·0, 2·8 (s.e. ± 0·2); herbage accumulation (t DM ha−1), 5·16, 5·02, 5·87, 8·28 (s.e. ±0 08); rejected herbage (% pasture area) 39·7, 7·7, 16·0, 0 (s.e. ± 75); and annual net herbage production (t DM ha−1) 3·39, 4·35, 4·99, 8·28 (s.e. ± 0.07). Swards grazed by sheep alone contained less white clover, but regrew quicker and produced more herbage than other treatments. Close topping or grazing by sheep following dairy cattle grazing decreased sward rejection by cattle. These treatments maintained more of the pasture in better condition for subsequent cattle grazing, resulting in greater net herbage production than where no post-cattle grazing treatment was used.  相似文献   

11.
Non‐pregnant, non‐lactating ewes grazed adjacent monocultures of white clover and perennial ryegrass with three sward surface height (SSH) combinations [6 cm white clover: 6 cm perennial ryegrass (c6g6), 3 cm white clover: 6 cm perennial ryegrass (c3g6), 3 cm white clover: 9 cm perennial ryegrass (c3g9)] at two stocking densities (21·3 or 29·8 ewes ha–1). Immediately prior to the experiment, all ewes grazed a c6g6 sward. Grazing time on each plant species was recorded during daylight over two 48 h‐test periods. Subsequently, herbage intake rates for each species at each SSH were measured allowing intakes of each species to be calculated. For the first 24 h of both test periods (D1), ewes on treatment c3g6 spent less time grazing white clover than those on treatment c6g6 (228 vs. 362 min) and more time grazing perennial ryegrass (360 vs. 182 min). Total grazing time on treatment c3g6 was more than on treatment c6g6 (587 vs. 544 min) but the difference was not significant. Perennial ryegrass intake was higher (895 vs. 452 g), and white clover intake (814 vs. 1687 g), total intake (1719 vs. 2140 g) and proportion of white clover in the diet (0·460 vs. 0·794) were lower for treatment c3g6 than treatment c6g6. There were no significant differences in total grazing time, grazing time on either species, proportion of grazing time on white clover or proportion of white clover in the diet between treatment c3g6 and treatment c3g9. However, the higher intake rate of perennial ryegrass in treatment c3g9 led to higher perennial ryegrass and total intakes. For the second 24 h of both test periods (D2), ewes on treatment c3g6 again spent more time grazing perennial ryegrass than on treatment c6g6 (270 vs. 161 min) but time spent grazing white clover was similar (318 vs. 308 min). Total grazing time was significantly higher on treatment c3g6 than on treatment c6g6 (588 vs. 469 min) but proportion of grazing time on white clover was similar (0·554 vs. 0·668). Perennial ryegrass intake was significantly higher for treatment c3g6 than for treatment c6g6 (672 vs. 402 g) while white clover intake was significantly lower (1140 vs. 1435 g) but total intake was similar (1812 vs. 1836 g). The proportion of white clover in the diet was significantly lower for treatment c3g6 (0.628 vs. 0.785) than for treatment c6g6. The only significant differences between treatments c3g6 and c3g9 were in perennial ryegrass intake (672 vs. 906 g) and in total intake (1812 vs. 2287 g). Intake of perennial ryegrass on treatment c3g9 was also significantly greater than on treatment c6g6 (906 vs. 402 g) and total intake was higher (2287 vs. 1836 g). At the higher stocking density, time spent grazing perennial ryegrass and perennial ryegrass intake were significantly lower on D1 and D2 while total grazing time was also significantly lower and proportion of time grazing white clover and proportion of white clover in the diet were significantly higher at the higher stocking rate on D2. The results indicate that behaviour changed over the 48 h observation period for treatments c3g6 and c3g9 but behaviour remained relatively constant for animals on treatment c6g6. Ewes traded off dietary preference against total intake by altering grazing times on perennial ryegrass and white clover to achieve maximum net benefit.  相似文献   

12.
A 10-week grazing experiment was conducted on a perennial ryegrass sward with lactating ewes and their twin lambs. Three paddocks were rotationally grazed with rest periods of from 4 to 5 weeks. Sward surface heights at the start of each grazing were 145, 259 and 250mni for treatments RG1, RG2 and RG3. A further four paddocks were maintained by continuous variable stocking (CS) at sward surface heights (SSHs) of about 30, 60, 90 and 120mm. Sward and animal measurements were made on the two different grazing managements as the RG swards were grazed down, giving measurements at similar sward heights for treatments RG and CS.
There was less green leaf and the total herbage mass present under RG was less than on CS swards at the same sward heights, demonstrating the differences in structure between rotationally and continuously grazed swards.
Regression analysis of animal factors on sward factors showed that grazing behaviour was more highly correlated with green leaf mass than SSH or any of the other sward measurements. On the RG swards, maximum intake per animal was reached at about 1500 kg green leaf mass ha−1. A SSH of 60mm allowed the CS ewes to achieve the highest intake rate, but at this height the ewes on treatments RG2 and RG3 were restricted to approximately half this rate. The results suggest that green leaf mass or leaf area index, rather than sward surface height, could be used as a rational basis to relate intake of herbage to sward state for swards changing rapidly in leaf to stem ratio.  相似文献   

