首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
针对农业生产过程中信息监测点相对分散和数据有线传输方式的局限性,设计和开发了一种基于无线传感器网络的农田土壤含水率监测系统,系统由3个土壤含水率监测终端节点、1个路由节点和1个网关节点组成。传感器采用蓄电池供电,终端节点和路由节点采用干电池供电,各节点间通信遵循Zigbee通信协议。同时,开发了数据采集、无线通信等程序,能够以任意时间间隔采集监测点土壤含水率数据,实现数据的处理、传输和存储等功能。实验结果表明,系统能实现数据的稳定传输,适合农田土壤含水率实时监测。  相似文献   

2.
为量化雾灌对茶园茶树的作用效果,提供合理的灌溉建议,设计了一套基于LORA通信的茶园雾灌监测系统。该系统通过环境采集终端节点采集茶园的土壤、大气温湿度信息,利用LORA通信网络将信息汇聚于茶园通信控制节点;通信控制节点一方面将信息进行缓存,进行本地的信息备份,另一方面将数据进行封装处理,利用4G网络将数据发送至云服务器端;最终,面向不同用户提供不同的人机交互方式。通过野外实地持续20 d监测茶园雾灌,测试表明雾灌操作主要影响大气温湿度,可用于创造适宜茶树生长的大气环境,而对土壤温湿度的影响则较小,但在水土保持方面有着较好的表现。  相似文献   

3.
基于无线传感的丘陵葡萄园环境监测系统研究   总被引:1,自引:0,他引:1  
为了解决丘陵葡萄园环境信息和土壤墒情的无线监测问题,设计了一种能够实时采集、传输数据的丘陵葡萄园环境采集系统。系统基于无线传感器网络技术,采用Amega128L微处理器和CC2420芯片为基础设计无线传感器节点,传感器节点上接有土壤温湿度传感器、空气温湿度传感器以及光照强度传感器,通过这些传感器采集葡萄园环境信息。传感器节点将采集的环境信息经无线方式传给汇聚节点,汇聚节点通过RS232串口将数据传到上位机的数据库中,实现了丘陵葡萄园环境信息的无线实时监测。试验研究表明,系统具有功耗低、传输数据实时可靠等优点,能很好地实现丘陵葡萄园环境监测的应用要求。  相似文献   

4.
针对农田灌区范围广、数据量大和实时传输难的特点,设计了一种基于无线传感器网络的农田自动节水灌溉系统;综合运用无线传感器智能信息处理技术和无线数据通信技术,全面提升系统的自动化与监测水平。该系统采用星型拓扑结构组网,通过在监测区域部署ZigBee网络节点,将监测数据汇集到嵌入式测控系统,实现统一的数据管理和网络路由监测功能;以微处理器芯片为核心控制器件,由无线传感器网络节点实时采集和处理土壤温湿度数据,并将其发送到接收端,在接收端对数据进行存储和显示,实时监测土壤温湿变化,实现节水灌溉的自动化控制及水资源的高效利用。试验证明,该系统稳定性好,数据传输可靠性高,通过增加数据采集频率,减少了数据丢包率,使用灵活,适用于不便直接连线的一般监测场合应用。  相似文献   

5.
针对森林土壤温湿度采集系统中的数据采集问题,以μC/OS-II操作系统为软件开发基础,设计了以S3C44B0X为核心的土壤温湿度数据远程实时监测系统.系统以土壤的温湿度和监测点的地理位置为监测对象,实时将温湿度和经纬度数据通过GPRS网络传送到远程的监测服务器.分析了系统各组成模块软硬件的功能与实现方法.  相似文献   

6.
基于无线传感器网络的稻田信息实时监测系统   总被引:1,自引:0,他引:1  
针对农田环境信息采集过程中监测周期长、环境干扰大等特点,设计了一种基于混合天线无线传感器网络稻田环境信息实时监测系统,采用分簇路由协议进行组网,为不同类型的节点配置不同类型的天线,并使用转台控制汇聚节点定向天线的方向,以扩大网络的覆盖范围和提高系统的稳定性。基于该系统进行长时间稻田组网试验,对网络丢包率和稻田环境参数采集准确性进行测试,试验结果表明,系统运行稳定、测量准确,网络数据平均丢包率为0.44%,稻田空气温度、空气相对湿度和土壤含水率的平均相对误差分别为0.26%、0.64%和0.33%。  相似文献   

7.
设计开发了基于ZigBee无线传感网络技术的棉田滴灌监测与控制系统。该系统通过无线传感网络实时采集土壤环境信息,使用自适应加权融合算法对各节点土壤湿度数据进行融合,根据融合数据发送电磁阀控制命令,完成实时监测自动灌溉;结合棉花不同生育期对需肥量和施肥浓度的要求,根据灌溉水量设置注肥比例,系统通过无线传感网络实时采集液态肥流量,实时监控施肥量,并根据施肥量发送施肥电磁阀控制命令,完成水肥一体化灌溉。工作过程中,系统可以将传感器采集的数据通过ZigBee无线网络协调器传输给上位机并实时显示和存储。通过试验验证,该系统可以按照设计要求实现灌溉和施肥的自动控制与检测。  相似文献   

