首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen Dynamics Under Excrement Patches in Pastures Soil mineral nitrogen contents in relation to time were measured under excrement patches on three pastures in Lower Saxony. The highest values were found under patches of urine on a pasture grazed by suckling cows. The herbage dry matter of that pasture showed a crude protein content of 19 %. The contents of mineral nitrogen under urine patches were less on a comparable pasture utilized by milking cows. The concentrations were still less on a cow grazed pasture, which remained unfertilized over a period of ten years. The content of NH4-N under urine affected areas increased distinctly in the whole soil profile, within one day of deposition. High NO3-N concentrations were found even in deeper soil layers after one week. The nitrogen concentrations under patches of urine approximated the values under not urine affected parts of the pasture within three months. The increments of mineral nitrogen under patches of faeces were insignificant.  相似文献   

2.
Recent lysimeter studies have demonstrated that the nitrification inhibitor, dicyandiamide (DCD), can reduce nitrate (NO) leaching losses from cow urine patches in grazed pasture systems. The objective of this study was to quantify the effects of fine particle suspension (FPS) DCD on soil mineral N components, pasture yield, nutrient uptake and pasture quality under grazed pasture conditions. A field study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand, from 2002 to 2006. FPS DCD was applied to grazed pasture plots at 10 kg ha?1 in early May in addition to applied cow urine patches at a nitrogen (N) loading rate of 1000 kg N ha?1, with DCD reapplied in early August. Soil mineral N levels in the urine patches were monitored. Pasture yield, N and cation concentrations and uptake were measured in treatment urine patches and inter‐urine areas of the pasture. Comparisons were made with control plots which did not receive DCD. NO levels under the DCD‐treated urine patches (0–7.5 cm) were in the order of 10 kg N ha?1 compared with 40–80 kg N ha?1 under untreated patches, and soil ammonium (NH) levels were consistently higher under the DCD‐treated patches. The DCD significantly and consistently increased pasture yield in both the urine patches, and inter‐urine areas of the pasture in all 4 years of the trial. Mean annual dry matter (DM) yields over 4 years were inter‐urine areas, 10.3; inter‐urine + DCD, 12.4; urine, 12.4 and urine +DCD 16.0 t DM ha?1, representing an average DM yield increase of 20 and 29% in inter‐urine and urine patch areas, respectively. On a whole paddock basis, the increase in annual DM yield resulting from DCD application was estimated to be 21%. N, calcium (Ca), magnesium (Mg) and potassium (K) concentrations in pasture were unaffected by treatment with DCD; however, total annual uptake of these nutrients by pasture was significantly higher in all years where DCD had been applied. Pasture DM, protein, carbohydrate, metabolizable energy and fibre levels and sward clover content were not affected by treatment with DCD. The results demonstrate the agronomic value of the DCD treatment in addition to the environmental benefits in a grazed pasture system.  相似文献   

3.
Fertilization produces many nutrient patches that have been confirmed to affect root growth. However, it is not clear how nutrient transformation and microbial community composition are affected in an inorganic nutrient patch. In this experiment, a nitrogen enrichment patch was formed by the diffusion of a urea fertilizer layer in a specially-designed container. Responses of nitrogen transformation and microbial community composition to the nitrogen enrichment patch were investigated at different incubation times. Results showed that nitrogen status and microbial community composition were slightly affected in the control patch (CK patch). In the nitrogen enrichment patch, however, soil pH was significantly increased in most soil layers close to the urea fertilizer layer; NO2?–N was the predominant form of mineral N, and its transformation to NO3?–N was delayed. Microbial community composition shifted significantly, especially before day 28 of incubation. Principal components analysis (PCA) of phospholipid fatty acids (PLFAs) patterns showed that the microbial community presented different sensitivity to high nitrogen concentration. Fungi (18:2ω6,9) showed the least sensitivity to high concentrations of NO2?–N and NO3?–N. Gram-positive bacteria showed the most sensitivity to NO2?–N. Gram-negative bacteria (cy17:0, cy19:0, 18:1ω9, and 18:1ω7) and actinomycetes (10Me17:0 and 10Me18:0) presented similar responses to NO2?–N and NO3?–N. Results of this study indicate that changes in nitrogen transformation and microbial community composition are likely to occur in nitrogen enrichment patches, but the extent of those changes depend on the microbial species and the distance of soil layers from the urea layer.  相似文献   