13.
Performance of continuously stocked Mule ewes nursing Suffolk-cross twin lambs over three grazing seasons, between April and August, was compared on swards of N-fertilized diploid perennial ryegrass (D), tetraploid perennial ryegrass (T) and tetraploid perennial ryegrass with white clover (TC), the latter receiving no fertilizer N. Sward height was maintained by variable stocking rate close to a target of 4–6 cm (constant treatment) from turnout and compared in July and August with a rising sward height treatment (target 6–8 cm). Lambs on TC swards had significantly higher (P <0·001) liveweight gains compared with lambs on T swards by 41 gd-1 in April–June and by 68gd-1 in July-August. Live weight and body condition score of ewes in August were significantly higher (P<0·001) on TC compared with T swards, by 11·3 kg and 0·75 respectively. Rising sward heights in July–August increased live-weight gain of lambs compared with constant sward heights by 102, 39 and 54gd-1 in consecutive years, associated with sward height increases of 0·9, 0·5 and 0·6cm respectively. Rising sward height increased ewe live weight and body condition score by 5·1 kg and 0·3 respectively, compared with results from constant sward heights. Effects of sward height and sward type were additive. T swards had a significantly (P<0·01) 16% greater overall lamb output than the D swards due mainly to a 10% higher achieved stocking rate. Stocking rates of ewes on TC vs T swards were 40, 13 and 12% lower in April-August in successive years. The higher liveweight gain of lambs on the TC swards resulted in lamb outputs of 76, 105 and 101% of the T swards in successive years, showing that grass/clover swards containing over 20% clover could produce similar lamb output ha-1 to grass swards given 150–180 kg N ha-1.  相似文献   

14.
The utilization of sown and indigenous plant species was studied in three experiments in which plots were stocked with similar live weights of sheep and goats. In the first experiment the animals grazed plots containing 0–5 ha of rush ( Juncus effusus )- infested reseeded pasture and 0–5 ha of unimproved blanket bog. The second and third experiments took place on old rush-infested improved pasture; in one experiment two levels of herbage mass of grass were provided while in the other the rushes were cut in spring or remained uncut.
The goats grazed the rushes readily in all three experiments. Reduction in herbage mass of grass increased utilization of rushes by goats although these animals still grazed rushes when grass supply was plentiful. Sheep scarcely grazed J. effusus even when hard-pressed by shortage of grass. Both sheep and goats grazed J. acutiflorus.
In Experiment I sheep utilized reseeded pasture more heavily than did goats. Sheep grazed similar proportions of the leaves of grass and clover while goats grazed a lower proportion of clover leaves as compared with grass. Among the grasses sheep discriminated in favour of Lolium perenne whereas goats did not. On the blanket bog vegetation, Eriophorum vaginatum and Calluna vulgaris were grazed both earlier in the season and more heavily by goats than by sheep.
The relationships between sward structure and grazing height in accounting for differences in species selection by sheep and goats are briefly discussed. The possibility of using goals to control coarse weeds in hill pasture and for strategic grazing to manipulate floristic composition is outlined.  相似文献   

15.
An experiment was carried out to examine the changes in perennial ryegrass ( Lolium perenne L.) and white clover ( Trifolium repens L.) populations in mixed swards, under different grazing severities over three successive grazing seasons. In year 1, three paddocks were erected on a sward with a low initial content of clover (block 1). Sward heights were measured using a rising-plate meter, and were maintained at overall mean heights of 3·0, 5·5 or 7·0 cm by variable stocking with 8-month-old steers. In year 2, a further three paddocks were erected on an adjacent area with a high initial content of clover (block 2), and were maintained at the same three heights by similar management. Botanical analyses were carded out on samples collected at four times during the season. Maintaining swards at 5·5 or 7·0 cm led to a large proportion of the area being infrequently grazed. Block I paddocks had higher initial tiller densities, which increased as sward height was reduced, while block 2 paddocks, with their lower initial tiller density, showed little effect of sward height on tiller density. Initially, clover stolon growing-point densities and stolon masses increased more rapidly in the taller swards. Later, however, large losses in the clover populations occurred on all paddocks during long wet winters and there was a general reversal in these trends for stolon growing-point densities and stolon masses, 3·0>5·5>7·0. By year 3, swards with differing  相似文献   

