首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symptoms of spotted wilt of peanut were evaluated in a field experiment over three years (2010–2012) near Marianna, Florida. Assessment included three visual measures of disease and ImmunoStrip (a form of ELISA) testing of root crowns for the presence of Tomato spotted wilt virus (TSWV), the causal agent of spotted wilt in peanut. Foliar symptoms of spotted wilt on a 1 to 10 scale and on a disease incidence rating (DIR) were highly correlated (r = 0.88; < 0.001). Foliar symptoms were moderately correlated (0.45 < r < 0.54; < 0.001) with TSWV infection. However, symptoms on the testa were highly correlated with TSWV infection (r = 0.78; < 0.001). These results indicate that foliar symptomology is less reliable in assessing TSWV infection than testa symptomology. Regression analysis showed that foliar symptoms underestimated the proportion of plants infected by TSWV. Seed inspection may be a good predictor of plant infection and therefore useful in breeding programmes because it is much less expensive than ELISA. Resistance to TSWV infection is characteristic of some resistant peanut genotypes and a lack of testa symptomology could help to identify those genotypes.  相似文献   

2.
Fusarium head blight (FHB), leaf rust and stem rust are among the most destructive wheat diseases. High‐yielding, native disease resistance sources are available in North America. The objective of this study was to map loci associated with FHB traits, leaf rust, stem rust and plant height in a “Vienna”/”25R47” population. DArT markers were used to generate a genetic map, and quantitative trait loci (QTL) analysis was performed by evaluating 113 doubled haploid lines across three environments in Ontario, Canada. FHB resistance QTL were identified on chromosomes 4D, 4B, 2D and 7A, while a QTL for leaf and stem rust resistance was identified on chromosome 1B. The dwarfing alleles of both Rht‐B1 and Rht‐D1 were associated with increased FHB index and DON content.  相似文献   

3.
Tomato spotted wilt virus (TSWV) resistance wasidentified in Y118 (Fla 925-2), an F1BC1S6 tomato line(Lycopersicon esculentum Mill.), derived from a crosswith L. chilense Dun. (LA 1938). This line waspreviously selected for tomato mottle virus (ToMoV)resistance in Florida. Progeny from crosses betweenFla 925-2 and three different TSWV susceptible L.esculentum parents were used in TSWV resistancestudies. A total of 75 F1 and 596 F2 plants from allthree crosses were screened for TSWV resistance. ForF2 plants free of TSWV symptoms, evaluations were madeusing enzyme-linked immunosorbent assay (ELISA). TenF3 populations used for further greenhouse and fieldscreenings were selected from F2 plants found to befree of the virus using visual and ELISA criteria ateach evaluation. One F1 and four F3 lines werestudied under field conditions (Stellenbosch, SouthAfrica) in which 100% of the `Flora-Dade' susceptiblecontrols were severely infected with TSWV. Theresults of the field study clearly establish that TSWVfield resistance is present in the Fla 925-2 (Y118)derived lines. Studies conducted on these linesrevealed that this resistance has the distinctcharacteristic of often `recovering' from initiallyhigh levels of virus titer in the tissue to levelsbelow detection with ELISA.  相似文献   

4.
Summary Tomato spotted wilt virus (TSWV) causes significant economic losses in the commercial culture of tomato (Lycopersicon esculentum Mill.). Culture practices and introgression of natural sources of resistance to TSWV have only been marginally effective in controlling the TSWV disease. Recently however, high levels of protection against TSWV have been obtained by transforming tobacco with a chimaeric gene cassette comprising the TSWV nucleoprotein gene. This report demonstrates the successful application of this newly-created TSWV resistance gene in cultivated tomato. Transformation of an inbred tomato line with the TSWV nucleoprotein gene cassette resulted in high levels of resistance to TSWV that were maintained in hybrids derived from the parental tomato line. Therefore, transformant lines carrying the synthetic TSWV resistance gene make suitable progenitors for TSWV resistance to be incorporated into the breeding programmes of tomato.  相似文献   