4.
In grassland systems, cattle and sheep urine patches are recognized as nitrous oxide (N2O) emission hot spots due to the high urinary nitrogen (N) concentrations. Hippuric acid (HA) is one of the constituents of ruminant urine that has been reported as a natural inhibitor of soil N2O emissions. The aim of this study was to examine the potential for elevated ruminant urine HA concentrations to reduce N2O emissions, in situ, on an acidic heavy clay soil under poorly drained conditions (WFPS > 85%). A randomized complete block design experiment with three replications and four treatments was conducted using the closed‐static‐flux chamber methodology. The four treatments were applied inside the chambers: control with no artificial urine application (C), control artificial urine (U), and enriched artificial urine with two rates of HA (55.8 and 90 mM, U+HA1, U+HA2). Soil inorganic‐N, soil dissolved organic carbon (DOC), soil pH as well as N2O and methane (CH4) fluxes were monitored over a 79‐d period. Although N2O emissions were not affected by the HA enriched urine treatments, U+HA2 positively affected the retention of N as until day 3, when the soil pH dropped to values < 5. Subsequently, as a consequence of rainfall events and soil acidification, it is likely that leaching or sorption onto clay reduced the efficacy of HA, masking any treatment differential effect on N2O emissions. Moreover, CH4 fluxes as well as DOC results reflected the soil anaerobic conditions which did not favour nitrification processes. Further research is needed to determine the fate of HA into the soil which might clarify the lack of an in situ effect of this compound.  相似文献   

5.
Fertilization produces many nutrient patches that have been confirmed to affect root growth. However, it is not clear how nutrient transformation and microbial community composition are affected in an inorganic nutrient patch. In this experiment, a nitrogen enrichment patch was formed by the diffusion of a urea fertilizer layer in a specially-designed container. Responses of nitrogen transformation and microbial community composition to the nitrogen enrichment patch were investigated at different incubation times. Results showed that nitrogen status and microbial community composition were slightly affected in the control patch (CK patch). In the nitrogen enrichment patch, however, soil pH was significantly increased in most soil layers close to the urea fertilizer layer; NO2-N was the predominant form of mineral N, and its transformation to NO3-N was delayed. Microbial community composition shifted significantly, especially before day 28 of incubation. Principal components analysis (PCA) of phospholipid fatty acids (PLFAs) patterns showed that the microbial community presented different sensitivity to high nitrogen concentration. Fungi (18:2ω6,9) showed the least sensitivity to high concentrations of NO2-N and NO3-N. Gram-positive bacteria showed the most sensitivity to NO2-N. Gram-negative bacteria (cy17:0, cy19:0, 18:1ω9, and 18:1ω7) and actinomycetes (10Me17:0 and 10Me18:0) presented similar responses to NO2-N and NO3-N. Results of this study indicate that changes in nitrogen transformation and microbial community composition are likely to occur in nitrogen enrichment patches, but the extent of those changes depend on the microbial species and the distance of soil layers from the urea layer.  相似文献   

6.
Leaching of nitrogen from pastures at the end of the grazing season A trial was carried out to describe nitrogen dynamics under excrement patches. On three grassland sites differing in water capacity, soil water was extracted by porous ceramic cups placed under the patches. Soil water was analyzed for different nitrogen fractions. Infiltration water and the amount of leached nitrogen was calculated by a simulation model. The rapid rise in concentrations under the urine patches to 30–60 mg NH4?N/I was due to the rapid hydrolysis of urea in spite of low soil temperatures. While the rates of ammonium decreased, the concentration of nitrate increased continuously up to 160 mg NO3?N/I and did not fall until the beginning of plant growth in early spring. Under the dung patches almost no nitrogen was found. For the urine patches the calculated nitrogen leaching was between 150 and 320 kg/ha, for the dung patches between 3 and 28 kg/ha. From the total of leached nitrogen the nitrate fraction (83%) was the most significant, followed by the organic nitrogen fraction (11%) and ammonium (6%). Taking account of an estimated grazing pressure, the urine-affected soil surface was calculated between 1% and 3  相似文献   

