首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

• Introduction  

The wavelet-based functional approach was evaluated for modelling tree taper of jack pine (Pinus banksiana Lamb.) trees grown in the Canadian boreal forest region.  相似文献   

2.

Key message

In tree communities, tree size inequality reduces productivity and interacts with tree shade tolerance to modulate stand productivity, with a higher productivity in stands where shade-intolerant species dominate shade-tolerant species in size.

Context

Positive diversity–productivity relationships have been reported in different plant communities, including tree communities. These effects may be strongly related to both structural diversity and functional diversity, but also to their interactions if there is a non-random distribution of species functional characteristics among canopy layers.

Aims

We explore the relative effects on forest productivity of tree species diversity, tree size inequality, and species shade tolerance diversity, as well as the effect of the distribution of tree shade tolerance in the canopy.

Methods

We used 11,054 mixed-species forest plots from the French Forest Inventory (IGN) distributed throughout France (2006–2011). We analyzed the effects of species richness, shade tolerance diversity, and height inequality on forest plot productivity, represented by basal area annual increment over a period of 5 years, while controlling for first-order structure characteristics (basal area and quadratic mean diameter) and environmental factors (soil water budget and sum of growing degree days). Using the covariance between tree height and shade tolerance in mixed species canopies, we also explored the effect of the distribution of species’ shade tolerance among canopy layers.

Results

The results showed a positive effect of species richness (effect size, 0.02) and a negative effect of height inequality (??0.05) on mixed-forest productivity. We also showed that a negative covariance between shade tolerance and height (e.g., higher proportion of shade-tolerant species in lower height classes) increased productivity (0.01). Shade tolerance diversity did not affect productivity.

Conclusion

In tree communities, as shown previously in monospecific forest stands, tree size inequality reduces productivity. This effect is modulated by the distribution of shade tolerance among canopy layers. Previous studies on species diversity effect have generally overlooked the importance of the size structure and the size hierarchy of functional characteristics. These effects are, however, crucial and deserve to be explored in greater detail.
  相似文献   

3.

• Introduction   

Heavy metal pollution is a strong driver of above- and belowground communities and triggers evolutionary adaptation in organisms. This review provides an overview of our knowledge on the effects of toxic concentrations of metals on ectomycorrhizal populations and communities.  相似文献   

4.
Intensive forest management practices often disturb understory vegetation, and the recovery of these plant communities may depend on the type and severity of the disturbance. We examined the effects of stump removal and N-fertilization on understory plant communities and functional group (shrubs, graminoids, forbs, and introduced species) cover and diversity at five study areas in the Pacific Northwest of North America 24–28 years after treatment. Treatments at each study area included stumped and non-stumped controls as well as four levels of broadcast ammonium nitrate (0, 336, 672, and 1345 kg N ha−1) in all combinations. Stumping had significant effects on community composition at all sites, and several plant species were associated (p < 0.05) with either controls or stumped plots. Diversity of graminoids, forbs and introduced species increased in stumped areas region wide. Stumping reduced cover and diversity of shrubs at some sites. Cover of graminoids and forbs also increased in stumped plots at some study areas. Forbs like Viola sempervirens were often indicators of stump removal while shrubs such as Acer circinatum tended to be associated with non-stumped plots. N-fertilization affected community composition at only one study area, and had no effects on cover or richness of functional groups. Stump removal has lasting impacts on plant communities and may make them more vulnerable to colonization by introduced species.  相似文献   

5.

• Introduction, Material and Methods  

The genetic structure and diversity of ten natural populations of Juniperus phoenicea L. from the western part of the species range have been studied using random amplified polymorphic DNA (RAPD) markers.  相似文献   

6.

•Introduction  

The agricultural landscape in Eastern Canada has drastically changed in the last decades. Whilst certain forest communities are disappearing, post-agricultural forests are emerging from old fields colonized by fast-growing tree species.  相似文献   

7.

• Introduction  

The abandonment of rural areas has led to an increase of the fire-prone European gorse (Ulex europaeus L.) communities in some regions, where prescribed burning is a technique applied to control them. Understanding flammability changes after treatments is crucial for the sustainable use of fire.  相似文献   

8.