5.
S. Roselló    S. Soler    M. J. Díez    J. L. Rambla    C. Richarte  F. Nuez 《Plant Breeding》1999,118(5):425-429
Mechanical inoculation and transmission by thrips in a growth chamber were used in order to screen Lycopersicon peruvianumand Lycopersicon chilense germplasm for tomato spotted wilt virus (TSWV) resistance. Two highly aggressive Spanish TSWV isolates (HA-931100 and T-941117), having different restrictotypes were used. L. peruvianum accessions PI-126935, PI-126944, CIAPAN 16, PE-18 and CIAPAN 17 showed high resistance to both isolates in mechanical and thrips transmission. Their resistance appears useful in breeding programmes.  相似文献   

6.
Black root rot (BRR) caused by Thielaviopsis basicola as well as Tomato spotted wilt virus (TSWV) are the most serious problems in tobacco growing regions. We crossed the breeding line WGL 3 carrying BRR resistance derived from N.glauca with the line PW-834 the resistance of which to TSWV was transferred from cultivar Polalta. Anthers obtained from F1 hybrid plants were cultured to induce haploids combining resistance to Th. basicola and TSWV. Flow cytometry analysis revealed 242 haploids and 2 spontaneous doubled haploids among regenerants. All haploids were cloned and then evaluated for BRR as well as TSWV resistance. The presence of pathogens was detected by microscopic evaluation of roots or using DAS-ELISA test. Microscopic assessment showed that, 132 haploids had no symptoms of Th. basicola which, together with the absence of symptoms in the F1 hybrids, indicated a dominant monogenic mode of inheritance. At the same time only 30 haploids demonstrated resistance to TSWV. SCAR markers associated with TSWV resistance gene detection was applied. The results indicate that small proportion of TSWV-resistant haploids is probably due to the influence of deleterious genes flanking the resistance factor that reduced vitality of gametophytes. Altogether, 24 haploids showed multiple resistance to Th. basicola and TSWV.  相似文献   

7.
A 3‐year study was conducted at New Mexico State University in Las Cruces, NM, to investigate the effects of different fertilization treatments on turf performance when water conservation strategies are applied. These strategies include the use of non‐potable saline irrigation water and the use of efficient subsurface irrigation systems. Two low water use warm‐season grasses, “Princess 77” bermudagrass (Cynodon dactylon L.) and “Sea Spray” seashore paspalum (Paspalum vaginatum O. Swartz), were irrigated with either potable [Electrical Conductivity (EC) = 0.6 dS/m] or saline (EC = 3.1 dS/m) water from either an overhead or a subsurface drip irrigation (SDI) system. Four different fertilizers, liquid slow release, granular slow release, granular urea and liquid urea, were applied at two rates: 10 and 20 g N m?2 year?1 for “Sea Spray” and 20 and 30 g N m?2 year?1 for “Princess 77.” Spring green‐up, summer quality and fall colour retention were determined using digital image analysis, visual quality ratings and normalized difference vegetation index. Generally, subsurface drip‐irrigated grasses were slower to green‐up than overhead irrigated ones. “Sea Spray” irrigated from the SDI system took 18, 28 and 15 days longer to reach 80% green cover in 2010, 2011 and 2012, respectively, than their sprinkler‐irrigated counterparts. The combination of “Princess 77” and overhead irrigation reached 80% green cover 35 (in 2010), 34 (in 2011) and 12 (in 2012) days faster than SDI‐irrigated “Princess 77.” Fertilization rate and type had no effect on summer turfgrass quality of “Princess 77” irrigated from a sprinkler system throughout the research period reaching ratings of greater than 7 during all 3 years. Similar results were observed for “Princess 77” irrigated from a SDI system during 2010 and 2011. Summer quality of sprinkler‐irrigated “Sea Spray” was negatively affected by liquid fertilization. During two of three summers, visual quality of plots fertilized with either liquid slow release or liquid urea was lower than “Sea Spray” fertilized with granular fertilizer. Further research is needed to investigate the effect of fertilization on bermudagrass and seashore paspalum over a wider nitrogen range including both granular and foliar products.  相似文献   