7.
A soil lysimeter field study assessed the efficacy of different pasture species to reduce nitrogen (N) leaching loss from cow urine deposited in different seasons. A single application of cow urine (15N‐labelled; equivalent to 622 kg N ha?1) was applied in three different seasons (summer, autumn or winter) to three pasture species monocultures (perennial ryegrass, plantain or lucerne) on a free‐draining volcanic soil and monitored over 362 days. Leachate analyses revealed consistently large leaching losses of inorganic‐N from lucerne (>200 kg N ha?1) across different urine application times due to the relatively low plant growth rates during winter (<15 kg DM ha?1 day?1) that led to low total recovery of urine‐N by lucerne plants (<20% of the applied urine‐15N). Conversely, plant uptake of the urine‐N was higher by plantain (ranging from 30% to 45% of that applied) driven by moderately higher winter plant growth rates (30 to 60 kg DM ha?1 day?1). Plantain exhibited large seasonal variation in its efficacy to reduce urine‐N leaching relative to ryegrass (ranging from 15% to 50% reduction for summer or winter urine applications, respectively) with an overall reduction of 39% in the total amount of inorganic‐N leached across the three seasons (53 vs. 87 kg N ha?1 leached relative to ryegrass). This study has demonstrated the potential benefit of using plantain to reduce N leaching losses from urine deposited in the summer to winter grazing period. However, further research is required to quantify the effects of plantain on annual N leaching losses from grazed pastoral systems.  相似文献   

8.
Previous studies have suggested grazing may alter nitrogen (N) cycling of grasslands by accelerating or decelerating soil net N mineralization. The important mechanisms controlling these fluxes remain controversial, and more importantly, the consequences on carbon storage and site productivity remain uncertain. Here we present results on the seasonal patterns of soil inorganic N pools and net N mineralization and their linkages to ecosystem functioning from a grazing experiment in the Inner Mongolia grassland, which has been maintained for five years with 7 levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep ha−1). Net N mineralization and nitrification rates were determined using an in situ soil core incubation method. Our findings demonstrated that, in the non-growing season, the net N mineralization rate was reduced by 181% in the lightly and moderately grazed plots (1.5-4.5 sheep ha−1) and by 147% in the heavily grazed plots (6.0-9.0 sheep ha−1), and the net N immobilization was observed in all grazed treatments. In the early growing season, however, it was increased by 107% in the lightly and moderately grazed plots and by 128% in the heavily grazed plots. In the peak growing season, grazing diminished the net mineralization rate by 71% in the lightly and moderately grazed plots and 108% in the heavily grazed plots. The seasonally dependent effects of grazing on soil inorganic N pools and net N mineralization were strongly mediated by grazing-induced changes in soil temperature and moisture, with soil moisture being predominant in the peak growing season. Grazing alterations of soil inorganic N and net N mineralization were closely linked to the changes in aboveground primary productivity, biomass N allocation, N use efficiency, and soil total nitrogen. Based upon the five year study, we conclude that grazing at moderate to high intensities is unsustainable in terms of productivity and soil N cycling and storage in these systems.  相似文献   