Context   

Increased knowledge on diversity in wood properties would have implications both for fundamental research and for promoting a diversification of uses as material.  相似文献   

9.

• Introduction   

Millions of hectares of Quercus ilex forests dominate disturbed landscapes in the western part of the Mediterranean basin. Although these forests are very widespread, little is known about the composition and structure of their associated ectomycorrhizal fungal communities.  相似文献   

10.
This study investigates whether tree decline in Eucalyptus gomphocephala (tuart) is associated with the functional diversity of soil bacterial communities. We selected 12 sites with different stages of decline and assessed crown health [Crown density (CD), Foliage transparency (FT), Uncompacted live crown ratio (ULCR), Crown dieback ratio (CDR) and Epicormic index (EI)] and soil bacterial functional diversity based on Biolog EcoPlates™ incubation [Average well colour development (AWCD), Shannon diversity (H′), richness (S) and Shannon evenness (E)]. Crown health indices differed between sites with EI being the most robust indicator of decline in crown health followed by CDR and CD (P < 0.05). Soil bacterial indices collected at 0–10 and 20–30 cm soil depth between December (summer, dry season) and May (autumn, start of wet season) differed between sites (P < 0.05), and significant relationships between crown health indices, except ULCR, and all soil bacterial indices were observed. Principle component analysis (PCA) showed that a decrease in the utilization of carbohydrates, carboxylic acids, amino acids and amines by the soil bacterial communities correlated to sites with poor crown health, indicating some changes in physiological responses of bacterial groups with declining tree health. Using stepwise regression analyses, in the 0–10 cm soil layer in December, itaconic acid had a 46% contribution to the EI. Carboxylic acids, including itaconic acid, have a strong ability to solubilize soil minerals in calcareous soil, and these possibly increased the availability of soil mineral nutrients in the healthier sites compared to the declining sites, particularly in the dry season. In addition, lack of soil water in the declining sites limited soil bacterial diversity and was positively correlated with EI in the 0–10 cm soil layer in December. In conclusion, soil bacterial functional diversity has a strong relationship with tuart decline and the importance of soil microbes in tuart ecosystem health must be considered in the future.  相似文献   

11.

Introduction  

Korean pine (Pinus koraiensis) is a dominant tree species in the cold temperate mixed forest zone in eastern Eurasia. Its seeds are food sources for wildlife but have become an important and marketable part of the economy for local communities.  相似文献   

12.

Introduction   

We examined the functional relationship between seed size and seedling performance in the valley oak (Quercus lobata Née) by means of a 13-year common garden experiment.  相似文献   

13.

• Introduction   

In the present study, we describe the aboveground (epigeous sporocarps) and belowground (ectomycorrhizal root tips and their exploration types) composition of ectomycorrhizal (ECM) fungal species on three 20-year-old Scots pine sites.  相似文献   

14.

• Context  

Landscape structure is crucial for forest conservation in regions where the natural forest is fragmented. Practical conservation is currently shifting from local stands to a landscape perspective, although few studies have tested the relative effects of different spatial scales on plant species composition and diversity in forests.  相似文献   

15.
It is important to assess the biosafety of genetically engineered bacteria before release into the environment. In a previous study, the genetically engineered bacterium Burkholderia pyrrocinia JK‐SH007E1 was developed, showing biological control activity against a poplar canker disease. In the present work, the potential effects of B. pyrrocinia JK‐SH007E1 on soil microbial diversity and population structure in the poplar rhizosphere were assessed. The micro‐ecological effects of JK‐SH007E1 on soil microbial communities were investigated using substrate utilization assays (Biolog EcoPlate), enzyme activity assays and 16S rRNA sequencing to research species diversity and population structure of soil microbial communities. The genetically engineered isolate JK‐SH007E1 improved the functional diversity, soil enzyme activities and alpha diversity of soil microbial communities. However, the positive effects after inoculation attenuated with time, except for soil enzyme activities. Treatments with JK‐SH007 or JK‐SH007E1 were not different in impacts on soil enzyme activity and functional diversity of soil microbial communities. The results demonstrated that inoculation of JK‐SH007E1 into the poplar rhizosphere posed little or no threat to soil microbial communities in the long term. This work provides an additional insight into the effects of genetically engineered JK‐SH007E1 on the environment during long‐term use as biological control against poplar canker diseases.  相似文献   

16.

