首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In dogs effects of phenobarbital (PB) on hepatic cytochrome P450 (CYP) activities and on concentrations of plasma alpha 1-acid glycoprotein (AGP) were examined. Total body clearance (Cl(B)) of antipyrine and plasma AGP concentrations were monitored during oral PB treatment at a therapeutic dose for 35 days. Cl(B) of antipyrine, which reflects hepatic CYP activities, gradually increased and was maintained at about threefold concentrations compared with that before treatment, suggesting that PB induced CYP activities at a large extent even in a therapeutic dose, necessary for an antiepileptic effect. Plasma AGP concentrations also increased significantly (about fourfold). Dogs were killed at the 35th day of the PB treatment, and hepatic CYP content and enzyme kinetics of several CYPs were determined using liver microsomes. CYP content was about twofold higher than that from untreated dogs. The V(max) values for CYP1A-like activity (ethoxyresorufin O-deethylation), 2B-like activity (ethoxycoumarin O-deethylation), 2C-like activity (tolbutamide hydroxylation) and 3A-like activity (midazolam 4-hydroxylation) were higher (2-4-fold) than that in untreated dogs. In summary, a therapeutic dose of PB for antiepileptic therapy significantly induced hepatic CYPs and plasma AGP in dogs. Therefore, during antiepileptic therapy with PB, special attention must be paid to the pharmacokinetics of drugs simultaneously administered.  相似文献   

2.
The purposes of the present study were to elucidate the pharmacokinetics of zonisamide, determine the presence of a drug interaction with phenobarbital, and evaluate how long any interaction lasted after discontinuation of phenobarbital in dogs. Five dogs received zonisamide (5 mg/kg, p.o. and i.v.) before and during repeated oral administration of phenobarbital (5 mg/kg, bid, for 30–35 days). Zonisamide (5 mg/kg, p.o.) was also administered 8, 10, and 12 weeks after discontinuation of phenobarbital. Blood was sampled until 24 h after each zonisamide administration and serum concentrations of zonisamide were determined. Repeated phenobarbital decreased the maximum serum concentration, area under the serum concentration vs. time curve, apparent elimination half-life, and bioavailability of zonisamide. Total clearance increased. Time to maximum serum concentration and volume distribution were not changed. The maximum serum concentration and area under the serum concentration vs. time curve of zonisamide continued to be low until 10 weeks after the discontinuation of phenobarbital. They were restored to the same serum concentration as before phenobarbital administration 12 weeks after the discontinuation of phenobarbital. These data suggested that repeated administration of a clinical dose of phenobarbital enhanced the clearance of zonisamide and the enhanced clearance lasted at least 10 weeks after the discontinuation of phenobarbital. Caution may be necessary when zonisamide is given with phenobarbital and when antiepileptic therapy is changed from phenobarbital to zonisamide.  相似文献   

3.
In this study, we investigated the effect of multiple oral dosing of ketoconazole (KTZ) on pharmacokinetics of quinidine (QN), a CYP3A substrate with low hepatic clearance, after i.v. and oral administration in beagle dogs. Four dogs were given p.o. KTZ for 20 days (200 mg, b.i.d.). QN was administered either i.v. (1 mg/kg) or p.o. (100 mg) 10 and 20 days before the KTZ treatment and 10 and 20 days after start of KTZ treatment. Multiple oral dosing of KTZ decreased significantly alpha and beta, whereas increased t(1/2beta), V(1), and k(a). The KTZ treatment also decreased significantly both total body clearance (Cl(tot)) and oral clearance (Cl(oral)). No significant change in bioavailability was observed in the presence of KTZ. Co-administration of KTZ increased C(max) of QN to about 1.5-fold. Mean resident time after i.v. administration (MRT(i.v.)), and after oral administration (MRT(p.o.)) of QN were prolonged to about twofold, whereas mean absorption time (MAT) was decreased to 50%. Volume of distribution at steady state (V(d(ss))) of QN was unchanged in the presence of KTZ. These alterations may be because of a decrease in metabolism of QN by inhibition of KTZ on hepatic CYP3A activity. In conclusion, multiple oral dosing of KTZ affected largely pharmacokinetics of QN after i.v. and oral administration in beagle dogs. Therefore, KTZ at a clinical dosing regimen may markedly change the pharmacokinetics of drugs primarily metabolized by CYP3A with low hepatic clearance in dogs. In clinical use, much attention should be paid to concomitant administration of KTZ with the drug when given either p.o. or i.v.  相似文献   

