首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M.A. Rahman  M.S. Saad 《Euphytica》2000,114(1):61-66
Inheritance of yield and yield contributing characters were investigated using generation mean analysis, utilising the means of six basic populations viz., P1, P2, F1, F2, BC1P1 and BC1P2 in four crosses of Vigna sesquipedalis. The analysis reiterated that the importance of dominance (h) gene effects for pod yield/plant and pods/plant as compared to additive (d) gene effects. However, significant and positive additive effects were noticed for pod yield/plant, pods/plant, pod weight and seed weight in different crosses. The three types of gene interactions (additive, dominance and epistasis) were significantly involved for pods/plant in cross KU 7 ×KU 8. Among the digenic epistatic interactions, both additive ×additive (i) and dominance × dominance (l) contributed more for pod yield/plant and pods/plant, however, it varied among the crosses. Populations having earliness can be developed as indicated by reducing dominance effects. Pedigree selection and heterosis breeding is suggested to exploit the fixable and non fixable components of variation respectively in Vigna sesquipedalis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Thirty progenies of mungbean were produced by crossing 10 true-breeding genotypes with three testers (NM 92, 6601, and their F1) in a Triple Test cross (TTC) fashion and evaluated with parents in the kharif (July-October) and spring/summer (March-June) seasons. The data on parents and F1s were analysed for pod clusters on main stem, pod clusters on branches, node of the first peduncle, nodes on main stem and average internode length to detect epistasis and estimate additive and dominance components of genetic variation. Epistasis was observed for node of the first peduncle and nodes on main stem in the kharif season. Partitioning of total epistasis revealed that both additive × additive (i type), and additive × dominance, and dominance × dominance (j and l types) interactions were significant with prevalent influence of i type interactions on these traits. Both additive and dominance components of genetic variation were significant for all those traits not significantly influenced by epistasis in either or both seasons. The additive component was predominant for pod clusters on main stem, pod clusters on branches and average internode length in the kharif season, and for the node of the first peduncle and nodes on main stem in spring/summer season whereas dominance component was important for pod clusters on main stem, pod clusters on branches, and average internode length in spring/summer season. These results suggested that particular generation of segregating population and specific breeding method for selection might be adopted in each season for the improvement of these traits in mungbean. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Grain moulds are a major constraint to sorghum production and to adoption of improved cultivars in many tropical areas. Information on the inheritance of grain mould reaction is required to facilitate breeding of resistant cultivars. The genetic control of grain mould reaction was studied in 7 crosses of 2 resistant sorghum genotypes. P1, P2, F1, F2, BC1 and BC2 families of each cross were evaluated under sprinkler irrigation for field grade and threshed grade scores and subjected to generation mean analysis. Frequency distributions for grain mould reaction were derived and F2 and BC1 segregation ratios were calculated. Grain mould reaction in crosses of coloured grain sorghum was generally controlled by two or three major genes. Resistance to grain moulds was dominant. Significant additive gene effects were also found in all cross/season combinations. Significant dominance effects of similar magnitude to additive effects were also observed in five out of ten cross/season combinations. Gene interactions varied according to the parents with both resistant and susceptible parents contributing major genes. Choice of parents with complementary resistance genes and mechanisms of resistance will be critical to the success of resistance breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Interspecific hybrids between Trifolium uniflorum and cultivated white clover (Trifolium repens) have highly useful characteristics for temperate pastoral systems derived from both parent species. However, the early hybrids (F1 and BC1) also have unacceptably poor seed production for commerce. This study analysed the basis for the poor seed production and investigated breeding strategies for overcoming the problem. The BC1F1 generation produced lower‐than‐expected numbers of heads per plant and seeds per floret. Backcrossing of selected hybrids to white clover corrected these deficiencies and created new variation. Seed numbers were also returned to near target levels by recurrent selection within the BC1 generation. Thus, it was possible to retain a theoretical average of 25% of T. uniflorum genome and still achieve high seed production per plant. The BC1F2 and BC2F1 generations produced high seed numbers per plant, along with reasonable variation. Both of these second‐generation hybrid forms have high reproductive potential and should be the focus for the selection of the desired combinations of agronomic and seed production traits.  相似文献   

