首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the impact of aquaculture activities, we measured the primary production, total sediment oxygen consumption, and benthic nutrient flux at two aquaculture farms (sea squirt and oyster) and one reference site. The estimated primary production in the water column ranged from 19–169 mmol C m−2 d−1. Total sediment oxygen consumption rates ranged from 58 to 328 mmol m−2 d−1, 1.1 to 40 mmol m−2 d−1 for nitrogen, 0.17 to 3.0 mmol m−2 d−1 for phosphate, and 7.3 to 74 mmol m−2 d−1 for silicate. The average total sediment oxygen consumption at the longline farms was >2.5 times higher than the reference site. Nitrate was significantly removed by denitrification at the longline farms in July and September and ranged from −5.4 to −0.09 mmol m−2 d−1, which is higher than for other coastal sediments. The benthic fluxes of nitrogen and phosphate at longline farms were up to 16 and six times higher than at the reference site, respectively. The average nitrogen requirements of the primary producers were 9.3 mmol m−2 d−1 at the sea squirt farm, 7.0 mmol m−2 d−1 at the oyster farm, and 13.5 mmol m−2 d−1 at the reference site, corresponding to 88, 316, and 27.2% of the nitrogen supplied by benthic fluxes, respectively. Our results suggest that benthic nutrient fluxes at longline farms are a major nutrient source for primary production in coastal waters.  相似文献   

2.
In a small‐scale culture experiment, larval haddock, Melanogrammus aeglefinus L., were raised under various combinations of light quality [blue (470 nm), green (530 nm) or full‐spectrum white light] and light intensity [low (0.3–0.4 µmol  s?1  m?2) or high (1.7–1.9 µmol  s?1  m?2)], and in total darkness (both fed, and starved). Larval growth (0.9% day?1 in standard length; 2.4% day?1 in body area) was not significantly different between any combination of coloured light. At the time of total mortality in the starved treatment, survival was significantly reduced under low intensity, full‐spectrum white light (13%) vs. all other coloured light treatments (68%). Larvae raised under both continuous dark treatments (fed and starved) exhibited morphological changes associated with irreversible starvation (point‐of‐no‐return). Lack of a pronounced effect of light quality on larval haddock growth probably results from a combination of plasticity in early larval vision, and enhanced encounter rates between larvae and prey at the relatively high prey densities used in aquaculture.  相似文献   

3.
The ante mortem determinism of the quality components in fish is multivariate. Among the various influencing factors, the effects of (i) rearing biomass, (ii) dietary features and (iii) domestication process on the technological and nutritional variables in perch Perca fluviatilis here were studied using two-levels fractional factorial design 24-1 (resolution IV). This work allowed identifying two main factors, i.e. domestication and diet composition, which influence both technological and nutritional variables. Domestication was the parameter showing the greatest effect on both filleting yield (FY) and total saturated fatty acids (SFA) content, whereas diet composition chiefly influenced viscerosomatic index (VSI) and total poly- and mono-unsaturated fatty acids (PUFA and MUFA) contents. Domesticated fish exhibited higher FY (42.8%) and total SFA (25.1% of total fatty acids or FA) content than wild fish (FY = 40.1%, total SFA = 22.9%). Concerning the effect of food composition, diet including only fish oil as lipid source (FO) induced higher VSI than diet including vegetable oil (FV) VSI = 8.8% vs 7.4%, respectively). Moreover, FV diet induced higher n-6 PUFA but lower n-3 PUFA contents in fillets than did the FO diet (total n-6 PUFA = 6.3% vs 5.4% and total n-3 PUFA = 52.6% vs 55.2% of total FA respectively). FV fish fillets had significantly higher total MUFA (17.7% of total FA) contents in muscle than FO fish (14.8%). Concerning this last variable, domestication played only a role in interaction with diet composition. With FO diet, no difference in total MUFA content between wild and domesticated perch was noticed. However, total MUFA content increased with FV diet and was significantly higher in fillets of wild fish (18.7% vs 16.6% of total FA for domesticated). No effect of either feeding rate or initial biomass on the body composition was noticed. In addition, perivisceral fat content was not influenced by any treatment.  相似文献   

