首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
微咸水与再生水混灌对作物生理特性的影响   总被引:1,自引:0,他引:1  
为了探讨淡水资源匮乏地区微咸水与再生水的安全合理利用,通过盆栽上海青试验,以清水灌溉为对照,设置再生水灌溉(T1)、微咸水—再生水1∶2灌溉(T2)、微咸水—再生水1∶1灌溉(T3)、微咸水灌溉(T4)4种灌溉方式,研究了不同比例微咸水与再生水混合灌溉对土壤水盐、作物生物量(地上部和地下部)、叶片叶绿素含量、可溶性蛋白含量、丙二醛(MDA)含量、过氧化氢酶(CAT)活性、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性的影响。结果表明:(1)上海青收获后,不同比例微咸水与再生水混合灌溉处理土壤含水率和含盐量较清水灌溉(CK)均有所升高,其中T1、T2、T3处理土壤含水率与CK差异不显著,T4处理土壤含水率较CK差异显著(P0.05),而各处理土壤含盐量与CK均差异显著;与T1处理相比,随着灌溉水中微咸水比重的升高,土壤含水率逐渐升高,且至T4处理时差异显著。(2)微咸水与再生水混灌对上海青地上部鲜重有一定影响,而对地上部干重以及地下部生物量无显著影响。与T1相比,T2、T3、T4处理上海青地上部鲜重均显著降低(P0.05),降幅为24.78%~26.36%,地上部干重亦均降低,但差异不显著,降幅为19.14%~24.54%,地下部鲜重和干重无显著性变化。(3)微咸水与再生水混灌对上海青生理指标(叶绿素含量、可溶性蛋白含量、MDA含量、POD活性、CAT活性)没有显著影响,对SOD活性具有显著的提升作用。与T1相比,T2、T3、T4处理叶绿素a含量分别降低4.98%,3.82%和9.26%,叶绿素b含量分别降低10.88%,8.20%和13.46%,叶绿素总量分别降低9.76%,6.12%和10.15%,CAT活性分别提高8.51%,8.51%和-19.15%,POD活性分别提高1.92%,17.24%和-2.87%,SOD活性分别提高104.07%,62.20%和41.67%。随着混合液中微咸水比重的升高,上海青可溶性蛋白含量先降低后升高,MDA含量先升高后降低。(4)基于第二代综合生物响应指数(integrated biological response version 2,IBR_(v2)),综合考虑土壤水盐、作物生理指标以及再生水资源本身的局限性,在淡水资源匮乏地区利用微咸水灌溉时,可以考虑用再生水作为替代清水水源与微咸水配合使用,微咸水—再生水混灌比例以1∶1为宜。研究结果可为淡水不足地区利用微咸水(3 g/L)灌溉提供参考。  相似文献   