8.
Prolificacy assumes significance for development of high‐yielding baby corn hybrids. “Sikkim Primitive” is a native landrace of North‐Eastern Himalaya, and is the highest prolific maize germplasm. So far, the genetics of prolificacy in “Sikkim Primitive” has not been deciphered. Here, a prolific inbred (MGU‐SP‐101) developed from “Sikkim Primitive” was crossed with four non‐prolific inbreds viz., LM13, BML7, HKI161 and HKI1128. Six generations (P1, P2, F1, F2, BC1P1 and BC1P2) of the crosses were evaluated at two locations during rainy season 2018. MGU‐SP‐101 possessed 2.50–3.78 ears per plant compared to 1.06–1.86 among non‐prolific inbreds. The variation for ears was the highest in F2s (1–8), followed by BC1P1 (1–7) and BC1P2 (1–5). The quantitative inheritance pattern of prolificacy with prevalence of non‐allelic interactions of duplicate epistasis type has been observed. Dominance × dominance effect was predominant over additive × additive and additive × dominance effects. Total number of major gene blocks ranged from 0.41 to 2.86, thereby suggesting the involvement of at least one major gene/QTL governing the prolificacy. This is the first report of genetic dissection of prolificacy in “Sikkim Primitive”.  相似文献   

9.
The genus Tospovirus was considered as monotypic with Tomato spotted wilt virus (TSWV) being the only assigned species. However, extensive studies with worldwide isolates revealed that this genus comprises a number of species with distinct virulence profiles. The Neotropical South America is one center of Tospovirus diversity with many endemic species. Groundnut ringspot virus (GRSV), TSWV, Tomato chlorotic spot virus (TCSV), and Chrysanthemum stem necrosis virus (CSNV) are the predominant tomato-infecting species in Brazil. Sources of resistance were found in Solanum (section Lycopersicon) mainly against TSWV isolates from distinct continents, but there is an overall lack of information about resistance to other viral species. One-hundred and five Solanum (section Lycopersicon: Solanaceae) accessions were initially evaluated for their reaction against a GRSV isolate by analysis of symptom expression and systemic virus accumulation using DAS-ELISA. A subgroup comprising the most resistant accessions was re-evaluated in a second assay with TSWV, TCSV, and GRSV isolates and in a third assay with a CSNV isolate. Seven S. peruvianum accessions displayed a broad-spectrum resistance to all viral species with all plants being free of symptoms and systemic infection. Sources of resistance were also found in tomato cultivars with the Sw-5 gene and also in accessions of S. pimpinellifolium, S. chilense, S. arcanum, S. habrochaites, S. corneliomuelleri, and S. lycopersicum. The introgression/incorporation of these genetic factors into cultivated tomato varieties might allow the development of genetic materials with broad-spectrum resistance, as well as with improved levels of phenotypic expression.  相似文献   