4.
In order to explore the effects of high temperature (HT) and light on the physiological and biochemical aspects of macroalga Ulva prolifera, we cultured this species under two temperatures (20°C: low temperature, LT; 30°C: HT) and two light intensities (80 μmol m?2 s?1: low light, LL; 400 μmol m?2 s?1: high light, HL) for 5 days. It was found that (a) compared to 20°C, the chlorophyll a (Chl a) content was increased at 30°C under LL conditions, the relative growth rate (RGR) was significantly decreased at 30°C; (b) compared to LL treatment, HL significantly increased RGR but significantly decreased Chl a content; (c) LL‐grown U. prolifera at 30°C showed the highest photosynthetic oxygen evolution rate; however, there were no significant effects of temperature and light on the relative electron transport rate; (d) superoxide dismutase activity was significantly decreased by HL, but no significant effects of temperature were observed; and (e) compared to LL, HL significantly increased the soluble sugar content at 20°C, but significantly reduced at 30°C. These results showed that the inhibitory effects of HT can be offset by HL intensity.  相似文献   

5.
In order to optimize the optimal cultivation conditions of freshwater algae Desmodesmus armatus for biomass production. In this study, the optimum source of carbon, nitrogen and intensity of light were investigated. Particularly, the variables which are affect the biomass of D. armatus was screened by the Plackett‐Burman (PB) method. Furthermore, the optimized medium composition using central composite design (CCD) of response surface method (RSM) central for D. armatus was reconstituted accordingly to have 0.93 g/L nitrate, 0.04 g/L phosphate, 0.15 g/L magnesium sulphate and 0.07 g/L bicarbonate, and optimum growth conditions of temperature at 27°C, light intensity of 108 μmol m?2 s?1, pH 7.00 and air flow of 0.50 L/min. After 12 days, the biomass, protein and polysaccharose content were 1.65 ± 0.15 g/L, 53.61 ± 1.25% and 6.15 ± 0.43%, respectively. Finally, the optimized conditions were applied to the outdoor 800‐L photobioreactor for scale‐up cultivation.  相似文献   

6.
In vitro accumulation of tetrodotoxin (TTX) and paralytic shellfish toxin (PST) in tiger puffer fish Takifugu rubripes was investigated using liver tissue slices. When T. rubripes liver slices were incubated with Leibovitz’s L-15 medium containing 0.13 mM TTX at 20 °C in air with saturated humidity, they accumulated 21.5 ± 7.3 μg TTX g−1 liver after the incubation for 12 h and increased to 55.3 ± 8.2 μg TTX g−1 liver at 48 h. In the incubation of T. rubripes liver slices with 0.13 mM PST-containing medium, PST was detected 6.3 ± 0.9 μg g−1 liver at 12 h and reached a plateau thereafter. These results reveal the difference between TTX and PST in accumulation in T. rubripes liver tissue slices. To examine the variation in PST accumulation among fish species, the liver tissue slices from tiger puffer fish T. rubripes, parrot-bass Oplegnathus fasciatus and green ling Hexagrammos otakii were incubated at a concentration of 0.027 mM PST. The toxin contents of 3.0 μg g−1 liver were observed at 8 h regardless of fish species but were not increased subsequently, showing no variety among these three species as to accumulation patterns of PST. It is noted that the tiger puffer fish T. rubripes liver specifically accumulate TTX in preference to PST.  相似文献   

7.
We used 12 land-based experimental enclosures (6 m × 5 m) in a saline–alkaline pond of shrimp (Penaeus vannamei) to determine the impact of net-isolated polyculture of tilapia (Oreochromis niloticus) on plankton communities for 40 days. Tilapias were stocked in net cages suspended in enclosures, in polyculture ponds including tilapia and shrimp. Four tilapia biomass were tested: 0, 39, 115 and 227 g m−2. Shrimp stocking biomass were 0.7 g m−2 in all treatments. There were three replicates in each treatment. Our results showed that the presence of tilapia significantly reduced phytoplankton biomass directly through predation and indirectly through top-down effect. The stocking of tilapia reduced zooplankton biomass, particularly rotifer biomass. However, copepod biomass was not been significantly affected. So, net-isolated polyculture of tilapia can thus have a strong impact on phytoplankton allowing the co-existence of large numbers of copepods with planktivorous fish and improving the water quality of shrimp ponds.  相似文献   