5.
Grain molds in rainy season sorghums can cause poor grain quality resulting in economic losses. Grain molds are a major constraint to the sorghum production and for adoption of the improved cultivars. A complex of fungi causes grain mold. Information on genetics of grain mold resistance and mechanisms is required to facilitate the breeding of durable resistant cultivars. A genetic study was conducted using one white susceptible, three white resistant/tolerant sources, and one colored resistant source in the crossing programme to obtain four crosses. P1, P2, F1, BC1, and BC2, and F2 families of each cross were evaluated for the field grade and threshed grade scores, under sprinkler irrigation. Generation mean analyses and frequency distribution studies were carried out. The frequency distribution studies showed that grain mold resistance in the white-grained resistance sources was polygenic. The additive gene action and additive × additive gene interaction were significant in all the crosses. Simple recurrent selection or backcrossing should accumulate the genes for resistance. Epistasis gene interactions were observed in colored resistance × white resistance cross. Gene interaction was influenced by pronounced G × E. Pooled analysis showed that environment × additive gene interaction and environment × dominant gene interaction were significant. The complex genetics of mold resistance is due to the presence of different mechanisms of inheritance from various sources. Evaluation of segregating population for resistance and selection for stable derivatives in advanced generations in different environments will be effective.  相似文献   

6.
Seed size, determined by 100-seed weight, is an important yield component and trade value trait in kabuli chickpea. In the present investigation, the small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) and F1, F2 and F3 populations were developed to study the gene action involved in seed size and other yield attributing traits. Scaling test and joint scaling test revealed the presence of epistasis for days to first flower, days to maturity, plant height, number of pods per plant, number of seeds per plant, number of seeds per pod, biological yield per plant, grain yield per plant and 100-seed weight. Additive, additive?×?additive and dominance?×?dominance effects were found to govern days to first flower. Days to maturity and plant height were under the control of both the main as well as interaction effects. Number of seeds per pod was predominantly under the control of additive and additive?×?additive effects. For grain yield per plant, additive and dominance?×?dominance effects were significant in the cross ICC 16644?×?KAK 2, whereas, additive?×?additive effects were important in the cross ICC 16644?×?JGK 2. Additive, dominance and epistatic effects influenced seed size. The study emphasized the existence of duplicate epistasis for most of the traits. To explore both additive and non-additive gene actions for phenological traits and yield traits, selection in later generations would be more effective.  相似文献   

7.
Striga hermonthica can cause as high as 100% yield loss in maize depending on soil fertility level, type of genotype, severity of infestation and climatic conditions. Understanding the mode of inheritance of Striga resistance in maize is crucial for introgression of resistance genes into tropical germplasm and deployment of resistant varieties. This study examined the mode of inheritance of resistance to Striga in early‐maturing inbred line, TZdEI 352 containing resistance genes from Zea diploperennis. Six generations, P1, P2, F1, F2, BC1P1 and BC1P2 derived from a cross between resistant line, TZdEI 352 and susceptible line, TZdEI 425 were screened under artificial Striga infestation at Mokwa and Abuja, Nigeria, 2015. Additive‐dominance model was adequate in describing observed variations in the number of emerged Striga plants among the population; hence, digenic epistatic model was adopted for Striga damage. Dominance effects were higher than the additive effects for the number of emerged Striga plants at both locations signifying that non‐additive gene action conditioned inheritance of Striga resistance. Inbred TZdEI 352 could serve as invaluable parent for hybrid development in Striga endemic agro‐ecologies of sub‐Saharan Africa.  相似文献   

8.
Larger particle volume is beneficial for many aspects of maize starch processing, and may improve the performance of some starch attributes. This study focused on the soft starch (h) locus to identify its potentially influential role in starch particle volume distribution. The objectives were to study the genetic expression of starch particle volume of the h locus in different genetic backgrounds and the gene action conditioning starch particle volume of other loci in both normal‐starch and h‐starch backgrounds. Forty‐five populations (five intra‐inbred F1s, 10 hybrid F1s 10 F2s, 10 BC1F1s to h/h parent, and 10 BC1 to h:h conversion of normal parent) were planted in 1993 at two locations and in 1995 at one location. Selfed heterozygotes (±/h) in all generations provided intra‐ear comparisons of normal and h starch, and F3 and BC1F2 generations provided inter‐ear comparisons. Significant differences were found between normal and h:h genotypes in all intra‐ear and inter‐ear comparisons. In all cases, general combining ability effects were highly significant, suggesting the presence of additive gene effects. Generation mean analysis of normal and h:h starch materials yielded similar results, indicating the predominance of additive and some dominance effects for other loci on starch particle volume. These results indicate the usefulness of the soft starch gene and additional genetic variation among inbreds in the improvement of starch particle volume for increased starch recovery in wet milling.  相似文献   