16.
The effect of three different vertical structures of a perennial ryegrass-dominated sward, defined by pseudostem heights (cm) — 1·3 low (L), 2·5 medium (M) and 3·5 high (H) — on the bite depth and selection of plant parts within the grazed horizon of the sward by sheep and guanacos was studied. The bite depth (cm) was similar between sheep and guanacos across the different swards (L, 1·5; M, 3·6; H, 3·8) and was related to pre-grazing sward surface height rather than to pseudostem height. There were differences in diet composition between species that were related to differences in selection for plant parts. Sheep had a higher proportion of green leaf in the diet than did guanacos in L (0·84 vs. 0·71, P < 0·05) and M (0·75 vs. 0·59, P < 0·05) swards, and possibly selected this plant part in H swards in which the proportion of green leaf in the grazed horizon was low (0·45–0·50). Guanacos had a higher proportion of dead leaf and sheath in the diet than did sheep in L (0·23 vs. 0·09, P < 0·05) and M (0·30 vs. 0·18, P < 0·05) swards, and possibly selected this plant part on these swards, in which the proportion of green leaf in the grazed horizon was high (0·70–0·95). The proportion of pseudostem in the diet of sheep and guanacos was similar across all swards (0·03) and was generally much lower than that in the grazed horizon (0·01–0·18). Guanacos had a higher proportion of dead stem in the diet than did sheep (0·06 vs. 0·02, P < 0·05) across all swards, but the proportion was similar to that in the grazed horizon of each sward.  相似文献   

17.
Herbage heights were measured with a rising plate meter in mixed perennial ryegrass/white clover ( Lolium perenne/Trifolium repens ) swards maintained under five different systems of management. Double normal distributions fitted to the height frequencies were used to interpret changes over the grazing season in the mean heights of the shorter 'frequently' and the taller 'infrequently' grazed components of the sward, the variability of height within the two components, and the proportions of the two components in the sward. An attempt was also made to demonstrate that the overlap of these components, implicit in fitting double normal distributions, is a true reflection of the height distributions of frequently and infrequently grazed areas of the sward, and that the fitting of such a distribution provides a useful estimate of the proportion of a sward which is infrequently grazed.  相似文献   

18.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

19.
White clover varieties, potentially suitable for inclusion in seed mixtures for mixed stock-rearing farm systems, were evaluated when growing with S23 perennial ryegrass under rotational sheep grazing with a silage cut in late May or early June, as practiced on farms. Monoculture grass swards were also included to enable the direct and indirect contribution of white clover to total sward production to be evaluated.
White clover increased total sward production during all three years of the trial by an average of 50%. Although clover content of swards were similar, large differences occurred in their grass content, especially in the third year, when difference in total yields of swards based on large–leaved clover varieties was 2 t ha −1 while difference in clover yield was only 0-6 to ha–1 The indirect contribution of white clover, namely the extra grass resulting from N transfer, was greater in the spring than in the autumn. It was also greater for Nesta than for other varieties. and exceptional for this variety in that the increase in grass yield above that of grass monoculture was maintained over three harvest years.  相似文献   

20.
An experiment was carried out to examine the effect of supplementation on the performance of spring-calving dairy cows grazing swards of differing perennial ryegrass and white clover content. Seventeen heifers and sixty-four Friesian cows in their third to ninth week of lactation were turned out onto one of three pastures with different proportions of perennial ryegrass and white clover. Nine animals on each pasture received either 0, 2 or 4 kg d−1 of a concentrate with a crude protein concentration of 180 g kg−1 dry matter (DM). Prior to grazing, swards contained proportionately 0·01 (L), 0·15 (M) and 0·20 (H) of total DM as clover. During the experiment, grazing pressures were adjusted by movement of buffer fences to maintain compressed sward heights at 6 cm. Samples taken 26 and 68 d after the start of grazing showed little change in the proportion of clover in sward L (< 0·01 and 0·02 respectively), but convergence in the proportion of clover in swards M and L (0·08-0·16 and 0·10-0·15 respectively). Mean daily yields of milk, fat, protein and lactose increased significantly with increased clover content and, even without supplementation, daily yields were 25·4, 0·98, 0·73 and 1·09 kg respectively on sward H. Of the milk components, only protein was significantly increased by increasing sward clover content. The response in milk yield to supplementation was greater on sward L than on swards M and H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号