首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography and ion-trap mass spectrometry has been used to identify biogenic volatile organic compounds present in the headspace of chopped leaves of Eucalyptus (E.) dunnii, E. citriodora, and E. saligna. A simple HS-SPME method entailing 30 min of extraction at 30 degrees C was developed for this purpose. Thirty compounds were identified in the headspace of 60 juvenile chopped Eucalyptus leaves, and another 30 were tentatively identified. The presence of compounds such as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMNT), (E,E)-alpha-farnesene, (E,E,E)-3,7,11,15-tetramethyl-1,3,6,10,14-hexadecapentaene (TMHP), beta-caryophyllene, alpha-humulene, germacrene D, and beta-cubebene in the headspace of the leaves but not in the essential oils from the same Eucalyptus trees and information about the infochemical roles of some of these compounds in other living plant systems suggest they might play a bioactive role in Eucalyptus leaves.  相似文献   

2.
Analysis of biogenic volatile organic compounds (BVOC) of 14 Eucalyptus clones has been performed using an automated headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography (GC)/ion trap mass spectrometry (ITMS) method. Correlations between pulp properties of Eucalyptus clones and the BVOC of their leaf headspaces were studied. The compounds alpha-terpineol and the sesquiterpene beta-eudesmol were positively correlated with S5, a property related to the hemicelluose content in the pulp. Qualitative results obtained with automated HS-SPME were sufficient to group together the same species and related hybrids through cluster analysis and were confirmed through principal component analysis. A preliminary separation of the essential oils of Eucalyptus dunnii through comprehensive two-dimensional gas chromatography (GC x GC) showed approximately 580 peaks compared to approximately 60 in a typical GC/ITMS first-dimension chromatogram. The potential of HS-SPME coupled to GC x GC to improve the separation of Eucalyptus volatiles and other plant essential oils looks extremely promising for new applications of unsupervised learning methods.  相似文献   

3.
Microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) was developed as a simple and effective method for fast sampling of volatile organic compounds (VOCs) from Eucalyptus citriodora Hook (E. citriodora) leaves. During microwave heating, a simple shielding device made of aluminum foil was used to protect the SPME fiber from microwave irradiation while allowing the sample to be heated. A room temperature water bath was also used to allow microwave heating to be conducted in a more controlled manner. The inner heating caused by microwave irradiation dramatically accelerated the emission of VOCs from the sample, but no marked change in headspace temperature in the sample vial was found. Under optimum conditions, the extraction efficiencies obtained with microwave heating were much higher than those obtained without microwave heating for all fibers used, namely, 7-microm polydimethylsiloxane (PDMS), 100-microm polydimethylsiloxane (PDMS), 65-microm polydimethylsiloxane/divinylbenzene (PDMS/DVB), and 75-microm carboxen/polydimethylsiloxane (CAR/PDMS). The improvement of extraction efficiency using MA-HS-SPME allowed more VOC events to be detected, with more balanced extraction of VOCs of lower and higher molecular masses. Moreover, a good linear relationship was found between sample size and GC-FID response (total peak area of VOCs), indicating the usefulness of MA-HS-SPME for quantitative analysis of individual volatile compounds in E. citriodora leaves.  相似文献   

4.
The headspace volatile components of roots, stems, leaves, and flowers of Echinacea angustifolia,E. pallida, and E. purpurea were analyzed by capillary gas chromatography/mass spectrometry (GC/MS). Over 70 compounds were identified in the samples. All plant tissues, irrespective of the species, contain acetaldehyde, dimethyl sulfide, camphene, hexanal, beta-pinene, and limonene. The main headspace constituents of the aerial parts of the plant are beta-myrcene, alpha-pinene, limonene, camphene, beta-pinene, trans-ocimene, 3-hexen-1-ol, and 2-methyl-4-pentenal. The major headspace components of root tissue are alpha-phellandrene (present only in the roots of E. purpurea and E.angustifolia), dimethyl sulfide, 2-methylbutanal, 3-methylbutanal, 2-methylpropanal, acetaldehyde, camphene, 2-propanal, and limonene. Aldehydes, particularly butanals and propanals, make up 41-57% of the headspace of root tissue, 19-29% of the headspace of the leaf tissue, and only 6-14% of the headspace of flower and stem tissues. Terpenoids including alpha- and beta-pinene, beta-myrcene, ocimene, limonene, camphene, and terpinene make up 81-91% of the headspace of flowers and stems, 46-58% of the headspace of the leaf tissue, and only 6-21% of the roots. Of the 70 compounds identified, >50 are reported in Echinacea for the first time.  相似文献   