9.
Introgression of yellow mosaic disease (YMD) resistance and effect of recurrent parent genome (RPG) on grain yield was studied in 84 soybean genotypes from four populations namely, F2:7, BC1F6, BC2F5 and BC3F4 derived from cross JS335 x SL525. It was observed that in F2:7, BC1F6, BC2F5 and BC3F4 derived lines, RPG contribution was 42.5%, 54.9%, 66.4% and 77.6%, respectively, which is significantly less than expected values. Linkage drag from donor parent with YMD resistance gene may be a possible reason for such deviations. Average grain yield per plant in F2:7, BC1F6, BC2F5 and BC3F4 generations was observed as 13.0, 14.3, 14.9 and 16.1 g, respectively. It was observed that genotypes with more than 80% RPG observed to have both YMD resistance and good yield potential. Graphical genotyping (GGT) analysis revealed that maximum RPG was recovered in chromosomes 8 and 10 and maximum introgression occurred in chromosomes 6 and 19. Our results demonstrated that RPG was positively associated with yield as evident from yield increase with increase in RPG.  相似文献   

10.
The genetics of resistance of common vetch (Vicia sativa L.) to broomrape (Orobanche crenata Forsk.) was studied for two years by using the P1, P2, F1, BC1, BC2, F2 F3, and F4 generations obtained from crosses between resistant and susceptible lines. Resistant lines were selected by screening a world collection m a naturally infested plot. Resistance was tested both under field and greenhouse conditions. The best index to measure resistance was the number of emerged broomrapes per host plant. The results fit the additive-dominance model. The main component of the variation was additivity; dominance and interaction effects seemed to depend on the environment. When dominance is expressed, a low number is dominant over a high number of broomrapes per host plant.  相似文献   

11.
J. E. Zalapa    J. E. Staub    J. D. McCreight   《Plant Breeding》2006,125(5):482-487
Unique architectural phenotypes have the potential for increasing yield in commercial melon (Cucumis melo L.). Therefore, a generation means analysis was conducted to investigate the inheritance of architectural traits (days to anthesis, primary branch number, fruit number and weight, and average weight per fruit). Progeny (F1, F2, BC1P1 and BC1P2) from a cross between US Department of Agriculture (USDA) line, USDA 846‐1 (P1) and ‘TopMark’ (P2) were evaluated at Arlington (AR) and Hancock (HCK), Wisconsin in 2001. Significant (P ≤ 0.05) environment effects and genotype × environment interactions (G × E) analyses necessitated analysis by location. Significant differences (P ≤ 0.05) among parents and generations were observed for all traits, and the two parental lines differed significantly for primary branch number, fruit number and average weight per fruit. Additive gene effects were most important in governing primary branch number and fruit number per plant, while dominance and epistatic genetic effects mainly controlled days to anthesis, fruit weight per plant and average weight per fruit. Narrow‐sense heritabilities were 0.62 (AR) for days to anthesis, 0.71 (AR) and 0.76 (HCK) for primary branch number, 0.68 (AR) and 0.70 (HCK) for fruit weight per plant, 0.33 (AR) and 0.45 (HCK) for fruit weight per plant, and 0.06 (AR) and 0.79 (HCK) for average weight per fruit. Estimations of the least number of effective factors for primary branch number were relatively consistent at both AR (approx. 4) and HCK (approx. 2). Results suggest that introgression of yield‐related genes from highly branched melon types (e.g. USDA 846‐1) into US Western Shipping germplasm may aid in the development of high‐yielding cultivars with concentrated fruit set suitable for machine and/or hand‐harvesting operations.  相似文献   

