首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introgression of unadapted genes from the wild Cicer species could contribute to the widening of genetic base of important traits such as yield, yield attributes and resistance to major biotic and abiotic stresses. An attempt was made successfully to intercross two wild annual Cicer species with three cultivated chickpea cultivars. Four interspecific cross‐combinations were made, and their true hybridity was ascertained through morphological and molecular markers. These cross‐combinations were also studied for some important quantitative traits under real field conditions. The range, mean and coefficient of variation of agro‐morphological traits were assessed in the parental lines, their F1 and F2 generations to determine the extent of variability generated in cultivated chickpea varieties. A high level of heterosis was recorded for number of pods/plant and seed yield/plant in F1 generation. Three cross‐combinations of ‘Pusa 1103’ × ILWC 46, ‘Pusa 256’ × ILWC 46 and ‘Pusa 256’ × ILWC 239 exhibited substantially higher variability for important yield‐related traits. The present research findings indicate that these wild annual Cicer species can be easily exploited to broaden the genetic base of cultivated gene pool for improving seed yield as well as adaptation.  相似文献   

2.
Understanding the genetic basis underlying domestication-related traits (DRTs) of cowpea (Vigna unguiculata (L.) Walp.) is important since the genome has experienced divergent domestication and in addition it is also useful to utilize the wild germplasm efficiently for improving different traits of the cultivated cowpea. Quantitative trait loci (QTLs) for DRTs were identified in a population of 159 F7 recombinant inbred lines derived from a cross between a domesticated cowpea (V. unguiculata (L.) Walp.) variety, 524B, and a wild accession, 219. Using the constructed linkage map, QTLs for 10 DRTs were analysed and mapped. QTLs for seed, pod and flower related traits were detected. Subsequently, QTL for ovule number was also identified. To our knowledge, this is the first time a QTL for this trait has been observed. QTLs for DRTs show co-localization on three linkage groups and pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions. The information gained in this study can be used for marker-assisted selection of domestication-related QTLs in cowpea and enhance understanding of domestication in the genus Vigna.  相似文献   

3.
The gene effects of Cicer reticulatum on both double‐podding as qualitative traits and yield criteria as quantitative traits in interspecific hybridization with cultivated chickpea (Cicer arietinum) have not yet been elucidated, despite the easy acquisition of hybrid progeny between two species. This study sought to answer three questions concerning qualitative and quantitative traits in reciprocal crosses between C. arietinum and C. reticulatum. (i) Is there a similarity in the gene effects of flower colour, pigmentation and double‐podded traits in reciprocal interspecific crosses? (ii) What are the expressivity and penetrance of the double‐podded trait in interspecific crosses? (iii) Which heterosis predicts the occurrence and the extent of transgressive variation? The materials for this study were F1, F2 and F3 progeny derived from a reciprocal cross between C. arietinum and C. reticulatum. As qualitative traits, purple flower colour, pigmentation and single‐podded traits in C. reticulatum were governed by a dominant single gene. Purple flower colour and pigmentation were detected to be linked traits as all progeny had the same phenotypes. As quantitative traits, yield criteria in progeny which were double‐podded had higher values than the single‐podded counterparts. Expressivity and penetrance of the double‐podding trait were superior in progeny derived from C. reticulatum × C. arietinum. The results showed that fruitful heterosis was more useful than residual heterosis in F3 as residual heterosis was mostly negative and fruitful heterosis was suggested in self‐pollinated species such as chickpea that lacks inbreeding depression. Interspecific transgression was significant with respect to chickpea improvement because it represented a potential source of novel genetic variation.  相似文献   

4.
Vernalization insensitivity is a key feature of domesticated chickpea, and its genetic basis is not well understood. We studied vernalization response among hybrid progeny derived from two domesticated × wild crosses. The wild parents are vernalization‐sensitive, late‐flowering genotypes while both domesticated parents are vernalization insensitive. Parental lines and hybrid progeny were tested with (28 days at 4°C) and without vernalization (control). The difference in mean days to flower (?DTF) between control and vernalization treatments was used to assess the flowering vernalization response. A wide range of ?DTF values was observed among the hybrid progeny. Strong genotype by environment interaction effect on ?DTF was observed for the parental accessions and hybrid progeny. We used the ?DTF values to select vernalization responsive and non‐responsive progeny lines. However, the genotype × environment interaction strongly interfered with our selection. Chickpea breeders interested in using the wild progenitor as a donor of exotic traits should be aware of the possibility of introducing vernalization response alleles that may alter the phenology of their breeding materials in an unpredictable manner.  相似文献   