10.
A 3‐year study was conducted at New Mexico State University in Las Cruces, NM, to investigate whether different fertilization treatments affect the carbohydrate and protein content in two warm‐season grasses grown using water conservation strategies such as non‐potable saline irrigation water and a subsurface irrigation system. “Princess 77” bermudagrass (Cynodon dactylon L.) and “Sea Spray” seashore paspalum (Paspalum vaginatum O. Swartz) were irrigated with either potable (electrical conductivity [EC] = 0.6 dS m?1) or saline (EC = 3.1 dS m?1) water from either an overhead or a subsurface drip irrigation system. Four different fertilizers were used in this study: liquid slow release, granular slow release, granular urea and urea liquid, at two rates: 10 and 20 g N m?2 yr?1 for “Sea Spray” and 20 and 30 g N m?2 yr?1 for “Princess 77.” Carbohydrate (sucrose, starch, total soluble carbohydrates and total non‐structural carbohydrates) and protein content of the grasses were measured, and their effect on spring green‐up was determined. The total carbohydrate content within the stolons and rhizomes was found to be closely associated with speed of spring green‐up, resulting in R2 values ranging from 0.36 to 0.76. The relationship between green‐up and carbohydrate content was similar for both grasses. Fertilizer treatment did not affect carbohydrate content in either grass under either irrigation system. Further analysis revealed that carbohydrate content in February was the best determinant for spring green‐up. Other sampling months also showed a significant correlation with spring green‐up, but with lower R2 values.  相似文献   

11.
An interspecific peanut hybrid population was generated from a cross between Arachis diogoi, a wild species with resistance to spotted wilt, and “Gregory”, a susceptible cultivar. The objectives of the study are to identify successful introgression of A. diogoi's genome and to evaluate the spotted wilt resistance in the introgression population. Sixty-three putative introgression lines were genotyped using 137 polymorphic simple sequence repeat markers, out of which 14 markers located on seven of the 20 peanut chromosomes showed introgression of A. diogoi genome into at least one of the introgression lines. In addition, genotyping by sequencing of a subset of the population revealed SNP loci displaying introgression of A. diogoi genome on every chromosome of the A sub-genome of the introgression lines, with the most introgressed loci on chromosome A05. Several introgression lines showed consistent spotted wilt resistance, suggesting successful genomic introgression of A. diogoi contributing to the resistance.  相似文献   

12.
Potatoes (Solanum tuberosum L.) are drought‐sensitive and more efficient water use, while maintaining high yields is required. Here, water‐use efficiency (WUE) of a mapping population comprising 144 clones from a cross between 90‐HAF‐01 (Solanum tuberosum1) and 90‐HAG‐15 (S. tuberosum2 × S. sparsipilum) was measured on well‐watered plants under controlled‐environment conditions combining three levels of each of the factors: [CO2], temperature, light, and relative humidity in growth chambers. The clones were grouped according to their photosynthetic WUE (pWUE) and whole‐plant WUE (wpWUE) during experiments in 2010. Two offspring groups according to pWUE and wpWUE were identified on the basis of experiments conducted in 2010, which in experiments in 2011 again showed significant differences in pWUE (46 %, P < 0.001) and wpWUE (34 %, P < 0.001). The high‐WUE group had a higher net photosynthesis rate (34 %) and dry matter accumulation (55 %, P < 0.001) rather than leaf‐level transpiration rate (?4 %, no significant difference) or whole‐plant water use (16 %). The pWUE correlated negatively to the ratio between leaf‐internal and leaf‐external [CO2] (R2 = ?0.86 in 2010 and R2 = ?0.83 in 2011, P < 0.001). The leaf chlorophyll content was lower in the high‐WUE group indicating that the higher net photosynthesis rate was not due to higher leaf‐N status. Less negative value of carbon isotope discrimination (δ13C) in the high‐WUE group was only found in 2011. A modified Ball‐Berry model was fitted to measured stomatal conductance (gs) under the systematically varied environmental conditions to identify parameter differences between the two groups, which could explain their contrasting WUE. Compared to the low‐WUE group, the high‐WUE group showed consistently lower values of the parameter m, which is inversely related to WUE. Differences related specifically to the dependence of gs on humidity and net photosynthesis rate were only found in 2010. The lower ratio between leaf‐internal and leaf‐external [CO2] and higher WUE of the high‐WUE group was consistent over a wide range of air vapour pressure deficits from 0.5 to 3.5 kPa. The mapping population was normally distributed with respect to WUE suggesting a multigenic nature of this trait. The WUE groups identified can be further employed for quantitative trait loci (QTL) analysis by use of gene expression studies or genome resequencing. The differences in population WUE indicate a genetic potential for improvement of this trait.  相似文献   