8.
Two trials were carried out in the laboratory in order to assess the effect of microparticulated feed (F) and live (Thalassiosira pseudonana, M) diets on the growth of recently set (396 ± 13 μm shell height) and 2 mm Crassostrea gigas postlarvae. Different proportions of M and F (100:0, 75:25, 50:50; 25:75, 0:100) were delivered in a single dose of 3 h d−1 in trial 1. Dietary M:F proportions of 100:0, 50:50, and 0:100 were delivered as a single pulse of 8 h d−1 (P1) or two pulses of 4 h−1 (P2) in trial 2. Maximal daily M ration was 296 cells μl−1 d−1 (trial 1), 150 M cells μl−1 d−1 (trial 2), or their equivalent F dry weight. Shell height (SH), dry (DW), and organic weight (AFDW) were evaluated weekly. Oysters from trial 1 significantly increased their size after 28 days, and exhibited no significant dietary differences in terms of DW (1.21 ± 0.15 to 2.01 ± 0.28 mg) or AFDW (0.091 ± 0.022 to 0.166 ± 0.029 mg). Newly set postlarvae (trial 2) also exhibited significant growth after 25 days. No dietary differences were observed in trial 2, yet P2 oysters attained significantly higher shell heights (825–912 μm) than P1 oysters (730–766 μm) after 25 d. Pulse effects were marginally not significant in terms of AFDW and growth rate. Together, these findings showed that balanced microfeeds have a practical potential for the culture of early C. gigas postlarvae, when they are delivered in pulse-feeding schemes  相似文献   

9.
This research was designed to study Sparus aurata (sea bream) biotransformation and detoxification responses to acute exposure to cadmium (Cd). Sexually immature gilthead sea bream were treated by intraperitoneal injection of Cd chloride (200 μg kg−1) for 6, 12, 24 and 48 h. Cd accumulation was quantified in sea bream liver by graphite furnace atomic absorption spectroscopy after the various exposure periods. The following biological responses were measured: (1) ethoxyresorufin-O-deethylase (EROD) activity as phase I biotransformation parameter, (2) liver glutathione-S-transferase (GST) activity as a phase II conjugation enzyme and metallothionein (MT) content as specific response to Cd contamination. Cd bioaccumulation in the liver resulted in an increasing uptake up to 10.3 μg g−1 wet weight after 48 h of exposure. EROD showed a significant activation only after 6 h exposure and a return to control levels after 12 h. GST revealed significant activation starting from 12 h exposure. MT accumulation in liver showed the same behavior as GST activation.  相似文献   

10.
In two separate experiments, haddock (Melanogrammus aeglefinus) larvae were raised under different photoperiods (24L : 0D or 15L : 9D), or different combinations of tank colour (black or white) and light intensity (1.1 mol s–1 m–2 or 18 mol s–1 m–2). Growth (0.8% day–1 in standard length; 2.9% day–1 in body area) and survival (2%) were not significantly different between photoperiod treatments after 35 days. Larval survival was greater in white versus black tanks after 41 days (2% versus l%, respectively). Growth of larvae was impaired in black tanks at low (1.1 mol s–1 m–2) light intensity (0.8% day–1 in standard length and 2.2% day–1 in body area versus 1.1% day 21 in standard length and 3.1% day–1 in body area, for all other treatments). Transmission and reflection of light was low in black tanks at low incident light, and there was very little upwelling light. The resultant poor prey to background contrast probably resulted in larvae being unable to consume sufficient food to sustain a level of growth comparable to that in other treatments.  相似文献   

11.
The aim of this study was to assess the effect of bifenthrin on common carp (Cyprinus carpio L.). The 96-h LC50 value of Talstar EC 10 (active substance 100 g l−1 bifenthrin) was found to be 57.5 μg l−1. Examination of haematological and biochemical profiles and histological tissue examination was performed on common carp after 96 h of exposure to Talstar EC 10 (57.5 μg l−1). The experimental group showed significantly higher (P < 0.01) values of plasma glucose, ammonia, aspartate aminotransferase and creatine kinase as well as the relative and absolute monocyte count, compared with the control group. Histological examination revealed teleangioectasiae of secondary gill lamellae and degeneration of hepatocytes. The bifenthrin-based Talstar EC 10 pesticide preparation was classified as a substance strongly toxic for fish.  相似文献   