5.
Membrane extraction with sorbent interface (MESI) has been applied to monitor plant fragrance volatiles emitted into indoor air. The main components of the MESI system are a membrane module and a trap, which can be connected directly to a GC or GC-MS for simultaneous multicomponent extraction and monitoring. A polydimethylsiloxane (PDMS) membrane and two different traps, PDMS and Tenax, as well as a DC current supply for trap desorption have been applied in this research. After the membrane module is placed in contact with the plant, the MESI/GC-MS provides semicontinuous characterization of volatile compounds emitted. The MESI device has been applied to monitor the biogenic volatile organic compounds released during the first 8 h after a branch was cut from a Eucalyptus dunnii tree. The study demonstrates that the MESI system is a simple and useful tool for monitoring changes in emission processes as a function of time.  相似文献   

6.
7.
The aroma compounds of rocket salad (Eruca sativa) SPME headspace samples of fresh leaves were analyzed using GC, GC-MS, and olfactometry. More than 50 constituents of the Eruca headspace could be identified to be essential volatiles, responsible for the characteristic intense green; herbal; nutty and almond-like; Brassicaceae-like (direction of cabbage, broccoli, and mustard); and horseradish-like aroma of these salad leaves. As aroma impact compounds, especially isothiocyanates, and derivatives of butane, hexane, octane, and nonane were identified. 4-Methylthiobutyl isothiocyanate (14.2%), cis-3-hexen-1-ol (11.0%), cis-3-hexenyl butanoate (10.8%), 5-methylthiopentyl isothiocyanate (9.3%), cis-3-hexenyl 2-methylbutanoate (5.4%), and 5-methylthiopentanenitrile (5.0%) were found in concentrations higher than 5.0% (calculated as % peak area of GC analysis using a nonpolar column).  相似文献   

8.
High-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) and tandem mass spectrometry (MS(n)) were used to investigate the phenolic constituents in methanol, water, and methanol/water extracts of Eucalyptus globulus Labill. bark. Twenty-nine phenolic compounds were identified, 16 of them referenced for the first time as constituents of E. globulus bark, namely, quinic, dihydroxyphenylacetic, and caffeic acids, bis(hexahydroxydiphenoyl (HHDP))-glucose, galloyl-bis(HHDP)-glucose, galloyl-HHDP-glucose, isorhamentin-hexoside, quercetin-hexoside, methylellagic acid (EA)-pentose conjugate, myricetin-rhamnoside, isorhamnetin-rhamnoside, mearnsetin, phloridzin, mearnsetin-hexoside, luteolin, and a proanthocyanidin B-type dimer. Digalloylglucose was identified as the major compound in the methanol and methanol/water extracts, followed by isorhamnetin-rhamnoside in the methanol extract and by catechin in the methanol/water extract, whereas in the water extract catechin and galloyl- HHDP-glucose were identified as the predominant components. The methanol/water extract was shown be the most efficient to isolate phenolic compounds identified in E. globulus bark.  相似文献   