4.
Phenobarbital is the drug of choice for control of canine epilepsy. Phenobarbital induces hepatic enzyme activity, can be hepatotoxic, and decreases serum thyroxine (T4) concentrations in some dogs. The duration of liver enzyme induction and T4 concentration decreases after discontinuation of phenobarbital is unknown. The purpose of this study was to characterize the changes in serum total T4 (TT4), free T4 (FT4), thyroid-stimulating hormone (TSH), cholesterol and albumin concentrations, and activities in serum of alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) after discontinuation of long-term phenobarbital administration in normal dogs. Twelve normal dogs were administered phenobarbital at a dosage of approximately 4.4-6.6 mg/kg PO q12h for 27 weeks. Blood was collected for analysis before and after 27 weeks of phenobarbital administration and then weekly for 10 weeks after discontinuation of the drug. The dogs were clinically normal throughout the study period. Serum ALT and ALP activity and TSH and cholesterol concentrations were significantly higher than baseline at week 27. Serum T4 and FT4 were significantly lower. Serum albumin and GGT were not changed from baseline at week 27. Changes in estimate of thyroid function (TT4, FT4, TSH) persisted for 1-4 weeks after discontinuation of phenobarbital, whereas changes in hepatic enzyme activity (ALT, ALP) and cholesterol concentration resolved in 3-5 weeks. To avoid false positive results, it is recommended that thyroid testing be performed at least 4 weeks after discontinuation of phenobarbital administration. Elevated serum activity of hepatic enzymes 6-8 weeks after discontinuation of phenobarbital may indicate hepatic disease.  相似文献   

5.
Moore, S.A., Muñana, K.R., Papich, M.G., Nettifee‐Osborne, J.A. The pharmacokinetics of levetiracetam in healthy dogs concurrently receiving phenobarbital. J. vet. Pharmacol. Therap. 34 , 31–34. Levetiracetam (LEV) is a commonly used add‐on medication in dogs with refractory epilepsy. The objective of this study was to determine if the pharmacokinetics of LEV are altered by concurrent administration of phenobarbital (PB). Six healthy dogs received a single oral dose of LEV (16.7–27.8 mg/kg). Blood samples were collected at baseline and intermittently for 24 h. The study was repeated after the dogs received oral PB (2.0–3.3 mg/kg) twice daily for 21 days. Plasma LEV levels were evaluated by high pressure liquid chromatography, and data analyzed using a compartmental model. Compared with values determined when LEV was administered alone, concurrent administration of PB resulted in a decrease in LEV peak concentration (Cmax) from 32.39 ± 6.76 to 18.22 ± 8.97 (P = 0.0071), a decrease in elimination half‐life (T1/2) from 3.43 ± 0.47 to 1.73 ± 0.22 (P = 0.0005), and an increase in oral clearance from 124.93 ± 26.93 to 252.99 ± 135.43 ml/h/kg (P < 0.0001). Concurrent PB administration significantly alters the pharmacokinetics of LEV in the dog, indicating that dosage adjustments might be necessary when the drug is administered with PB.  相似文献   

6.
The expression of hepatic drug‐metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition‐derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed–drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP‐inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non‐specific CYP‐inducer, simultaneously with two different doses of intra‐ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB‐triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP‐inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP‐inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition.  相似文献   

7.
Methotrexate may be an alternative to ciclosporin in the treatment of canine atopic dermatitis (cAD) as suggested by recent data. The aim of the study was to investigate both the tolerance and the pharmacokinetic behavior of methotrexate (MTX) in plasma, following intravenous (i.v.), subcutaneous (s.c.) or oral (OR) administration over several weeks. Six healthy dogs were given oral MTX once a week, respectively, per dog at 2.5 mg/1 week, 5 mg/4 weeks, 7.5 mg/3 weeks, 10 mg/6 weeks and 12.5 mg/5 weeks. No clinically relevant abnormalities of laboratory parameters were noticed. A high inter‐individual variation of MTX plasma concentration was observed with a suspicion of saturation phenomenon in absorption. To compare with other routes of administration, six healthy beagle dogs followed a crossover design study at 7.5 mg per dog MTX. The absolute bioavailability was 93% for SC injection and 30% for the oral route. The inter‐individual variability was quite low following SC administration compared to oral route. Just as in human, given the substantial variability of oral absorption, clinicians cannot assume consistent oral bioavailability of MTX. Therefore, they may consider switching dogs to the SC route in case of absence of clinical response with a weekly oral dose.  相似文献   