5.
Ascochyta blight is a devastating disease of chickpea. Breeders have been trying to introduce resistance from wild Cicer into cultivated chickpea, however, the effort is hampered by the frequent genetic drag of undesirable traits. Therefore, this study was aimed to identify potential markers linked to plant growth habit, ascochyta blight resistance and days to flowering for marker-assisted breeding. An interspecific F2 population between chickpea and C. reticulatum was constructed to develop a genetic linkage map. F2 plants were cloned through stem cuttings for replicated assessment of ascochyta blight resistance. A closely linked marker (TA34) on linkage group (LG) 3 was identified for plant growth habit explaining 95.2% of the variation. Three quantitative trait loci (QTLs) explaining approximately 49% of the phenotypic variation were found for ascochyta blight resistance on LG 3 and LG 4. Flowering time was controlled by two QTLs on LG3 explaining 90.2% of the variation. Ascochyta blight resistance was negatively correlated with flowering time (r = −0.22, P < 0.001) but not correlated with plant growth habit.  相似文献   

6.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

7.
Mapping genes for double podding and other morphological traits in chickpea   总被引:4,自引:0,他引:4  
Seed traits are important considerations for improving yield and product quality of chickpea (Cicer arietinum L.). The purpose of this study was to construct an intraspecific genetic linkage map and determine map positions of genes that confer double podding and seed traits using a population of 76 F10 derived recombinant inbred lines (RILs) from the cross of ‘ICCV-2’ (large seeds and single pods) × ‘JG-62’ (small seeds and double podded). We used 55 sequence-tagged microsatellite sites (STMS), 20 random amplified polymorphic DNAs (RAPDs), 3inter-simple sequence repeats (ISSR) and 2 phenotypic markers to develop a genetic map that comprised 14 linkage groups covering297.5 cM. The gene for double podding (s) was mapped to linkage group 6 and linked to Tr44 and Tr35 at a distance of7.8 cM and 11.5 cM, respectively. The major gene for pigmentation, C, was mapped to linkage group 8 and was loosely linked to Tr33 at a distance of 13.5 cM. Four QTLs for 100 seed weight (located on LG4 and LG9), seed number plant-1 (LG4), days to 50% flower (LG3) were identified. This intraspecific map of cultivated chickpea is the first that includes genes for important morphological traits. Synteny relationships among STMS markers appeared to be conserved on six linkage groups when our map was compared to the interspecific map presented by Winter et al. (2000). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Seed vigour plays an important role in agricultural production, and seeds with high sowing quality are necessary for improving agriculture production. In our study, two connected maize recombinant inbred line (RIL) populations derived from Yu82 × Shen137 and Yu537A × Shen137 crosses were evaluated for the mean germination time (MGT) and other related traits under three artificial ageing treatments. We used meta‐analysis to integrate genetic maps and identify quantitative trait loci (QTLs) across the two populations. In total, 74 QTLs and 20 meta‐QTLs (mQTLs) were identified. Four key mQTLs, mQTL2‐2, mQTL5‐4, mQTL6 and mQTL8, which contained initial QTLs with R2 values >10% and included 5–9 initial QTLs, may be hot spots of important QTLs for the associated traits. Twenty‐two key candidate genes associated with four seed vigour‐related traits mapped to 14 mQTLs. In particular, the GRMZM2G163749, GRMZM2G122172/GRMZM2G554885/GRMZM2G122871 and GRMZM2G150367 genes mapped within the important mQTL5–4, mQTL6 and mQTL8 regions, respectively. Fine mapping for the genetic regions of these three mQTLs merits further study and could be utilized for marker‐assisted breeding.  相似文献   