12.
Prolificacy assumes significance for development of high‐yielding baby corn hybrids. “Sikkim Primitive” is a native landrace of North‐Eastern Himalaya, and is the highest prolific maize germplasm. So far, the genetics of prolificacy in “Sikkim Primitive” has not been deciphered. Here, a prolific inbred (MGU‐SP‐101) developed from “Sikkim Primitive” was crossed with four non‐prolific inbreds viz., LM13, BML7, HKI161 and HKI1128. Six generations (P1, P2, F1, F2, BC1P1 and BC1P2) of the crosses were evaluated at two locations during rainy season 2018. MGU‐SP‐101 possessed 2.50–3.78 ears per plant compared to 1.06–1.86 among non‐prolific inbreds. The variation for ears was the highest in F2s (1–8), followed by BC1P1 (1–7) and BC1P2 (1–5). The quantitative inheritance pattern of prolificacy with prevalence of non‐allelic interactions of duplicate epistasis type has been observed. Dominance × dominance effect was predominant over additive × additive and additive × dominance effects. Total number of major gene blocks ranged from 0.41 to 2.86, thereby suggesting the involvement of at least one major gene/QTL governing the prolificacy. This is the first report of genetic dissection of prolificacy in “Sikkim Primitive”.  相似文献   

13.
Freely nodulating soybean genotypes vary in their phosphorus (P) uptake and P‐use efficiency (PUE) in low‐P soils. Understanding the genetic basis of these genotypes’ performance is essential for effective breeding. To study the inheritance of PUE, we conducted crosses using two high‐PUE genotypes, two moderate‐PUE genotypes and two inefficient‐PUE genotypes, and obtained F1, F2, BC1 and BC2 populations. The inheritance of PUE was evaluated using a randomized complete block design. A generation mean analysis of phenotypic data showed that PUE was heritable, with complex inheritance patterns and the presence of additive, dominance and epistatic gene effects. Seed P, shoot P, root P, P‐incorporation efficiency and PUE were largely quantitatively inherited traits. There were dominance, additive × additive and dominance × dominance gene effects on PUE, grain yield, shoot dry weight, 100‐seed weight, root dry weight and shoot dry matter per unit P for populations grown under low‐P conditions. Dominance effects were generally greater than additive effects on PUE‐related indices. These PUE indices can be used to select P‐efficient soybean genotypes from segregating populations.  相似文献   

14.
Sorghum shoot fly, Atherigona soccata is an important pest of sorghum during the seedling stage, which influences both fodder and grain yield. To understand the nature of inheritance of shoot fly resistance in sorghum, we performed generation mean analysis using two crosses IS 18551 × Swarna and M 35-1 × ICSV 700 during the 2013–2014 cropping seasons. The F1, F2, BC1 and BC2 progenies, along with the parental lines were evaluated for agronomic and morphological traits associated with resistance/susceptibility to sorghum shoot fly, A. soccata. The cross IS 18551 × Swarna exhibited significant differences between the parents for shoot fly deadhearts (%) in the postrainy season. The progenies of this cross exhibited lower shoot fly damage, suggesting that at least one of the parents should have genes for resistance to develop shoot fly-resistant hybrids. Leaf glossiness, leafsheath pigmentation and plant vigor score during the seedling stage exhibited non-allelic gene interactions with dominant gene action, whereas 100 seed weight showed both additive and dominant gene interactions. Presence of awns showed recessive nature of the awned gene. Generation mean analysis suggested that both additive and dominance gene effects were important for most of the traits evaluated in this study, but dominance had a more pronounced effect.  相似文献   

15.
为探讨偏凸山羊草-柱穗山羊草双二倍体SDAU18在小麦遗传改良中的利用价值,以SDAU18和普通小麦品种烟农15及其9个杂种世代为材料,分析不同自交和回交世代染色体和性状分离的特点。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5和BC3F1代,染色体数目为42的植株已分别达93.9%和92.0%。与自交世代相比,回交后代减数第一分裂中期的花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3和BC2F1代育性基本稳定。在不同杂种世代可分离出具有矮秆、大穗、大粒、对白粉病、条锈病免疫或高抗及外观品质优良的变异类型,以F3和BC1F1代的变异类型最丰富。  相似文献   

16.
为了探索在不同生态条件下,二系法甘蓝型油菜杂交组合的遗传效应及杂种优势表现。本研究选用6个核背景不同的甘蓝型油菜恢复系作为亲本,根据NCⅡ遗传交配设计配置了36个杂交组合,分别在大荔和张掖两个不同生态区种植,在成熟期对其进行性状调查,采用朱军的ADE模型进行数据分析。结果表明,产量性状不同程度都受到基因的加性、显性、及其与环境互作效应的影响,其中单株角果数和千粒重主要受到加性效应的影响,单株产量和角粒数主要受到显性效应影响;在与环境互作中,单株产量、单株角果数和千粒重的各遗传效应都与环境互作达到了显著性,而角粒数的遗传性相对稳定;农艺性状在基因型与环境互作中有效分枝部位和一次有效分枝数受到环境效应影响较大;在遗传相关性中,单株产量与单株角果数、角粒数和千粒重的表现型相关系数和基因型相关系数均达到了极显著性水平;杂交组合的杂种优势总体表现出F1代优于F2代。此研究结果对二系杂交组合选配有一定的指导意义。  相似文献   