8.
OBJECTIVE: To determine the effect of oral administration of low doses of pentobarbital on cytochrome P450 (CYP) isoforms and CYP-mediated reactions in immature Beagles. ANIMALS: 42 immature (12-week-old) Beagles. PROCEDURE: Dogs were grouped and treated orally as follows for 8 weeks: low-dose pentobarbital (50 microg/d; 4 males, 4 females), mid-dose pentobarbital (150 microg/d; 4 males, 4 females), high-dose pentobarbital (500 microg/d; 4 males, 4 females), positive-pentobarbital control (10 mg/kg/d; 2 males, 2 females), positive-phenobarbital control (10 mg/kg/d; 2 males, 2 females), and negative control (saline 10.9% NaCl] solution; 5 males, 5 females). Serum biochemical and hematologic values were monitored. On necropsy examination, organ weights were determined, and histologic evaluation of tissue sections of liver, kidney, small intestine, testes, epididymis, and ovaries was performed. Hepatic and intestinal drug-metabolizing enzyme activities were measured, and relative amounts of CYP isoforms were determined by western blot analysis. RESULTS: The amount of a hepatic CYP2A-related isoform in dogs from the high-dose pentobarbital treatment group was twice that of dogs from the negative control group. CYP2C was not detectable in small intestinal mucosa of dogs from the negative control group; measurable amounts of CYP2C were found in dogs from the various (low-, mid-, and high-dose) pentobarbital treatment groups and from positive-pentobarbital and positive phenobarbital control groups. Several CYP-mediated reactions increased in a dose-dependent manner. The lowest calculated effective dose of pentobarbital ranged from 200 to 450 microg/d. CONCLUSIONS AND CLINICAL RELEVANCE: Several CYP isoforms and their associated reactions were induced in dogs by oral administration of low amounts of pentobarbital.  相似文献   

9.
Inhibitory effects of several fluoroquinolones (FQs) on liver CYP3A activities were examined by in vitro and in vivo tests in dogs. Midazolam (MDZ) hydroxylation rate was used to determine the CYP3A activities in liver microsomes. Enrofloxacin (EFX), ofloxacin (OFX) orbifloxacin (OBFX) and ciprofloxacin (CFX) were tested. None of the FQs changed Vmax, Km or intrinsic clearance (Vmax/Km) of MDZ. For in vivo test, we examined the effects of oral administration of EFX and OFX on the pharmacokinetics of quinidine (QN), a CYP3A substrate. EFX or OFX (10 mg/kg) was administered once a day for 3 days. QN (2 mg/kg) was intravenously injected at 2 h after the final dose of FQs administration. The same dose of QN was intravenously injected 3 weeks before the start of FQs administration for control. Neither EFX nor OFX changed the pharmacokinetic parameters of QN. These in vitro and in vivo consisted results suggest that these FQs lack the inhibitory effects on CYP3A activities in dogs. Hence, given these results, the risk of drug-drug interaction is unlikely to occur between FQs and CYP3A substrates in clinical situation in dogs.  相似文献   

10.
As certain quinolones can interfere with the metabolism of theophylline by competitive inhibition of the hepatic microsomal cytochrome P450 system, concomitant use of these drugs with theophylline could result in theophylline toxicity. This study investigated the effect of orally administered marbofloxacin (2 and 5 mg/kg each once daily) on steady-state plasma pharmacokinetics of theophylline after concomitant oral administration of a sustained release theophylline preparation in dogs. Marbofloxacin caused some alteration in theophylline metabolism. A 2 mg/kg dose of marbofloxacin did not clearly result in an increased area under the concentration--time curve (AUC) or decreased clearance of theophylline, but at a dose of 5 mg/kg, a statistically significant increase in AUC and a decrease in the total clearance of theophylline was found. The 26% reduction in theophylline clearance is probably not clinically significant in healthy dogs, but for dogs with renal impairment, there might be a chance of theophylline accumulation when dosed concomitantly with marbofloxacin.  相似文献   