9.
Flavonoids of nine Australian monofloral Eucalyptus honeys have been analyzed and related to their botanical origins. The mean content of total flavonoids varied from 1.90 mg/100 g of honey for stringybark (E. globoidia) honey to 8.15 mg/100 g of honey for narrow-leaved ironbark (E. crebra) honey, suggesting that species-specific differences occur quantitatively among these Eucalyptus honeys. All of the honey samples analyzed in this study have a common flavonoid profile comprising tricetin (5,7,3',4',5'-pentahydroxyflavone), quercetin (3,5,7,3',4'-pentahydroxyflavone), and luteolin (5,7,3',4'-tetrahydroxyflavone), which, together with myricetin (3,5,7,3',4',5'-hexahydroxyflavone) and kaempferol (3,5,7,4'-tetrahydroxyflavone), were previously suggested as floral markers for European Eucalyptus honeys. Thus, flavonoid analysis could be used as an objective method for the authentication of the botanical origin of Eucalyptus honeys. Moreover, species-specific differences can also be found in the composition of honey flavonoid profiles. Among these honeys, bloodwood (E. intermedia) honey contains myricetin and tricetin as the main flavonoid compounds, whereas there is no myricetin detected in yapunyah (E. ochrophloia), narrow-leaved ironbark (E. crebra), and black box (E. largiflorens) honeys. Instead, these types of Eucalyptus honeys may contain tricetin, quercetin, and/or luteolin as their main flavonoid compounds. Compared to honeys from other geographical origins, the absence or minor presence of propolis-derived flavonoids such as pinobanksin, pinocembrin, and chrysin in Australian honeys is significant. In conclusion, these results demonstrate that a common flavonoid profile exists for all of the Eucalyptus honeys, regardless of their geographical origins; the individual species-specific floral types of Eucalyptus honey so common in Australia could be possibly differentiated by their flavonoid profile differences, either qualitatively or quantitatively or both.  相似文献   

10.
The influence of isolation method on the determination of important aroma compounds in black currant juice was investigated by surface of nasal impact frequency (SNIF) gas chromatography-olfactometry (GC-O). The applied methods were solvent extraction, static headspace, and purge and trap using 15 and 60 min of purge time. By the four methods, a total of 59 odors were observed, and, of these, 44 corresponded to compounds that could be identified. For the headspace methods increasing purge volumes resulted in recoveries of additional, less volatile compounds. The main compound groups recovered by the headspace methods were esters and terpenes, whereas compounds recovered by solvent extraction were not as dominated by fruity odors. For most compounds there was agreement between the size of the SNIF value obtained by GC-O and the amount of the measurable compound found by gas chromatography-mass spectrometry.  相似文献   

11.
Volatile organic compounds (VOCs) in fermented honeybush, Cyclopia subternata, were sampled by means of a high-capacity headspace sample enrichment probe (SEP) and analyzed by gas chromatography-mass spectrometry (GC-MS). Stereochemistry was determined by means of enantioselective GC-MS with derivatized β-cyclodextrin columns as chiral selectors. A total of 183 compounds, the majority of which are terpenoids (103; 56%), were identified by comparing their mass spectra and retention indices with those of reference compounds or tentatively identified by comparison with spectral library or literature data. Of these compounds, 37 were determined by gas chromatography-olfactometry (GC-O), using detection frequency (DF) and aroma extract dilution analysis (AEDA), to be odor-active (FD ≥ 2). (E)-β-Damascenone, (R/S)-linalool, (E)-β-damascone, geraniol, (E)-β-ionone, and (7E)-megastigma-5,7,9-trien-4-one were identified with the highest FD factors (≥512). The odors of certain compounds, that is, (6E,8Z)-megastigma-4,6,8-trien-3-one, (6E,8E)-megastigma-4,6,8-trien-3-one, (7E)-megastigma-5,7,9-trien-4-one, 10-epi-γ-eudesmol, epi-α-muurolol, and epi-α-cadinol, were perceived by GC-O assessors as typically honeybush-like.  相似文献   

12.
The volatile compounds emanating from four fermented sugar baits, palm sugar, golden cane syrup, port wine, and molasses, were isolated by headspace sampling and analyzed by gas chromatography-mass spectrometry. Three classes of compounds including esters, alcohols, and aromatic compounds were identified in the headspace of the four fermented sugar baits. There was a high degree of qualitative similarity between the headspace contents of the four fermented sugar baits, although quantitatively they varied considerably. Ethyl acetate, 3-methylbutanol, ethyl hexanoate, 2-phenylethanol, ethyl octanoate, ethyl (E)-4-decenoate, ethyl decanoate, and ethyl dodecanoate were the major compounds identified in the headspace of the four fermented sugar baits. The efficacy of the four fermented sugar baits was investigated in field trapping experiments. Fermented palm sugar and golden cane syrup were superior in attracting significant numbers of moths as compared to port wine and molasses. Fermented molasses was the least attractive among the four baits. Over 90% of the insects caught were noctuids with Graphania mutans and Tmetolophota spp. being the main noctuids captured (over 55%) in the four fermented sugar baits. Male and female G. mutans were equally attracted to the four sugar baits. A number of tortricid species were also trapped.  相似文献   