8.
针对目前土壤温湿度监测系统中存在的有线网络及人工抽样监测方式存在的成本高、灵活性差的问题,设计了一种基于无线传感器网络Zigbee和Lab VIEW的土壤温湿度监测系统。系统的传感器终端节点、路由节点、协调器节点都以CC2530为核心,终端节点采集温湿度后,将数据无线发送到路由节点,然后再转发到协调器节点,协调器节点将数据处理后传递到上位机进行监测。上位机界面采用Lab VIEW软件开发,可实现实时数据显示、历史数据回读和报警设置及实现等功能。实验结果表明,该系统采集数据较准确、成本低,解决了现有土壤温湿度监测系统存在的问题。  相似文献   

9.
为了快速、全面地获取农作物生长过程中的参数变化(土壤墒情、雨量、地下水位),满足农业生产对信息的需求,提高粮食产量,设计开发了基于Cortex-M3的农作物生长参数监测系统。系统用多种智能传感器组成传感器网络,能够实时采集雨量、土壤含水率和地下水位数据,经软件解析、处理后,通过GPRS网络实现数据的无线传输。系统供电采用太阳能电池板和铅酸蓄电池两种方式,提高了设备野外工作的稳定性。硬件设计采用Cortex-m3内核的stm32f103作为MCU,相比于ARM系列,功耗降低了1/4,速度快了1/3。软件设计开发了数据采集、无线通信和在线访问等程序,通过浏览器,即使在远离监测点的异地,也能够实时查看设备状态和访问历史数据。经实践验证,系统能实现数据的稳定传输,适合农作物生长参数的实时监测。  相似文献   

10.
针对国内水产养殖存在的在线监测系统受到现场条件限制,检测点不易更改和扩充,在恶劣和危险环境难以推广等问题,基于低功耗ZigBee CC2430无线通信技术设计一个水产养殖环境参数监测系统。对传感器节点进行设计,对养殖环境信号的采集、处理方法进行研究,为ZigBee网络降低了数据流量,在此基础上组建Zig-Bee网络,用于数据传输。该系统采用星型拓扑结构组网,通过在监测区域部署网络节点,以ZigBee CC2430芯片为核心控制单元的传感器网络节点实时采集水体温度、溶氧量浓度和pH值等环境数据,将监测数据汇集到监测中心,实现统一的数据管理和网络路由监测功能。试验证明,该系统稳定性好,数据传输可靠性高,通过增加数据采集频率,减少了数据丢包率,适用于不便直接连线的水产养殖环境监测场合应用。  相似文献   

11.
丘陵地区蓝莓园智能灌溉决策系统设计   总被引:2,自引:0,他引:2  
针对丘陵地区蓝莓园灌溉过程中水资源浪费严重、劳动力严重短缺的问题,基于物联网技术,研究并设计了一套智能灌溉决策系统。系统包括信息采集模块、无线通信模块、智能决策模块和灌溉执行模块。信息采集模块通过布设的土壤水分传感器和小型气象站实时采集蓝莓园土壤墒情信息和环境信息(风速、降雨量、温度、湿度);无线传输模块将信息采集模块采集到的数据实时发送到服务器端进行分析处理,并将智能决策模块的计算结果传送给灌溉执行模块;智能决策模块中,基于前期采集的历史数据使用彭曼公式和土壤水平衡公式建立灌溉决策模型,实现蒸腾量和灌溉量的计算以及实时监控与报警,该模型可根据实时获取的数据,确定是否需要灌溉及最优的灌溉量;灌溉执行模块根据接收到的灌溉信息及实际的灌溉速度计算灌溉时间,进行远程灌溉;以Visual Studio软件为平台,设计了系统上位机的监控界面,可实现土壤和环境参数的实时检测和存储、作物需水状况的分析管理以及实时预警和灌溉决策。试验结果表明,该智能灌溉决策系统可在无人干预的情况下,根据传感器采集的信息自行判断作物需水情况,当系统认为作物需要灌溉时自行驱动灌溉装置完成灌溉,从而实现蓝莓园的远程精确灌溉,节省了人力物力,有效提高了灌溉水的利用率。  相似文献   

12.
为了实时了解土壤墒情信息,为旱情预报预警及农业灌溉提供基础数据,设计了一套基于GPRS的土壤墒情远程监测系统。该系统利用太阳能供电,以STC12C5A60S2单片机作为主控单元核心控制器,通过GPRS网络进行土壤墒情数据无线传输。通过上位机软件的开发设计,可实现多个终端节点土壤墒情信息的动态实时监测。试验结果表明,系统运行稳定,满足设计要求,能够为农业灌溉提供可靠的依据。   相似文献   