9.
陆地棉衣分差异群体产量及产量构成因素   总被引:14,自引:5,他引:9  
 以衣分差异较大的陆地棉品种为材料,构建了包含188个F2单株的作图群体,应用6111对SSR引物对亲本进行了分子标记筛选,结果仅获得了123个多态性位点,其中88个位点构建了总长为666.7 cM、平均距离为7.57 cM的遗传图谱,覆盖棉花基因组的14.9%。通过复合区间作图法对F2单株和F2∶3家系进行QTL检测,共鉴定出了18个控制产量及产量构成因素变异的QTLs,包括2个衣分QTLs、4个子棉产量QTLs、4个皮棉产量QTLs、2个衣指QTLs、3个单株铃数QTLs、2个铃重QTLs和1个子指QTL。 解释的表型变异分别为\{6.9%\}~16.9%、5.6%~16.2%、4.8%~15.6%、7.7%~13.3%、8.2%~11.6%、6.1%~7%和6.6%。不同QTLs在相同染色体区段上的成簇分布表明与产量性状相关的基因可能紧密连锁或一因多效。产量及产量构成因素QTLs的遗传方式主要以显性和超显性效应为主。检测到的主效QTLs可以用于棉花产量及产量构成因素的分子标记辅助选择。  相似文献   

10.
Lagerstroemia (crape myrtle) are famous ornamental plants with large pyramidal racemes, long flower duration and diverse colours. Genetic maps provide an important genomic resource of basic and applied significance. A genetic linkage map was developed by genotyping 192 F1 progeny from a cross between L. caudata (female) and L. indica (‘Xiang Xue Yun’) (male) with a combination of amplification fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers in a double pseudo‐testcross mapping strategy. A total of 330 polymorphic loci consisting of 284 AFLPs and 46 SSRs showing Mendelian segregation were generated from 383 AFLP primer combinations and 150 SSR primers. The data were analysed using JoinMap 4.0 (evaluation version) to construct the linkage map. The map consisted of 20 linkage groups of 173 loci (160 AFLPs and 13 SSRs) covering 1162.1 cM with a mean distance of 10.69 cM between adjacent markers. The 20 linkage groups contained 2–49 loci and ranged in length from 7.38 to 163.57 cM. This map will serve as a framework for mapping QTLs and provide reference information for future molecular breeding work.  相似文献   

11.
The radish displays great morphological variation but the genetic factors underlying this variability are mostly unknown. To identify quantitative trait loci (QTLs) controlling radish morphological traits, we cultivated 94 F4 and F5 recombinant inbred lines derived from a cross between the rat-tail radish and the Japanese radish cultivar ‘Harufuku’ inbred lines. Eight morphological traits (ovule and seed numbers per silique, plant shape, pubescence and root formation) were measured for investigation. We constructed a map composed of 322 markers with a total length of 673.6 cM. The linkage groups were assigned to the radish chromosomes using disomic rape-radish chromosome-addition lines. On the map, eight and 10 QTLs were identified in 2008 and 2009, respectively. The chromosome-linkage group correspondence, the sequence-specific markers and the QTLs detected here will provide useful information for further genetic studies and for selection during radish breeding programs.  相似文献   

12.
13.
A genetic linkage map with 70 loci (55 SSR, 12 AFLP and 3 morphological loci) was constructed using 117 F2 plants obtained from a cross between two upland cotton cultivars Yumian 1 and T586, which have relatively high levels of DNA marker polymorphism and differ remarkably in fiber-related traits. The linkage map comprised of 20 linkage groups, covering 525 cM with an average distance of 7.5 cM between two markers, or approximately 11.8% of the recombination length of the cotton genome. The present genetic linkage map was used to identify and map the quantitative trait loci (QTLs) affecting lint percentage and fiber quality traits in 117 F2:3 family lines. Sixteen QTLs for lint percentage and fiber quality traits were identified in six linkage groups by multiple interval mapping: four QTLs for lint percentage, two QTLs for fiber 2.5% span length, three QTLs for fiber length uniformity, three QTLs for fiber strength, two QTLs for fiber elongation and two QTLs for micronaire reading. The QTL controlling fiber-related traits were mainly additive, and meanwhile including dominant and overdominant. Several QTLs affecting different fiber-related traits were detected within the same chromosome region, suggesting that genes controlling fiber traits may be linked or the result of pleiotropy.  相似文献   