12.
Several measures have been developed to quantify swimming performance to understand various aspects of ecology and behaviour, as well as to help design functional applications for fishways and aquaculture. One of those measures, the optimal swimming speed, is the speed at which the cost of transport (COT) is minimal, where COT is defined as the cost of moving unit mass over unit distance. The experimental protocol to determine the optimal swimming speed involves forced-swimming in a flume or respirometer. In this study, a 4.5–m-long tilted raceway with gradually increasing upstream water speed is used to determine a novel, behaviourally based swimming parameter: the preferred swimming speed. The optimal swimming speed and the preferred swimming speed of brook charr were determined and a comparison of the two reveals that the optimal swimming speed (25.9 ± 4.5 cm s−1 or 1.02 ± 0.47 bl s−1) reflected the preferred swimming speed (between 20 cm s−1 or 0.78 ± 0.02 bl s−1 and 25 cm s−1 or 0.95 ± 0.03 bl s−1). The preferred swimming speed can be advantageous for the determination of swimming speeds for the use in aquaculture studies.  相似文献   

13.
Photosynthesis and respiration rates were measured on 10 cm tall seedlings of Z. japonica at various temperatures and photosynthetic photon flux densities (PPFDs), and the daily compensation points in each season were estimated with a mathematical model based on photosynthetic properties and diurnal changes in solar irradiances. The seedlings were grown from seeds collected at Tategami-ura, Ago Bay, Mie Prefecture, Japan, and cultured for 1 week under the examined temperatures of 10–25°C. The estimated daily compensation points of Z. japonica ranged from 9.3 to 13.6% of the surface irradiance. The total PPFDs in daytime ranged from 3.8 to 5.3 mol photons m−2 day−1. The theoretical depth limits were calculated by the Beer-Lambert law concerning the relative light intensities of the sea surface and the extinction coefficient. The estimated lowest limit of Z. japonica agreed well with the lowest depth (7 m) previously reported. Therefore, the mathematical model in this study can be used to estimate the production and critical growing depth of Z. japonica. Differences in light requirements seem to be one of the reasons for the shallower habitats of Z. japonica in comparison with Z. marina.  相似文献   

14.
The metabolic responses of the juvenile Miichthys miiuy in terms of oxygen consumption and ammonia excretion to changes in temperature (6–25°C) and salinity (16–31 ppt) were investigated. At a constant salinity of 26 ppt, the oxygen consumption rate (OCR) of the fish increased with an increase in temperature and ranged between 133.38 and 594.96 μg O2 h−1 g−1 DW. The effect of temperature on OCR was significant (P < 0.01). Q10 coefficients were 6.80, 1.41, 1.29 and 2.36 at temperatures of 6–10, 10–15, 15–20 and 20–25°C, respectively, suggesting that the juveniles of M. miiuy will be well adapted to the field temperature in the summer, but not in the winter. The ammonium excretion rates (AER) of the fish were also affected significantly by temperature (P < 0.01). The O:N ratio at temperatures of 6, 10, 15 and 20°C ranged from 13.12 to 20.91, which was indicative of a protein-dominated metabolism, whereas the O:N at a temperature of 25°C was 51.37, suggesting that protein-lipids were used as an energy substrate. At a constant temperature of 15°C, the OCRs of the fish ranged between 334.14 (at 31 ppt) and 409.68 (at 16 ppt) μg O2 h−1 g−1 DW. No significant differences were observed in the OCR and AER of the juveniles between salinities of 26 and 31 ppt (P > 0.05). The OCR and AER at 16 ppt were, however, significantly higher than those at 26 and 31 ppt (P < 0.05), indicating salinity lower than 16 ppt is presumably stressful to M. miiuy juveniles.  相似文献   