Elevated nitrogen (N) deposition is changing soil communities around the world and will have unknown consequences for terrestrial ecosystem functions. In this study, we investigated a field experiment that lasted for 13 years to explore the effect of simulated N deposition and seasonal variations on the soil faunal community structure in a temperate natural secondary forest. The experimental design included a control group (0 kg N ha?1 yr?1, CK), low N addition (25 kg N ha?1 yr?1, LN), and high N addition (50 kg N ha?1 yr?1, HN). The results showed that long-term high N addition reduced the soil pH, C/N ratio, and microbial biomass carbon (MBC) and increased the total phosphorus. The soil faunal community structure after high N addition was significantly different from those after the CK and low N addition treatments. The overall trend was that abundance and richness increased under low N addition and decreased under high N addition. Further analysis showed that the abundance of omnivores and detritivores was lowest after high N addition, significantly less than the CK and low N addition. The interaction of N addition and seasonal dynamics had a significant impact on herbivores. We found that these changes were driven by differences in ecological strategies such as food and environmental preferences. Furthermore, temperature, moisture, nutrients, and pH in the soil environment were the key factors driving ecological strategies and environmental factors. Seasonal variations significantly affected the soil faunal community structure, showing the highest abundance, richness, diversity, and functional group abundance and richness of the soil faunal community in September. Nitrogen addition and seasonal dynamics significantly affected the abundance and richness of soil fauna by changing soil nutrient concentrations, MBC, and plant diversity. Our study showed that long-term high N addition reduced the abundance and functional group abundance of the soil fauna in natural secondary forests, while low N addition had a positive effect on soil faunal community structure. Collectively, the results suggest that the seasonal balance of soil fauna is affected after long-term N addition, which increases the seasonal sensitivity of soil fauna.

  相似文献   

17.

• Introduction   

This study presents a method for estimating the minimum area which exhibits a balanced diameter distribution, and the corresponding number of trees, for different tree species and forest types in the Santiago Papasquiaro region in the State of Durango, Mexico. The balanced structure area is defined as the minimum contiguous area that is required for sustainable management of a multi-sized selection forest. A multi-sized forest represents a balanced structure unit if the relationship between harvest and growth can be maintained, using a defined target diameter distribution and disregarding major natural disturbances. The study is based on 17,577 sample plots in uneven-aged forests, which are selectively harvested by local communities.  相似文献   

18.

Context   

Rotation length is known to affect timber quality in many plantation species, but its effect on the properties of Sitka spruce (Picea sitchensis) structural timber has not been quantified.  相似文献   

19.

• Background   

Among forest management practices, forest tree species substitution influences biogeochemical cycles and soil interactions rapidly (decades) and significantly.  相似文献   

20.

? Context

An important feature of forest nursery management is the production of first-rate planting stock, which is closely connected with an adequate development of ectomycorrhizas on seedling roots.

? Aims

The aim of this study was to provide a detailed assessment of the ectomycorrhizal (ECM) fungal diversity of European beech grown in bare-root forest nursery conditions.

? Methods

Morphological and molecular analyzes were used to identify ECM fungi, quantify fungal richness, and record differences in the relative abundance of individual taxa.

? Results

Twenty-seven different mycorrhizal fungal taxa were found in four tested nurseries. Of these 27, only 6 were present in more than one nursery. Taxa richness in individual nurseries ranged from 6 to 13, indicating that ECM colonization potential is nursery-dependent. The most frequent taxa were: Tuber sp. 1, Cadophora sp., Cenococcum geophilum agg., Hebeloma sacchariolens, and Laccaria tortilis. According to the analysis of similarity, ECM fungal communities were significantly different between nurseries (R?=?0.7741; p?<?0.0001).

? Conclusion

Beech seedlings grown in bare-root nurseries are colonized by a highly diverse suite of ECM fungi; thus, artificial inoculation of seedlings is generally not necessary in nursery practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号