9.
A widespread pattern of the Tibetan plateau is mosaics of grasslands of Cyperaceae and grasses with forbs, interspersed with patches covered by lichen crusts induced by overgrazing. However, the fate of inorganic and organic N in non‐crusted and crusted patches in Kobresia grasslands remains unknown. We reported on a field 15N‐labeling experiment in two contrasting patches to compare retention of organic and inorganic N over a period of 29 days. 15N as KNO3, (NH4)2SO4 or glycine was sprayed onto soil surface. Crusted patches decreased plant and soil N stocks. More 15N from three N forms was recovered in soil than plants in both patches 29 days after the labeling. In non‐crusted patches, 15N recovery by the living roots was about two times higher than in crusted ones, mainly because of higher root biomass. Microorganisms in non‐crusted patches were N‐limited because of more living roots and competed strongly for N with roots. Inorganic N input to non‐crusted patches could alleviate N limitation to plants and microorganisms, and leads to higher total 15N recovery (plant + soil) for inorganic N forms. Compared to non‐crusted patches, microorganisms in crusted patches were more C‐limited because of depletion of available C caused by less root exudation. Added glycine could activate microorganisms, together with the hydrophobicity of glycine and crusts, leading to higher 15N‐glycine than inorganic N. We conclude that overgrazing‐induced crusts in Kobresia grasslands changed the fate of inorganic and organic N, and lead to lower total recovery from inorganic N but higher from organic N. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
It is desirable to know the distribution of phosphorus (P) fractions in soil so that plants may use P efficiently. Here we report the dynamics of inorganic and organic P in P-deficient black and rice soil cropped by soybean, white lupin, and maize supplied with nitrogen (N) inputs by N fixation and urea fertilizer. Inorganic P fractions of the three cropped soils could be ranked as O-P (organic phosphorus) > Al-P (aluminum phosphorus) > Fe-P (iron phosphorus) > Ca10-P (calcium-10 phosphorus) > Ca8-P (calcium-8 phosphorus) > Ca2-P (calcium-2 phosphorus), irrespective of soil type. The potential of various inorganic P fractions to plant nutrition differed between soybean and white lupin. The percentage of total P present as inorganic P was affected by crop, soil type, and N source. In black soil, the change of organic P fraction induced by N fixation was larger than by urea application. The moderately labile organic P (MLOP) concentration was not affected significantly by soil type and crop species, and it was probably the main P source to the inorganic P fraction because the correlation between the two pools was high (r = 0.945; P < 0.05). Crop species differed in their uptake of inorganic and organic P from soil. Though P fraction concentrations varied between black soil and rice soil, their response to crop species and N source was similar. The amounts of P removed from soil were affected by N source. The right choice of crop species and the application a suitable N source may increase crop yield and P uptake by plant in P-deficient soils.  相似文献   

11.
Abstract

Grazing animal excrement plays an important role in nutrient cycling and redistribution in grazing ecosystems, due to grazing in large areas and return in small areas. To elucidate the changes to the soil and pasture caused by sheep urine, fresh dung, and compost patches, a short‐term field experiment using artificially placed pats was set up in the autumn of 2003 in the Inner Mongolian steppe. Urine application significantly increased soil pH during the first 32 days in soil layers at depths of both 0–5 cm and 5–15 cm. Rapid hydrolysis of urea gave large amounts of urine‐nitrogen (N) as ammonium (NH4 +) in soil extracts and was followed by apparent nitrification from day 2. Higher inorganic N content in the urine‐treated soil was found throughout the experiment compared with the control. No significant effects of sheep excrement on soil microbial carbon (C) and soil microbial N was found, but microbial activities significantly increased compared with the control after application of sheep excrement. Forty‐six percent of dung‐N and 27% of compost‐N were transferred into vegetation after the experiment. The results from this study suggest that large amounts of nutrients have been lost from the returned excrement patches in the degraded grassland of Inner Mongolia, especially from sheep urine‐N.  相似文献   

12.
Reindeer grazing has a great influence on the ground vegetation of nutrient-poor northern boreal forests dominated by Cladonia lichens in Fennoscandia. Grazing may influence the soil processes in these systems either by influencing the quality of plant litter, or by indirect effects through the soil microclimate. In order to investigate the mechanisms underlying the effects of reindeer on boreal forest soils, we analyzed litter decomposition, soil and microbial C and N, microbial community composition, and soil organic matter quality in three forest sites with old reindeer exclosures adjacent to grazed areas. There was no effect of grazing on soil C/N ratio, inorganic N concentrations, microbial biomass C, microbial community structure analyzed by phospholipid fatty acid (PLFA) analysis, and organic matter quality analyzed by sequential fractionation, in the soil organic layer. However, microbial N was enhanced by grazing at some of the sampling dates and was negatively correlated with soil moisture, which indicates that increased microbial N could be a stress response to drought. The effect of grazing on litter decomposition varied among the decomposition stages: during the first 1.5 months, the litter C loss was significantly higher in the grazed than the ungrazed areas, but the difference rapidly levelled out and, after one year, the accumulated litter C loss was higher in the ungrazed than the grazed areas. Litter N loss was, however, higher in the grazed areas. Our study demonstrates that herbivores may influence soil processes through several mechanisms at the same time, and to a varying extent in the different stages of decomposition.  相似文献   