11.
The acute phase response (APR) was induced by five separate intravenous (i.v.) injections of Escherichia coli lipopolysaccharide (LPS, 17 microg/kg each time) in rabbits, with intervals of 1 h. This model was used to study the effects of APR on the activities of hepatic microsomal cytochrome P450 (CYP)-dependent enzyme including drug metabolism. Five female rabbits were included in each of four groups, a control group and three LPS-treated groups (group I, II and III). The rabbits of the control, group I, II and III were killed at 1, 1, 3 and 7 days after saline (control only) or the LPS injection, respectively. The APR was confirmed by increases in rectal body temperature, plasma concentrations of interleukin-6 and C-reactive protein (CRP). Pharmacokinetics of antipyrine before death were examined in every group. Antipyrine was administered (5 mg/kg) at 24 h (control and group I), 3 days (group II) and 7 days (group III) after the first LPS injection. Total body clearance (Cl(tot)) of antipyrine tended to decrease in group I. All the livers were excised for measuring CYP-dependent activities. Total CYP content and several CYP-dependent activities (aminopyrine N-demethylation, aniline 4-hydroxylation and caffeine 3-demethylation) decreased in group I. The maximum velocity (Vmax) values of those enzymes, and the amount of CYP1A1/1A2 and CYP2E1 apoproteins appeared to decrease. Michaelis constant (Km) values of those enzymes were not affected by the APR. Rectal body temperature recovered to normal at 3 days after the first LPS injection in group II and III. The concentration of CRP, albumin, total CYP content and the plasma clearance of antipyrine returned to the control levels at 7 days after the first LPS injection. These results suggest that the metabolism of drugs, including CYP-dependent drug metabolizing activity, is suppressed markedly in incipient APR induction in rabbits, and the drug metabolizing capacity is returned to normal at 7 days after APR induction.  相似文献   

12.
Methadone is an opioid, which has a high oral bioavailability (>70%) and a long elimination half-life (>20 h) in human beings. The purpose of this study was to evaluate the effects of ketoconazole [a CYP3A and p-glycoprotein (p-gp) inhibitor] and omeprazole (an H+,K(+)-ATPase proton-pump inhibitor) on oral methadone bioavailability in dogs. Six healthy dogs were used in a crossover design. Methadone was administered i.v. (1 mg/kg), orally (2 mg/kg), again orally following oral ketoconazole (10 mg/kg q12 h for two doses), and following omeprazole (1 mg/kg p.o. q12 h for five doses). Plasma concentrations of methadone were analyzed by high-pressure liquid chromatography or fluorescence polarization immunoassay. The mean +/- SD for the elimination half-life, volume of distribution, and clearance were 1.75 +/- 0.25 h, 3.46 +/- 1.09 L/kg, and 25.14 +/- 9.79 mL/min.kg, respectively following i.v. administration. Methadone was not detected in any sample following oral administration alone or following oral administration with omeprazole. Following administration with ketoconazole, detectable concentrations of methadone were present in one dog with a 29% bioavailability. MDR-1 genotyping, encoding p-gp, was normal in all dogs. In contrast to its pharmacokinetics humans, methadone has a short elimination half-life, rapid clearance, and low oral bioavailability in dogs and the extent of absorption is not affected by inhibition of CYP3A, p-gp, and gastric acid secretion.  相似文献   

13.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

14.
BACKGROUND: Ineffective clearance of Ehrlichia canis after doxycycline administration has been reported despite the fact that the recommended treatment for canine ehrlichiosis is doxycycline. The effectiveness of doxycycline in clearing E canis infection from the blood and tissues of dogs requires additional evaluation. HYPOTHESIS: Doxycycline (5 mg/kg PO q12h), administered for 4 weeks, will eliminate E canis infection from the blood and tissues of experimentally infected dogs. ANIMALS: Fifteen Walker hound-mixed breed dogs were inoculated subcutaneously with E canis-infected canine histiocytic cells 4 months before doxycycline treatment. METHODS: Four dogs were treated with doxycycline (5 mg/kg PO q12h for 3 weeks), 5 dogs were treated with doxycycline at the same dosage for 4 weeks, and 5 control dogs were not treated. Dexamethasone (0.4 mg/kg i.v.) was given after treatment to precipitate recrudescence of any remaining E canis organisms. Platelet counts, anti-E canis immunofluorescent antibodies, and polymerase chain reaction (PCR) detection of E canis deoxyribonucleic acid (DNA) in blood and tissues were evaluated. RESULTS: E canis DNA was not detected in the blood and tissues of doxycycline-treated dogs after treatment. Platelet counts were within reference intervals, and E canis antibodies decreased. Spontaneous clearance of E canis infection occurred in 2 of 5 control dogs. Three control dogs had E canis DNA detected in blood and tissues, platelet counts remained low or within the reference interval, and E canis antibodies remained high. CONCLUSIONS AND CLINICAL IMPORTANCE: As administered in this study, doxycycline cleared E canis from the blood and tissues of experimentally infected dogs.  相似文献   