13.
Volatile compounds of cooked fillets of Silurus glanis reared under two conditions occurring in France were studied. They were extracted by dynamic headspace, identified by gas chromatography/mass spectrometry, and quantified by gas chromatography-flame ionization detection. Odor active volatile compounds were characterized by gas chromatography-olfactometry. Sixty volatile compounds were detected in dynamic headspace extracts, among which 33 were odor active. Rearing conditions affected their estimated concentrations and their odor intensities, but very few qualitative differences were exhibited (only seven volatile compounds were concerned). A good correlation between quantitative and olfactometric results is shown. 2-Methylisoborneol and (E)-2-hexenal were less represented in OUTDOOR extracts, while 2-butanone was less represented in INDOOR extracts. In addition, olfactometric results can be closely related to those previously obtained by sensory analysis. Boiled potato sensory odor of the silurus cooked fillets can be related to (Z)-4-heptenal and methional, and buttery odor can be related to 2,3-butanedione, an unknown compound (RI = 1010), and 2,3-pentadione.  相似文献   

14.
Sweet basil (Ocimum basilicum L.) is an herb that is used to add a distinct aroma and flavor to food. Volatile compounds emitted from fully expanded fresh leaves grown in drip-irrigated plots that were covered with six colors of mulch were compared. The colors reflected a range of photosynthetic photon flux, far-red, red, and blue light from the soil surface to developing leaves. Our objective was to determine whether reflection from the different colors could influence concentrations of volatile compounds emitted from the fresh leaves. Volatile compounds were isolated by headspace sampling and quantified by gas chromatography. Twenty-six compounds were identified, of which the terpenoids linalool and 1,8-cineole comprised more than 50% of the total yield. Concentrations of volatile compounds from leaves that developed over green, blue, yellow, white, and red mulches followed the same patterns as they did for air-dried leaves of the same cultivar. However, the concentration of volatile compounds from fresh leaves was about 50-fold higher than those found in the previous study of air-dried leaves.  相似文献   

15.
Key aroma components of cooked tail meat of American lobster (Homarus americanus) were studied by gas chromatography-olfactometry (GCO) techniques. Components of low and intermediate volatility were evaluated by aroma extract dilution analysis of solvent extracts prepared by direct solvent extraction-high vacuum distillation and vacuum steam distillation-solvent extraction, whereas headspace volatile components were assessed by GCO of decreasing headspace (static and dynamic modes) samples. Forty-seven odorants were detected by all techniques. 3-Methylbutanal (chocolate, malty), 2,3-butanedione (buttery), 3-(methylthio)propanal (cooked potato), 1-octen-3-one (mushroom), 2-acetyl-1-pyrroline (popcorn), and (E,Z)-2,6-nonadienal (cucumber), were identified as predominant odorants by all four isolation methods. The highly volatile compounds methanethiol (rotten, sulfurous) and dimethyl sulfide (canned corn) were detected by headspace methods only. These eight odorants along with three unknown compounds with crabby, amine, fishy odors were found to predominate in the overall aroma of cooked lobster tail meat.  相似文献   

16.
Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.  相似文献   

17.
Volatiles were isolated from whole green mature walnuts (Hartley variety) with husks still intact using dynamic headspace sweeping with trapping on Tenax. A total of 45 volatile compounds were identified by GC-MS. Major volatiles identified included (E)-4, 8-dimethyl-1,3,7-nonatriene, pinocarvone, pinocarveol, myrtenal, myrtenol, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, caryophyllene epoxide, verbenol, verbenone, and terpinolene. Green walnuts that had been infested with codling moth showed appreciably higher amounts emitted for (E)-4,8-dimethyl-1,3,7-nonatriene, (E, E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, alpha- and beta-pinenes, sabinene, (E)-beta-ocimene, (E,E)-alpha-farnesene, and linalool. The infested nuts also emitted benzyl methyl ether, isobutyl cyanide, and 1-nitro-3-methylbutane, compounds not found with the healthy nuts. Volatiles from uninfested green walnuts at the maturity stage where the husk was just beginning to split were also analyzed and compared.  相似文献   