2.
微咸水灌溉对土壤盐分平衡与作物产量的影响   总被引:7,自引:5,他引:2  
河北低平原淡水资源短缺,微咸水资源丰富,合理开发利用微咸水已经成为缓解水资源供需矛盾的重要途径之一。本研究于2011—2015年在河北省沧州市中国科学院南皮生态农业试验站进行,以冬小麦和夏玉米一年两熟种植体系为研究对象,开展了河北低平原区实施微咸水灌溉对冬小麦及下茬作物夏玉米产量及灌溉对土壤盐分周年平衡的影响。2013—2014年冬小麦灌溉处理设雨养旱作处理(CK)、拔节期淡水灌溉1水(F1)、拔节期用2 g·L~(-1)、3 g·L~(-1)、4 g·L~(-1)、5 g·L~(-1)的微咸水灌溉1次(B21、B31、B41、B51)、拔节期和灌浆期用淡水灌溉(F2)、拔节期用3 g·L~(-1)的微咸水+灌浆期用淡水灌溉(B31F1)、拔节期用淡水+灌浆期用3 g·L~(-1)微咸水灌溉(F1B31)、拔节期和灌浆期都用3 g·L~(-1)的微咸水灌溉(B32)、拔节期、抽穗期和灌浆期都用淡水灌溉(F3)。2014—2015年根据上年度的试验结果对试验处理进行了精简,冬小麦灌溉处理设CK、F1、B31、B41、B51、B42(拔节期和灌浆期都用4 g·L~(-1)的微咸水灌溉)。结果表明,一般年型下冬小麦生育期灌溉2水就能获得高产和稳产,平均产量为6 593.4 kg·hm~(-2)。利用小于5 g·L~(-1)的微咸水灌溉,与淡水灌溉相比,不会造成冬小麦产量降低,灌溉1次微咸水比雨养旱作处理增产10%~30%,可用微咸水替代1次淡水。微咸水灌溉条件下冬小麦收获时土壤盐分有所积累,表层土壤含盐量大于1 g·L~(-1),影响下茬玉米的出苗和生长,但夏玉米播种后用675~750 m3·hm-2淡水灌溉可满足耕层淋盐需求,达到玉米生长的安全阈值,与淡水灌溉处理的玉米产量相比不减产。利用夏季降雨,可使土壤盐分得到淋洗,当夏季降雨量大于300 mm时,冬小麦微咸水灌溉下土壤盐分达到周年平衡。沧州地区73%以上的年份,夏季降雨量大于300 mm,为土壤淋盐创造了条件,保证了微咸水替代一次淡水灌溉的安全性。  相似文献   

3.
微咸水灌溉对土壤盐分和作物产量的影响研究   总被引:4,自引:1,他引:3  
为探讨微咸水灌溉利用模式,在天津市静海县进行了微咸水灌溉试验,研究了微咸水灌溉对土壤盐分动态与作物产量的影响.结果表明,微咸水灌溉下,施用改良剂能提高土壤渗透性,降低土壤pH值和土壤电导率(EC),降低了土壤含盐量,同时在试验周期0 60 cm的土层内未出现积盐现象.此外,微咸水灌溉时,施用改良剂可显著增加小麦穗数和玉米穗粒数,提高作物产量.采用3.7 g/L微咸水灌溉配合施用改良剂是该地区适宜的微咸水灌溉模式.  相似文献   

4.
微咸水混灌对土壤理化性质及冬小麦产量的影响   总被引:4,自引:1,他引:3  
根据中科院南皮生态农业试验站2002~2005年的冬小麦微咸水混灌田间试验资料,以淡水为对照研究了矿化度分别为3、4、5 g/t,的微咸水混灌对土壤积盐率、土壤饱和浸提液钠吸附比(SAR)、冬小麦产量和产量构成因素以及水分利用效率的影响,从而确定适宜的灌溉水矿化度上限.结果表明,微咸水灌溉后土壤积盐程度与灌溉水矿化度呈正相关;微咸水灌溉会使土壤饱和浸提液的SAR升高,且影响深度因灌溉水矿化度而异.通过对冬小麦产量和产量构成因素的分析可得,在非偏早年利用微咸水灌溉的矿化度不宜超过3 g/L,偏旱年不宜采用微咸水进行灌溉,或灌溉后应采取措施缓解盐分胁迫,水分利用效率与灌溉水矿化度呈负相关,综合各种因素可以认为3 g/L是当地微咸水灌溉的矿化度的上限.  相似文献   