13.
This paper explored the potential of application of in situ ion exchange resin membrane (IEM) technique for assessing soil nitrogen (N) availability and spatial distribution in New Zealand grazed pastures. Field and incubation experiments conducted to test the technique proved IEM technique to be a useful approach to monitoring the continuous changes in soil mineral N in pasture soils. The field testing showed that the IEM technique reflects both differences in pool size and mineral N flux, while 2-M KCl extraction reflects only pool size at the sampling. Testing the effects of residence time, temperature, soil inorganic N content, and soil water content through diffusion modeling offers further support for using IEM to explore the complex dynamics of nitrogen availability in pasture soils.  相似文献   

14.
Nitrogen (N) leaching from soil into water is a significant concern for intensively grazed forage‐based systems because it can cause a decline in water quality and is a risk to human health. Urine patches from grazing animals are the main source of this N. The objective of this study was to quantify the effect that forage type and gibberellic acid (GA) application had on N leaching and herbage N uptake from urine patches on perennial ryegrass–white clover (RGWC), Italian ryegrass and lucerne. A lysimeter study was conducted over 17 months to measure herbage growth, N uptake and N loss to water beneath each of the three forage types with the following treatments: control, urine (700 kg N/ha) and urine with GA (8 g GA active ingredient/ha). Compared with RGWC (205 kg N/ha), N leaching losses were 35.3% lower from Italian ryegrass (133 kg N/ha) and 98.5% higher from lucerne (407 kg N/ha). These differences in leaching loss are likely to be due to winter plant growth and N uptake. During the winter months, Italian ryegrass had higher N uptake, whereas lucerne had lower N uptake, compared with RGWC. The application of GA had no effect on N leaching losses, DM yield or N uptake of forage treated with 700 kg N/ha urine.  相似文献   

15.
Numerous studies have examined the nutritive quality of fodder plants in different seasons but few have related this seasonal response to long‐term grazing intensity. Our objective was to examine the effect of long‐term grazing on the concentrations of total nitrogen, δ15N, and total phosphorus in selected forage species from the fescue grassland near Stavely, Alberta. Plants were selected from paddocks that had been stocked at 0 (control), 2.4 (moderate grazing), and 4.8 (heavy grazing) animal unit months ha–1 for 58 years. Plant material from ten species was sampled and analyzed at monthly intervals from May to September in 2007. Total N and P concentrations were not (p > 0.05) affected by grazing for most species, but total N and P concentrations in Poa. pratensis L. were higher (p < 0.05) in grazed treatments than in the control. These results reflect an altered plant phenology through defoliation and illustrate delayed phenology in P. pratensis when grazed. The higher δ15N concentration for most species in the grazed treatments than the control is an indication of accelerated nitrogen cycling through dung and urine deposition.  相似文献   

16.

Purpose  

Methanotrophs are an important group of methane (CH4)-oxidizing bacteria in the soil, which act as a major sink for the greenhouse gas, CH4. In grazed grassland, one of the ecologically most sensitive areas is the animal urine patch soil, which is a major source of both nitrate (NO3 ) leaching and nitrous oxide (N2O) emissions. Nitrification inhibitors, such as dicyandiamide (DCD), have been used to mitigate NO3 leaching and N2O emissions in grazed pastures. However, it is not clear if the high nitrogen loading rate in the animal urine patch soil and the use of nitrification inhibitors would have an impact on the abundance of methanotrophs in grazed grassland soils. The purpose of this study was to determine the effect of animal urine and DCD on methanotroph abundance in grazed grassland soils.  相似文献   