13.
基于GPRS的茶园环境参数无线监测系统的设计   总被引:1,自引:1,他引:0  
茶园一般建在比较偏远的山区,所以对茶树的管理以及获悉茶树周围每天的生长环境便是一大难题。针对这一情况,设计了一套基于GPRS茶园环境参数的无线监测系统,能够监测茶园大气温度、湿度,土壤温度、含水量以及光照强度等环境参数。该系统硬件部分包括太阳能供电、单片机控制、A/D转换、数据采集与处理、GPRS无线传输5个模块。软件通过KEIL C51进行C程序的编写与调试,主要包括环境参数的采集与处理、数据的无线传输及利用TCP进行网络通讯。采用LabVIEW 8.20开发环境进行上位机监测中心人机界面设计,调用LabVIEW里的文件输入输出函数建立数据库,对茶园环境参数进行每日每月定时的储存与访问,以便对茶树的生长环境进行连续监测。  相似文献   

14.
基于ZigBeeCC2430的土壤含水率监测系统设计   总被引:3,自引:0,他引:3  
张粤  倪桑晨  倪伟 《农机化研究》2012,34(2):189-192
针对农田土壤环境参数大滞后及大惯性的特点,基于低功耗ZigBee CC2430无线通信技术,设计了土壤含水率监测系统。通过运用无线传感器智能信息处理技术及数据通信技术,使得监测系统的自动化与监测水平得到提升。该系统采用星型拓扑结构组网,通过在监测区域部署网络节点,将监测数据汇集到监测中心,实现统一的数据管理和Zigbee网络的路由监测功能。给出了系统硬件和软件实现方法,包括无线传感器节点设计、数据采集、传输及通信等模块的实现原理。遵循模块化设计思想,传感器和功能模块可组合配置,通用性强。对于农田土壤含水率的监测实验结果表明,该系统性能稳定,能够实现数据采集、传输及显示,可广泛应用于各领域的环境参数自动监测。  相似文献   

15.
为充分掌握土壤水分、环境温度、环境湿度与光照情况,实现适时、适地、适量灌溉,施肥与远程管理,设计了基于无线传感器网络技术,结合GPS定位(用于WSN锚节点的定位)技术的果园数字信息采集与管理系统。该系统通过相应的传感器采集果园微气象信息(包括土壤水分、环境温度、环境湿度与光照等),并在无线传感网络的支持下,先结合GPS确定少数锚节点的位置,再根据锚节点计算出未知节点的相对位置,从而确定所有节点的位置信息。采集到的信息经转换后直接接入ES(专家系统),用ES输出辅助决策信息(状态评价结果,包括精确灌溉与环境控制建议等)给用户,实现了果园数字化管理的可视化、便利化。   相似文献   

16.
基于虚拟仪器的柔性化农机机群远程监测系统研究   总被引:1,自引:0,他引:1  
针对我国农业机械分布范围广、作业环境恶劣且数量繁多,采用人工监测机具运行状态将造成大量人力物力的消耗,自动化水平低;而传统的在线监测方式对于大范围测量存在费用高、采集精度差及能耗大等问题,建立了农业机械机群远程监测系统。其硬件设备由集成GSM和GPS技术的远程数据采集器及工程信号接收器组成,实现了农业机械作业状态、收获面积及地理信息等的自动监测及数据的主动上传;基于LabWindows/CVI的柔性化远程数据监测中心,采用面向对象的软件复用方法,可针对机群中不同类型农业机械、不同测控任务高效地开发专用测控软件,实现监测数据的实时显示、保存、地理信息的准确定位及行驶轨迹的动态跟随;通过调用Microsoft Access数据库,监测中心将单机使用状况及时汇报给系统管理员,为农业机械机群的分配、组合和集中管理提供可靠依据。通过田间试验表明,该系统现场数据传输的实时性、采集数据的准确性都达到了联合收获机机群远程监测的要求;采用软件复用的设计思想,大大提高了面向对象的专用测控软件的开发效率。  相似文献   

17.
讨论了通过对网际组态软件Web Access的应用,实现对水产养殖环境实时监控物联网系统的开发。该系统由传感器采集网络、中央服务器与Web Access监控节点网络、养殖户和远程专家组成。通过传感器节点采集水质参数信息,并将采集到的信息通过GPRS发送到中央服务器,利用Web Access实现人机交互,养殖户就可以通过互联网实时查看水质的相关参数与控制设备的实时状态。而养殖户所遇到的养殖问题也可以通过Web浏览器来访问远程专家得以解决。   相似文献   

18.
土壤水分监测与灌溉预报系统设计   总被引:1,自引:0,他引:1  
土壤水分监测与灌溉预报是实现作物适时适量灌溉的基础。提出了一种新的土壤水分监测与灌溉预报系统,依据实时采集的数据信息,判断作物用水情况,采用智能方法,建立高准确度土壤墒情与灌溉预报的模型,实现作物用水信息实时管理。  相似文献   

19.
针对目前大面积田间管理存在的不足,应用图像处理技术与无线通信技术,设计了基于ARM田间无线图像嵌入式系统。该系统包括图像采集终端和图像监控计算机两部分。图像采集终端根据图像监控计算机的指令采集图像数据,对图像数据进行处理后,将数据通过GPRS网络传送至图像监控计算机;图像监控计算机实时接收、解压缩和显示图像数据,实现用户对现场的实时图像监控。研究设计表明,该系统具有结构简单、功耗低、可扩展性强和移动灵活等特点,特别适合大面积田间管理,具有较强的实时性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号