13.
Summary Inheritance studies were conducted to determine the genetic basis of resistance in pepper against one Tospovirus isolate classified as tomato spotted wilt virus (TSWV). F1, backcrosses and F2 populations were developed using the resistant parent Capsicum chinense PI 159236 (CNPH 679) and the susceptible parent C. annuum Magda (CNPH 192). Segregation ratios strongly indicated that the resistant response (a localization, hypersensitive-like reaction) to TSWV fits a single-dominant gene model. Under our experimental conditions, the penetrance of this gene was very high. This gene (tentatively named Tsw) is highly effective only against TSWV isolates. The resistance governed by the Tsw gene was not effective against isolates belonging to tomato chlorotic spot virus (TCSV) and groundnut ring spot virus (GRSV), two other previously described Tospovirus species.  相似文献   

14.
In order to introduce the Tomato Spotted Wilt Virus (TSWV) resistance from Nicotiana alata into Nicotiana tabacum, a cytoplasmic male sterility (CMS) line of N. tabacum (N. tabacum L. cv. (gla.) S ‘K326’), was successfully crossed with N. alata. Despite a high DNA content variability, F1 hybrids could be classified in two subgroups, a major one encompassing fertile hybrids morphologically similar to their tobacco maternal parent but TSWV sensitive, and a minor one displaying sterile hybrids showing an intermediate phenotype and TSWV resistant. In order to elucidate the unexpected fertility recovery of the fertile F1 plants, some N. alata fertility restoration ppr genes were cloned and were shown to be differentially expressed between parental lineages as well as between both F1 subgroups, suggesting that N. alata contains fertility restoring allele able to overcome the CMS of N. tabacum.  相似文献   

15.
Summary Tomato spotted wilt virus (TSWV) was obtained from infected tomatoes in commercial fields in Arkansas in 1985. A greenhouse screening procedure for identifying tomatoes resistant to TSWV was established using an enzyme-linked immunosorbent assay (ELISA) to detect infected plants. Symptom expression was variable and symptom expression was not reliable for identifying infected plants. Germplasm evaluated for resistance to one typical Arkansas isolate (85–9) of TSWV included: twenty cultivars and breeding lines of Lycopersicon esculentum Mill, 52 accessions of L. pimpinellifolium (Jusl.) Mill and 8 accessions of L. peruvianum (L.) Mill. All cultivated accessions and breeding lines evaluated were susceptible. Some individual plants in several accessions of L. pimpinellifolium were resistant and nearly all plants of the L. peruvianum accessions that were evaluated were resistant to isolate 85–9.Dept. of Plant Pathology  相似文献   

16.
Thrips are damaging pests in pepper worldwide. They can cause damage directly by feeding on leaves, fruits or flowers, and also indirectly by transferring viruses, especially tomato spotted wilt virus (TSWV). Although thrips are among the most damaging pests in pepper, until now there is no commercial variety with a useful level of resistance to thrips. This is at least partly due to the lack of knowledge on resistance levels in pepper germplasm of QTLs and/or genes for resistance, and of information about resistance mechanisms to thrips in pepper. This paper describes our research aimed at developing practical and reliable screening methods for thrips resistance in pepper and at identifying pepper accessions showing a strong resistance to thrips. Thirty-two pepper accessions from four species of pepper (Capsicum annuum, C. baccatum, C. chinense and C. frutescens) and two species of thrips (Frankliniella occidentalis and Thrips parvispinus) were used in this study. Our results indicate that the laboratory based leaf disc test and the detached leaf test can be used as reliable screening methods for thrips resistance in pepper. We observed a large variation for resistance to thrips in Capsicum that can be exploited in breeding programs.  相似文献   