18.
The essential oil of leaves and flowers of sachalinmint [Mentha sachalinensis (Briq.) Kud?] grown in Norway (Trondheim) has been studied by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry analysis (GC-MS). The essential oil content increased linearly in acropetal direction from 1.08% (0-20 cm plant height) to 1.75% (60-80 cm; young leaves and flowers). The steam-distilled samples showed a minor complex matrix with a very high menthol and a much lower menthone content (87.89 and 4.05%, respectively). From testing of HS-SPME unequilibrated exposure times ranging from 10 s to 5 min, an extraction time of 30 s was found to be sufficient to detect both low- and high-eluting compounds. Comparison of HS-SPME and steam-distilled samples established that the same tendencies of increasing menthol/menthone content in the basipetal/acropetal direction could be detected by both analysis methods. With regard to the extraction efficiency, HS-SPME gave additional detailed information about less important terpenic compounds.  相似文献   

19.
Volatiles were obtained from commercially prepared and laboratory-prepared rice cakes using high-flow dynamic headspace isolation with Tenax trapping. Analysis was carried out by capillary GC/MS. More than 60 compounds were identified. Major volatiles included 1-hydroxy-2-propanone, furfuryl alcohol, 2, 5-dimethylpyrazine, 2-methylpyrazine, pyrazine, hexanal, furfural, pentanol, 3-hydroxy-2-butanone (acetoin), and ethyl-3, 6-dimethylpyrazine. Although not ideally applicable to a dry product, concentration/threshold ratios indicated that the compounds with a high probability of contributing to the aroma and flavor included 3-methylbutanal, dimethyl trisulfide, 2-ethyl-3,5-dimethylpyrazine, 4-vinylguaiacol, hexanal, (E,E)-2,4-decadienal, 2-methylbutanal, 2-acetyl-1-pyrroline, 1-octen-3-ol, and 1-octen-3-one.  相似文献   

20.
【目的】利用电子鼻和分光测色仪建立一套快速检测茶树叶片氮含量的无损伤检测方法。【方法】供试样品为茶树顶芽向下第3~4片无损伤叶片。在预实验中优化了气体收集瓶体积、顶空预热温度和顶空时间等参数。采用电子鼻自带Winmuster软件将经过优化后的传感器响应特征值进行主成分分析(principal component analysis,PCA)、线性判别法分析(linear discriminant analysis,LDA)和负荷加载分析(loadings analysis,LA),筛选出灵敏性最好的传感器。同时用分光色差仪对茶树叶片色度值进行测定。样品的测量部位是叶肉区,每组20次重复。色度值主要包括L (表示黑白或者亮暗)、a (表示红绿)、b (表示黄蓝)值。采用Origin 8.0软件对测色仪L、a、b值分别进行一元线性回归分析。利用SPSS 16.0软件采用LSD法进行单因素方差分析(one-way Anova),并进行t检验。对分光测色仪中色差指标进行筛选,以获得相关系数最高的参数。采用凯氏定氮法测定茶叶总氮含量。正式试验第二步是以不同氮含量下的电子鼻和分光测色检测数据为基础,分别建立气味、颜色、气味结合颜色的3种氮含量预测模型,并进行比较分析。【结果】通过预备试验,建立了气体收集器体积为50 mL、顶空预热温度为30℃、顶空时间为30 min的电子鼻检测体系。正式试验第一步确定了以对氮氧化合物灵敏(S2),对甲烷灵敏(S6),对无机硫化物灵敏(S7),对醇类、醛类、酮类物质灵敏(S8),对有机硫化物灵敏(S9)的传感器为主要传感器。根据L、a、b表色系统,b值与叶片缺氮程度呈线性相关。正式试验第二步利用气味、颜色、气味结合颜色建立的3个氮含量预测模型都具有可行性,其中气味结合颜色建立的预测模型准确率最高,达到90%。【结论】用气味结合颜色的预测模型预测茶树叶片氮含量准确度较高,可在实际工作中进行运用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号