17.
Sixteen‐hundred BC1 plants of a cross between an early blight (EB) susceptible tomato (Lycopersicon esculentum Mill.) breeding line (‘NC84173’ maternal and recurrent parent) and a resistant accession (‘PI126445’) of the tomato wild species Lycopersicon hirsutum Humb. and Bonpl. were grown in a field in 1998. This population was segregating (among other traits) for growth habit, self‐incompatibility and earliness in maturity. To eliminate confounding effects of these factors on disease evaluation and h2 estimation, plants that were self‐incompatible, indeterminate and/or late‐maturing were eliminated. The remaining plants (146), which were self‐compatible and determinate (sp./sp.) in growth habit, with early‐ to mid‐season maturity, were evaluated for EB resistance and self‐pollinated to produce BC1S1 seed. The 146 BC1S1 progeny families, consisting of 30 plants per family, were grown in a replicated field trial in 1999 and evaluated for EB resistance and plant maturity. For each of the 146 BC1 plants and corresponding BC1 families, the area under the disease progress curve (AUDPC) and final disease severity (final percentage defoliation) were determined and used to measure disease resistance. The distributions of the AUDPC and final percentage defoliation values in the BC1 and BC1S1 generations indicated that resistance from ‘PI126445’ was quantitative in nature. Estimates of h2 for EB resistance, computed by correlation between BC1S1 progeny family means and BC1 individual plant values, ranged from 0.69 to 0.70, indicating that EB resistance of ‘P1126445’ was heritable. Across BC1S1 families, a small, but significant, negative correlation (r = ‐0.26, P < 0.01) was observed between disease resistance and earliness in maturity. However, several BC1S1 families were identified with considerable EB resistance and reasonably early maturity. These families should be useful for the development of commercially acceptable EB‐resistant tomato lines.  相似文献   

18.
This study was conducted to evaluate the types of gene action governing the inheritance of resistance to peanut bud necrosis disease (PBND) in populations derived from three crosses involving two resistant (ICGV 86388 and IC 10) and one susceptible (KK 60–1) peanut lines. Populations were composed of P1 P2, F1 F2, BC11, BC12, BC11S and BC12S. These populations were evaluated for PBND incidence in a farmer's field in Kalasin province in north‐east Thailand, where PBND is a recurring problem. Results showed variations between crosses in the relative contributions of different types of gene effect. The results indicate that multiple genes control the PBND resistance trait, and that the two resistant lines differ in some of these genes. As non‐additive gene effects are important in all three crosses, selection for low PBND incidence in these crosses would be more effective in later generations.  相似文献   

19.
Experiments were undertaken to determine the inheritance of pod length in a cross with spring rapesecd, Brassica napus, and to assess the value of pod length as a criterion of selection for high seed yield. Analyses of patterns of variation in F2; and backcross populations derived from a cross between a short-pod line TB42 and long-pod line CA553 indicated that much of the variation in pod length could be attributed to two major genes interacting in a complementary manner. Short-pods were produced when cither one or both genes were homozygous for the recessive allele. Analyses of F3 progenies of selected F2 and inbred-backcross lines derived from the same cross supported the two-gene hypothesis but also indicated that the effects of the major genes on pod length were possibly modified by genes of minor effect. Field testing of families derived from random intermating between F2, plants of the TB42 × CA553 cross showed that number of pods per plant varied independently of pod length, but seed weight per pod tended to increase with increasing pod length. As a result, families with the longest pods generally had significantly higher yields than those with short pods. It was concluded that yield improvement in B. napus could be achieved through introgression of long-pod genes into cultivars with an appropriate genetic background to ensure that selection for the long-pod character would be accompanied by an increase in seed weight per pod with little or no reduction in number of pods per plant.  相似文献   

20.
Non‐pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non‐pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non‐pungent bell pepper line GC3 was conducted by introgression of S‐type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC1F1 containing S‐type cytoplasm and four lines from BC2F2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non‐pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC1F1 and BC1F2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号