17.
Despite exhaustive literature describing drought stress effects on photosynthesis in Gossypium hirsutum, the sensitivity of photosynthetic electron flow to water deficit is heavily debated. To address this, G. hirsutum plants were grown at a field site near Camilla, GA under contrasting irrigation regimes, and pre‐dawn water potential (ΨPD), stomatal conductance (gs), net photosynthesis (PN), actual quantum yield of photosystem II (ΦPSII) and electron transport rate (ETR) were measured at multiple times during the 2012 growing season. ΨPD values ranged from ?0.3 to ?1.1 MPa. Stomatal conductance exhibited a strong (r2 = 0.697), sigmoidal response to ΨPD, where gs was ≤0.1 mol m?2 s?1 at ΨPD values ≤ ?0.86 MPa. Neither ΦPSII (r2 = 0.015) nor ETR (r2 = 0.010) was affected by ΨPD, despite exceptionally low ΨPD values (?1.1 MPa) causing a 71.7 % decline in PN relative to values predicted for well‐watered G. hirsutum leaves at ΨPD = ?0.3 MPa. Further, PN was strongly influenced by gs, whereas ETR and ΦPSII were not. We conclude that photosynthetic electron flow through photosystem II is insensitive to water deficit in field‐grown G. hirsutum.  相似文献   

18.
Thielaviopsis basicola and Tomato spotted wilt virus (TSWV) are the most important problems in a moderate climate zone. Previously obtained doubled haploids (DH) of F1 hybrids of the flue-cured line WGL3 resistant to Th. basicola and the dark-cured line PW-834 carrying RTSW-al gene provided the research material. Biological tests and SCAR markers linked with TSWV were applied to confirm resistance of DH. Lines combining resistance to TSWV and Th. basicola were evaluated for morphological and chemical characteristics. Most of DH were significantly shorter than parents but two lines, 31/A/2 and 31/B/3, were close to the flue-cured WGL3. Usually DH possessed fewer leaves while one of them 31/B/3, exceeded parental forms. The doubled haploids flowered later than their parents. The most negative effect was reduced area of mid-position leaves of DH. It might be explained by a recombination during microsporogenesis in F1, however the influence of ‘Polalta’-derived RTSW-al gene cannot be excluded. Extensive line to line variation for nicotine and sugars content was not associated with the genes for TSWV and Th. basicola resistance. Biological tests and field performance of DH revealed potential to overcome the negative effect of coupling between the RSTV-al gene and genes responsible for the morphological deformations.  相似文献   

19.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

20.
The reaction to Tomato spotted wilt virus (TSWV) was evaluated in 94 accessions of Nicotiana, originating from the Institute of Soil Science and Plant Cultivation tobacco germplasm collection in Pu?awy, Poland. Tests for resistance were conducted under greenhouse conditions using single TSWV isolate collected from tobacco plantation in Lublin district, Poland. The presence of the virus was verified using DAS-ELISA. SCAR markers associated with TSWV resistance gene were applied. The members of the section Alatae, the genus Nicotiana: N. alata, N. forgetiana, and Nicotiana x sanderae as well as N. tabacum cultivars: ‘Polalta’ and ‘Wiktoria’ with the TSWV resistance gene introduced from N. alata, displayed the hypersensitive reaction (HR) against TSWV (grade 0 on symptom intensity scale). In some of those accessions, the virus spread from the initially infected areas eliciting systemic hypersensitive reaction (SHR). Five accessions of N. alata and three of Nicotiana x sanderae were composed of 6.3–50.0 % of plants in which SHR symptoms appeared. In all of N. forgetiana plants HR reaction was followed by systemic infection (SHR). In N. tabacum ‘Wiktoria’ 21.1 % of plants showed HR reaction, while the remaining were susceptible (S). All of the genotypes which responded with HR or SHR reaction to TSWV infection demonstrated the presence of SCAR markers linked to the resistance gene. The remaining eighty tested accessions were identified as being susceptible upon exposure to TSWV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号