17.
通过田间试验研究了秸秆和氮肥管理对小麦生育期土壤无机氮、微生物量碳、氮和小麦生长的影响,设置秸秆还田不施氮(CK)、农民习惯施氮FN5∶5(5∶5为氮肥基追比,下同)、推荐施氮SN3∶7、SN5∶5、SN7∶3和秸秆移走推荐施氮N5∶5处理。施氮显著提高苗期土壤无机氮含量,其与基肥氮量成正比且在拔节期显著降低,拔节后追肥提高了后期无机氮且其与追肥量成正比。小麦生育前期土壤微生物没有增加对无机氮的固持,而在拔节和抽穗期显著增加,此后逐步降低。秸秆还田较秸秆移走增加了无机氮固持,且生育中期固持量远高于前期。氮肥基追比过高导致小麦前期氮奢侈吸收和旺长且影响后期生长,氮肥3∶7基追施能满足小麦养分供求同步并实现高产和提高氮肥利用效率。  相似文献   

18.
In grazed pasture systems, a major source of N2O is nitrogen (N) returned to the soil in animal urine. We report in this paper the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), applied in a fine particle suspension (FPS) to reduce N2O emissions from dairy cow urine patches in two different soils. The soils are Lismore stony silt loam (Udic Haplustept loamy skeletal) and Templeton fine sandy loam (Udic Haplustepts). The pasture on both soils was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Total N2O emissions in the Lismore soil were 23.1–31.0 kg N2O-N ha−1 following the May (autumn) and August (late winter) urine applications, respectively, without DCD. These were reduced to 6.2–8.4 kg N2O-N ha−1 by the application of DCD FPS, equivalent to reductions of 65–73%. All three rates of DCD applied (7.5, 10 and 15 kg ha−1) were effective in reducing N2O emissions. In the Templeton soil, total N2O emissions were reduced from 37.4 kg N2O-N ha−1 without DCD to 14.6–16.3 kg N2O-N ha−1 when DCD was applied either immediately or 10 days after the urine application. These reductions are similar to those in an earlier study where DCD was applied as a solution. Therefore, treating grazed pasture soils with an FPS of DCD is an effective technology to mitigate N2O emissions from cow urine patch areas in grazed pasture soils.  相似文献   

19.
Impact of excreted nitrogen by grazing cattle on nitrate leaching   总被引:2,自引:0,他引:2  
Abstract. At De Marke experimental farm, data on water and nitrogen flows in the unsaturated zone were gathered on two grazed pastures on sandy soils during the years 1991 to 1994. These provided a basis for calibration and validation of simulation models. The different levels of nitrate-N concentrations of the two plots could largely be explained by differences in crop uptake and simulated denitrification as influenced by different groundwater levels. The irregular distribution of excreta was taken into account by a simulation study quantifying the variability of nitrate-N concentrations under a grazed field. The resulting distribution of simulated nitrate-N concentrations explained the average and peak values of the measured concentrations. Temporal variability of weather was used to assess the nitrate leaching risk under urine patches deposited in either July or September. At site A the probability of exceeding the EC-directive by drinking water (11.3 mg/1 nitrate-N) under a urination deposited in either July or September was respectively 10 and 25%. The average field concentration at this site will hardly ever be a high risk for the environment under the current farm management. At site B the EC-directive will be exceeded under any urine patch in almost 100% of the years, affecting the field average concentration. In field B careful grazing management would result in less nitrate leaching, but the environmental goals would not be reached.  相似文献   

20.
采用室外取样与室内分析结合的方法对祁连山高寒杜鹃灌丛草地不同放牧干扰条件下土壤、根系养分化学计量比进行研究。结果表明:1)植物群落地下生物量随土层深度增加而迅速减少,60%~70%根系聚集于0~10 cm土层,随放牧压力增加活根向土壤深层转移。2)总根系生物量及其C、N、P储量随牧压增加均下降,重牧与轻牧相比C、N、P养分储量分别下降26%、17%、27%;表层单位质量活根C含量轻牧最高、N含量中度放牧最高、P含量重牧最高;死根N、P变化与活根相反。3)随牧压增加土壤有机碳、全氮密度以及N、P速效养分均上升,全磷含量相对稳定,但表层全磷含量下降。数据分析得出,休牧增加了根系生物量的同时,表层土壤根系的C/N、C/P比值升高,N/P比值降低。说明根系对土壤C积累及养分循环起重要作用,而生长季休牧有利于高寒灌丛草地土壤养分保持,这与高寒地区植物生长缓慢特性相适应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号