14.
陆地棉产量相关性状的QTL定位   总被引:10,自引:0,他引:10  
中棉所28和湘杂棉2号分别是以中棉所12×4133和中棉所12×8891配制而成的两个陆地棉强优势杂交种。以其F2为作图群体,筛选6000多对SSR引物,利用两群体间27个共有多态位点,通过JoinMap 3.0软件整合了一张包含245个多态位点、全长1847.81 cM的遗传图谱。利用Win QTLCart 2.5复合区间作图法分别对两群体8个产量相关性状在F2和F2:3中进行QTL定位,在中棉所28群体多环境平均值的联合分析中检测到16个QTL,三环境分离分析中检测到43个QTL;在湘杂棉2号群体分别检测到20个和66个QTL。在A3、D8、D9等染色体上有QTL成簇分布现象,同时在两个群体中发现一些不受环境影响且稳定遗传的QTL。对考察的8个性状在两个群体中发现12对共有QTL,控制果枝数、衣分和籽指的QTL增效基因位点均来源于共同亲本中棉所12。综合分析推测中棉所12的育种价值主要是通过提高后代的结铃性来实现的。研究结果为棉花产量性状的分子设计育种提供了有用的信息。  相似文献   

15.
Soybean (Glycine max (L.) Merr.) seed contains small amounts of tocopherol, a non‐enzymatic antioxidant known as lipid‐soluble vitamin E (VE). Dietary VE contributes to a decreased risk of chronic diseases in humans and has several beneficial effects on resistance to stress in plants, and increasing VE content is an important breeding goal for increasing the nutritional value of soybean. In this study, quantitative trait loci (QTLs) underlying VE content with main, epistatic and QTL × environment effects were identified in a population of F5 : 6 recombinant inbred lines from a cross between ‘Hefeng 25’ (a low‐VE cultivar) and ‘OAC Bayfield’ (a high‐VE cultivar). A total of 18 QTLs were detected that showed additive main effects (a) and/or additive × environment interaction effects (ae) in different environments. Moreover, 19 epistatic pairs of QTLs were found to be associated with α‐tocopherol (α‐Toc), γ‐tocopherol (γ‐Toc), δ‐tocopherol (δ‐Toc) and total VE (TE) contents. The QTLs identified in multienvironments could provide more information about QTL by environment interactions and could be useful for the marker‐assistant selection of soybean cultivars with high seed VE contents.  相似文献   

16.
The objective of this study was to determine quantitative trait loci (QTL) underlying ten floral and related traits in Aquilegia. The traits assessed were calyx diameter, corolla diameter, petal length, petal blade length, sepal length, sepal width, spur length, spur width, plant height and flower number. These are important traits for ornamental value and reproductive isolation of Aquilegia. QTL analysis of these traits was conducted using single‐marker analysis and composite interval mapping (CIM). We used an F2 population consisting of 148 individuals derived from a cross between the Chinese wild species Aquilegia oxysepala and the cultivar Aquilegia flabellata ‘pumila’. Resulting CIM analysis identified 39 QTLs associated with these traits, which were mapped on seven linkage groups. These QTLs could explain 1.22–53.28% of the phenotypic variance. Thirty‐one QTLs, which explained more than 10% of the phenotypic variation, were classified as major QTLs. Graphical representations of the QTLs on seven linkage groups were made. Our research provides the potential for future molecular assisted selection breeding programmes and the cloning of target genes through fine mapping.  相似文献   