15.
The aim of this study was to investigate the pharmacokinetic properties of mosapride after intravenous and oral administration to beagle dogs. To obtain the advanced pharmacokinetic parameters of mosapride, both noncompartmental analysis and pharmacokinetic modeling were performed. Twenty beagle dogs were randomly sorted into intravenous (1 mg single administration of mosapride) and oral (5 mg once a day administration of mosapride) groups. Blood samples were collected according to the reported schedule for pharmacokinetics. The plasma concentration of mosapride was analyzed using liquid chromatography–tandem mass spectrometry. According to the pharmacokinetic analysis, the absorption rate of mosapride was 3.14 ± 1.14 hr−1 and oral bioavailability of mosapride was approximately 1%. The one-compartment model well described the pharmacokinetics of mosapride after both intravenous and oral administration to dogs. These findings will help facilitate the determination of the optimal dose regimen of mosapride for dogs with gastrointestinal disorder.  相似文献   

16.
A pharmacokinetic/pharmacodynamic modelling approach was used to determine a dosage regimen which maximizes diuretic efficiency of torasemide in dogs. Kinetic profiles of plasma concentration, torasemide excretion rate in urine (TERU) and diuresis were investigated in 10 dogs after single oral administrations at 3 dose levels, 0.2, 0.8 and 1.6 mg/kg, and an intravenous injection of 0.2 mg/kg. Endogenous regulation was evidenced by a proteresis loop between TERU and diuresis. To describe the diuresis–time profile, TERU served as input into a turnover model with inhibition of loss of response, extended by a moderator acting on both loss and production of response. Estimated maximum inhibition of loss of response, Imax, was 0.984 showing that torasemide is an efficacious diuretic able to suppress almost total water reabsorption. A TERU50, value producing half of Imax, of 1.45 μg/kg/h was estimated from the model. Pharmacokinetic and pharmacodynamic parameters were used to simulate the torasemide dose–effect relationship after oral administration. Model predictions were in good agreement with diuresis measured in a validation study conducted in 10 dogs, which were administered oral doses of 0.15, 0.4, 0.75, 1.5 and 4.5 mg/kg for 5 days. Finally, oral dose associated with the highest daily diuretic efficiency was predicted to be 0.1 mg/kg.  相似文献   

17.
In order to determine whether hypertension would develop in dogs with chronic renal failure, we performed 7/8 renal ablation in 6 healthy dogs and compared pre- and post-ablation blood pressures determined by telemetry. One month after the renal ablation, blood urea nitrogen and creatinine were significantly increased (p<0.05), creatinine clearance was decreased (p<0.05), and blood pressure was increased significantly (p<0.05). Simultaneously, plasma renin activity, angiotensin I and II, and aldosterone were elevated significantly (p<0.05) compared with the values obtained from 11 healthy dogs with intact renal function. The dogs with induced renal failure and hypertension were administered an angiotensin-converting enzyme inhibitor, benazepril hydrochloride, once daily for 2 weeks at 2 mg/kg body weight, and changes in blood pressure and the renin-angiotensin-aldosterone (RAA) system were determined. During the administration of benazepril hydrochloride, blood pressure, angiotensin II and aldosterone decreased significantly (p<0.05) and, upon discontinuation of administration, increased to the pre-administration levels (p<0.05). Plasma renin activity and angiotensin I showed no significant changes throughout the administration study. These results provide experimental evidence that hypertension develops in dogs with chronic renal failure through mechanisms involving the RAA system and demonstrate that benazepril hydrochloride improves renal hypertension in dogs.  相似文献   

18.