15.
This study was undertaken to investigate the effect of sustained physical exercise (SS, swimming speed) on the fatty acid profile of muscle in PIT-tagged all-female chinook salmon (Oncorhynchus tshawytscha) in relation to their age and ration level (RL; i.e., maximum ration, RL100 or 75% of maximum, RL75). Accordingly, body weight (BW), specific growth rate (SGR), and total muscle lipid content (TLC) were considered as covariates in data analyses. In addition, plasma levels of thyroid hormones (thyroxine, T4 and 3,5,3′-triiodo-l-thyronine, T3) were compared to the muscle fatty acid (FA) compositions of individual fish to determine if there were any associations between thyroidal status and FA percentages. During the 300-day study, body weight increased from 75 to 440 g. Fish age explained most of the changes found in muscle FA composition [that is, R2 was 0.23 for saturated fatty acids (SAFAs), 0.65 for monounsaturated fatty acids (MUFAs), and 0.71 for polyunsaturated fatty acids (PUFAs) with p<0.0007 in all cases]. Reduction in RL had less influence on FA composition (p>0.15 for SAFA, and R2 was 0.27 for MUFA and 0.34 for PUFA, with p<0.0001 in each of the latter cases). SS only affected MUFA significantly (p<0.07 with R2=0.09). The observed effects of fish age and SS on FA composition were to a large degree uninfluenced by BW, SGR, or TLC, while the effects of RL were markedly diminished when these covariates were included in the statistical model. Thus, the changes in body weight and/or lipid content were viewed as being the direct cause for the alteration in muscle FA profile seen with the main factor RL. The effect of SS was pronounced only if fish with a reduced RL were compared. In this situation, the level of PUFA, especially docosahexaenoic acid (DHA; 22:6 n-3), decreased and MUFA increased. Plasma T4 was unrelated to muscle FA levels, but plasma T3 was correlated positively with muscle MUFA and negatively with PUFA. We conclude that in order for exercise to affect chinook salmon fillet FA composition, it has to be combined with restricted feeding. The data also imply that in accordance with higher vertebrates, T3 is also involved in the regulation of FA metabolism in fish.  相似文献   

16.
In the present study biotransformation and detoxification responses to acute exposure to the polycyclic aromatic hydrocarbons benzo[a]pyrene (B[a]P) were investigated in the liver of Sparus aurata (sea bream). Sexually immature gilthead sea bream were treated by intraperitoneal injection of B[a]P (20 mg kg−1) for 6, 12, 24, and 48 h. B[a]P accumulation was quantified in sea bream liver by mean of gas phase chromatography (GPC-MS) after the various exposure periods. The following biological responses were measured: (1) ethoxyresorufin-O-deethylase (EROD) activity, as a phase I biotransformation parameter; (2) liver glutathione S-transferase (GST) activity as a phase II conjugation enzyme. DNA damage was assessed over time using the single-cell gel electrophoresis comet assay. B[a]P bioaccumulation in the liver resulted in a biphasic curve with an increasing uptake up to 5.55 ± 0.67 μg g−1 dry weight after only 6 h exposure and 4.67 ± 0.68 μg g−1 dry weight after 48 h exposure. EROD activity showed a nonsymmetrical bell-shaped kinetic with a maximum at 24 h and lower but significant activities at 12 and 48 h with respect to control animals. Hepatic GST activities were only significant after 48 h exposure. Comet assay showed an increase in liver cells DNA damage with a maximum after 48 h exposure reaching up to 12.17 %DNA in the tail.  相似文献   

17.
Asian river catfish (Pangasius bocourti Sauvage, 1880) were cultured at five different stocking densities in cages (submerged volume 1 m3) suspended in a dugout pond from August to November 2009. Pangasius bocourti fingerlings (mean weight 27.09 ± 0.54 g) were stocked at densities of 12, 25, 50, 100, and 200 fish m−3. At the end of 3 months, the harvest weights (gross yields) were, respectively, 2.05 ± 0.30, 5.20 ± 0.31, 10.60 ± 0.42, 19.98 ± 0.78, and 42.37 ± 0.41 kg m−3. The mean fish weights among the stocking densities of 25, 50, 100, and 200 fish m−3 were not significantly different, but were significantly higher than that of the 12 fish m−3 density. The specific growth rates among high stocking densities of 50, 100, and 200 fish m−3 were not significantly different; however, they were significantly higher than those of the low stocking densities of 12 and 25 fish m−3. Asian river catfish performed poorly at the lowest density. The results indicate an initial lower stocking threshold for Asian river catfish of above 5.20 kg m−3. The Asian river catfish cultured in small cages placed in a pond reached the desirable market size (>200 g) within a 90-day grow-out period. The results show that the maximum yield for Asian river catfish during a 3-month production cycle was not reached.  相似文献   