17.
Wild Lens taxa are invaluable sources of useful traits for broadening genetic base of cultivated lentil. Nine inter‐sub‐specific and interspecific crosses were made successfully between cultivated (Lens culinaris ssp. culinaris) and wild lentils (L. culinaris ssp. orientalis, odemensis, lamottei and ervoides). The effect of species groups, day length and temperature on crossability in lentils was evident under normal winter sowing in New Delhi and in summer Himalayan nursery at Sangla in Himachal Pradesh, India, although pollen fertility assessed in all the cross‐combinations showed no significant variation. True hybridity of nine inter‐sub‐specific and interspecific crosses was confirmed through morphological and molecular (ISSR) markers, in which three of 120 primers could confirm the hybridity of all the crosses. All cross‐combinations were also studied for important quantitative traits related to yield. The range, mean and coefficient of variation were estimated in parental lines, F1 and F2 generations to determine the extent of variability generated in cultivated lentils through the introgression of genes from wild L. taxa. A high level of heterosis was observed in F1 crosses for important traits studied. Substantially higher variations for seed yield and its attributing traits were exhibited in F2 generations indicating transgressive segregation. The results of the present investigation revealed that wild L. taxa can be successfully exploited for lentil improvement programmes, and the variations generated could be easily utilized for broadening the genetic base of cultivated lentil gene pool for improving the yield as well as wider adaptation.  相似文献   

18.
A population of 112 F1-derived doubled haploid lines was produced from a reciprocal cross of Brassica juncea. The parents differed for seed quality, seed color and many agronomic traits. A detailed RFLP linkage map of this population, comprising 316 loci, had been constructed, and was used to map quantitative trait loci (QTL) for seed yield and yield components, viz. siliqua length, number of seeds per siliqua, number of siliques per main raceme and 1000-seed weight. Stable and significant QTLs were identified for all these yield components except seed yield. For yield components, a selection index based on combined phenotypic and molecular data (QTL effects) could double up the efficiency of selection compared to the expected genetic advance by phenotypic selection. Selection indices for high seed yield, based on the phenotypic data of yield and yield components, could only improve the efficiency of selection by 4% of the genetic advance that can be expected from direct phenotypic selection for yield alone. Inclusion of molecular data together with the phenotypic data of yield components in the selection indices did not improve the efficiency of selection for higher seed yield. This is probably due to often negative relationships among the yield components. Most of the QTLs for yield components were compensating each other, probably due to linkage, pleiotropy or developmentally induced relationships among them. The breeding strategy for B. juncea and challenges to marker assisted selection are discussed.  相似文献   

19.
Vigna vexillata is a wild cross‐incompatible relative of cowpea. It is highly resistant to several diseases and pests plaguing cowpea. A linkage map was developed for V. vexillata comprising 120 markers, including 70 random amplified polymorphic DNAs, 47 amplified fragment length polymorphisms, one simple sequence repeat and two morphological traits namely, the cowpea mottle carmovirus resistance locus (CPMo V) and leaf shape (La), utilizing an F2 generation of the intra‐specific cross Tvnu 1443’× Tvnu 73′. The genetic map comprised 14 linkage groups spanning 1564.1 cM of the genome. Thirty‐nine quantitative trait loci (QTLs) associated with nine traits were detected on the linkage map, explaining between 15.62 and 66.58% of their phenotypic variation. Seven chromosomal intervals contained QTLs with effects on multiple traits.  相似文献   

20.
Hybrid rice has contributed substantially to the improvement of grain production worldwide, yet its poor cooking and tasting characteristics have long been recognized. In this study, 132 recombinant inbred lines derived from LYPJ were used to identify quantitative trait loci (QTLs) for 12 cooking traits with the high‐density SNP linkage map recently developed by our team. We identified 17 QTLs on chromosomes 1, 2, 4, 5, 6, 7, 8, 9 and 11, which accounted for 7.50% to 23.50% of the phenotypic variations. A novel major QTL qBGL7 for boiled grain length was further fine‐mapped to an interval of 440 Kb between the two markers RM21906 and gl3 using a BC3F2 population. Two near‐isogenic lines with extreme boiled grain length, GX5‐176 and GX5‐101, could be directly used in improving cooking quality. We also identified a QTL for soaked grain width expansion rate, qSGWE6, in the Wx gene region on chromosome 6. The Wx differential regulation coincided with sequential variation between the two parents. Our work offered a theoretical basis for molecular breeding of high‐quality hybrid rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号