Background

Trilostane is commonly used to treat pituitary‐dependent hyperadrenocorticism (PDH) in dogs. There are differing opinions regarding the dose and frequency of trilostane administration in dogs with PDH.

Objectives

To compare the efficacy of 2 trilostane protocols in the treatment of dogs with PDH.

Animals

Sixteen client‐owned dogs with PDH and a body weight <5 kg.

Methods

Prospective observational study. Group A (n=9; low‐dose treatment group) received 0.78 ± 0.26 mg of trilostane/kg PO every 12 h and group B (n = 7; high‐dose treatment group) 30 mg of trilostane/dog PO every 24 h. All of the dogs were reassessed at 2, 4, 8, 12, 16, and 24 weeks after the initiation of treatment.

Results

An improvement in both ACTH‐stimulated serum cortisol concentrations and clinical signs occurred more slowly in group A than in group B; however, after 20 weeks of treatment, 2/7 dog in group B had clinical signs and abnormal laboratory findings consistent with hypoadrenocorticism. At 24 weeks, an improvement in the clinical findings of all of the dogs in both groups was detected.

Conclusions and clinical importance

In dogs with PDH, twice‐daily administration of low‐dose trilostane is an effective approach to the management of PDH. In addition, our results suggest fewer potential adverse effects if trilostane is administered twice daily in the lower dose.  相似文献   

19.
The effect of inflammation on the disposition of phenylbutazone (PBZ) was investigated in Thoroughbred horses. An initial study ( n = 5) in which PBZ (8.8 mg/kg) was injected intravenously twice, 5 weeks apart, suggested that the administration of PBZ would not affect the plasma kinetics of a subsequent dose. Two other groups of horses were given PBZ at either 8.8 mg/kg ( n = 5) or 4.4 mg/kg ( n = 4). Soft tissue inflammation was then induced by the injection of Freud's adjuvant and the administration of PBZ was repeated at a dose level equivalent to, but five weeks later than, the initial dose. Inflammation did not appear to affect the plasma kinetics or the urinary excretion of PBZ and its metabolites, oxyphenbutazone (OPBZ) or hydroxyphenylbutazone (OHPBZ) when PBZ was administered at 8.8 mg/kg. However, small but significant increases ( P <0.05) in total body clearance ( CL B; 29.2 ± 3.9 vs. 43.8 ± 8.1 mL/ h-kg) and the volume of distribution, calculated by area ( V d(area); 0.18 ± 0.05 vs. 0.25 ± 0.03 L/kg) or at steady-state ( V d(SS); 0.17±0.04 vs. 0.25 ± 0.03 L/ kg), were obtained in horses after adjuvant injection, compared to controls, when PBZ was administered at 4.4 mg/kg which corresponded to relatively higher tissues concentrations and lower plasma concentrations (calculated) at the time of maximum peripheral PBZ concentration. Soft tissue inflammation also induced a significantly ( P <0.05) higher amount of OPBZ in the urine 18 h after PBZ administration but the total urinary excretion of analytes over 48 h was unchanged. These results have possible implications regarding the administration of PBZ to the horse close to race-day.  相似文献   

20.
The aim of the present paper was to test the oral administration of oral immediate release capsules of tramadol in dogs, to asses both its pharmacokinetic properties and its urine profile. After capsules administration of tramadol (4 mg/kg), involving eight male Beagle dogs, the concentration of tramadol and its main metabolites, M1, M2 and M5, were determined in plasma and urine using an HPLC method. The plasma concentrations of tramadol and metabolites were fitted on the basis of mono- and non-compartmental models, respectively. Tramadol was detected in plasma from 5 min up to 10 h in lesser amounts than M5 and M2, detected at similar concentrations, while M1 was detected in negligible amounts. In the urine, M5 and M1 showed the highest and smallest amount, respectively; M1 and M5 resulted widely conjugate with glucuronic acid. In conclusion, after oral administration of tramadol immediate release capsules, the absorption of the active ingredient was rapid, but its rapid metabolism quickly transformed the parental drug to high levels of M5 and M2, showing an extensive elimination via the kidney. Hence, in the dog, the oral immediate release pharmaceutical formulation of tramadol would have different pharmacokinetic behaviour than in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号