18.
The efficacy of photoperiod manipulation to influence growth and developmental processes is well documented in a range of temperate aquaculture species. However, the application of such techniques with tropical species requires further investigation. This preliminary 20-day study investigated the influence of continuous photoperiod on growth of barramundi (Lates calcarifer). In addition, diel plasma melatonin profiles provided a physiological measure of how the endocrine system of barramundi responded to continuous photoperiod. Juvenile barramundi (1.33 ± 0.02 g) were held in recirculation systems under 12-h light: 12-h dark (12L:12D) or 24-h light (24L:0D) with a light intensity of 1,000 lux throughout the water column. Fish from both treatments grew to more than 14 times their original weight, with final weight (24L:0D = 21.59 ± 0.85 g; 12L:12D = 19.12 ± 0.55 g), total length (24L:0D = 12.67 ± 0.14 cm; 12L:12D = 11.96 ± 0.13 cm) and specific growth rate (24L:0D = 9.60 ± 0.05% bw day−1; 12L:12D = 9.14 ± 0.06% bw day−1) being significantly higher for fish grown on 24L:0D compared with 12L:12D. There were no significant differences in feed intake (24L:0D = 226.46 ± 6.27 g; 12L:12D = 219.02 ± 5.73 g) or feed conversion ratio (24L:0D = 0.71 ± 0.06; 12L:12D = 0.80 ± 0.07) between light treatments. Barramundi held under 12L:12D exhibited diel melatonin secretion, which peaked mid-dark phase (171.83 ± 4.81 pg ml−1) followed by a gradual decrease in base levels at the onset of illumination (68.61 ± 8.77 pg ml−1). When juvenile barramundi were subjected to 24L:0D, the amplitude of peak melatonin secretion was significantly suppressed during the subjective mid-dark phase (129.71 ± 2.36 pg ml−1). This preliminary study confirmed that barramundi respond to photoperiod manipulation in a similar manner to many temperate fish species, thus demonstrating the future potential use of artificial lighting to improve growth in this species commercially.  相似文献   

19.
The swimming angle of larval Japanese anchovy (Engraulis japonicus) was measured in a tank, and target strength (TS) was calculated using a theoretical scattering model. The mean swimming angle was 12.8° (SD ±22.1). Increased speeds of flow led to increased mean swimming angles. The mean swimming angle at flow of 5 cm s−1 was higher than at other speeds. TS values were estimated using a distorted-wave Born approximation model for two cases. Average values were 1–3 cm s−1 (11.5° ± 22.1) and 5 cm s−1 (16.6° ± 21.7) for cases 1 and 2, respectively. For case 1, TS ranged from −92.0 to −74.7 dB with a mean of −79.4 dB at 120 kHz. For case 2, TS ranged from −92.2 to −75.2 dB with a mean of −79.9 dB. The mean TS in case 2 was lower than that in case 1, with the maximum difference being 1.0 dB at 120 kHz (standard length 22.0 mm). However, there were no significant differences between the regression lines of cases 1 and 2. Thus, changes in flow speed altered the swimming angle of larval Japanese anchovy, but had little influence on TS.  相似文献   

20.
Trypsin from the viscera of Bogue (Boops boops) was purified to homogeneity by precipitation with ammonium sulphate, Sephadex G-100 gel filtration and Mono Q-Sepharose anion exchange chromatography, with an 8.5-fold increase in specific activity and 36% recovery. The molecular weight of the purified enzyme was estimated to be 23 kDa by SDS–PAGE and size exclusion chromatography. The purified trypsin appeared as a single band on native-PAGE and zymography staining. The purified enzyme showed esterase-specific activity on N-α-benzoyl-l-arginine ethyl ester (BAEE) and amidase activity on N-α-benzoyl-dl-arginine-p-nitroanilide (BAPNA). The optimum pH and temperature for the enzyme activity, after 10 min incubation, were pH 9.0 and 55°C, respectively, using BAPNA as a substrate. The trypsin kinetic constants K m and k cat on BAPNA were 0.13 mM and 1.56 s−1, respectively, while the catalytic efficiency k cat /K m was 12 s−1 mM−1. Biochemical characterisation of B. boops trypsin showed that this enzyme can be used as a possible biotechnological tool in the fish processing and food industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号