5.
微咸水灌溉对土壤水盐分布及冬小麦生长的影响   总被引:6,自引:4,他引:2  
水资源短缺成为制约黄河三角洲地区社会经济发展的主要瓶颈和突出问题,合理开发利用该区的地下微咸水资源,利用微咸水进行农田灌溉已成为缓解该区域水资源短缺的重要策略之一。以黄河三角洲盐渍化典型地区为例,通过野外田间灌溉试验探讨了微咸水对土壤水盐分布特征及冬小麦生长、产量、光合作用特性的影响,并提出了土壤水盐调控措施。结果表明:(1)冬小麦生长期微咸水灌溉(淡水-微咸水-微咸水组合灌溉)增加了试验田土壤的含盐量,特别是表层0—20cm增加量达0.9g/kg;随后的雨季降水使土壤盐分得到淋洗进而避免盐分过多积累,至下一季冬小麦播种前0—20cm土壤盐分增加量减至0.12g/kg;(2)受微咸水灌溉的影响,冬小麦灌浆期的蒸腾速率显著下降(p0.05),但光合速率和气孔导度等差异不显著(p0.05);(3)微咸水灌溉和淡水灌溉的冬小麦产量分别为9 767,10 455kg/hm~2,微咸水灌溉下冬小麦略有减产,但无显著性差异(p0.05),千粒重均为44.9g,2种灌溉条件下冬小麦生长期的叶面积指数和叶绿素含量差异不显著(p0.05)。在当地淡水资源短缺的情况下,可以考虑使用3g/L的微咸水与淡水进行合理的组合灌溉,节约淡水资源,具有较好的社会经济效益,但从微咸水长期安全使用和土壤可持续利用来讲,需要采取一定的水盐调控措施并长期监测土壤盐分动态。  相似文献   

6.
苏北滩涂水稻微咸水灌溉模式及土壤盐分动态变化   总被引:7,自引:2,他引:5  
为研究微咸水灌溉对水稻水分利用效率和土壤盐分动态的影响,利用田间试验资料对SWAP(Soil-Water-Atmosphere-Plant)模型进行了率定和验证。用验证认可的模型模拟并分析了水稻生育期水盐运移规律和水稻水分利用效率,并预测了长期微咸水灌溉对土壤盐分的影响。结果表明:1.5 mg/cm3矿化度微咸水足量灌溉可以获得较高的产量和水分利用效率;各微咸水处理在60~90 cm土层均出现不同程度的盐分累积现象,具体累积深度和土壤盐分浓度与灌水量和灌水矿化度有关;采用1.5 mg/cm3矿化度微咸水进行微咸水长期灌溉研究,10 a的模拟结果显示此灌溉制度不会引起0~100 cm土层土壤次生盐渍化。该研究为滨海地区微咸水合理利用提供了理论依据。  相似文献   

7.
冬小麦夏玉米一年两熟是环渤海低平原主要粮食作物种植模式,该区淡水资源匮乏,但浅层微咸水相对丰富,在降水较少的冬小麦生长季,适当利用微咸水代替淡水灌溉对维持冬小麦稳产高产有重要作用。冬小麦季实施微咸水灌溉后土壤盐分累积如何影响下季作物夏玉米生长以及对土壤周年盐分平衡影响,是微咸水能否长期安全利用的关键。为探究上述问题,于2015—2019年连续4年在环渤海低平原中国科学院南皮生态农业试验站进行冬小麦季不同矿化度微咸水灌溉定点试验,共设置含盐量为1 g·L~(-1)淡水(F)、3 g·L~(-1)微咸水(S3)、4 g·L~(-1)微咸水(S4)、5 g·L~(-1)微咸水(S5) 4个梯度,在拔节期灌水1次,灌水量均为70 mm;另以生育期不灌水作为对照(旱作, CK)。结果表明,不同矿化度微咸水灌溉处理间冬小麦产量没有显著差异,但平均比CK显著增产31.6%。同时,冬小麦生长季微咸水灌溉均增加了收获时1 m以上土层的含盐量,并随灌溉水含盐量增加而增加;对1 m以下土层含盐量影响不明显。夏玉米播种时灌溉70 mm淡水不仅解决了土壤墒情不足问题,并可使0~20 cm土层盐分控制在1 g·kg~(-1)以下,保证夏玉米出苗和群体建立,对夏玉米产量没有显著影响。经过夏季降雨的淋洗, S3、S4和S5处理0~40cm土层含盐量降低幅度超过30%,深层土壤含盐量变化不明显,1m以上土层可以实现周年盐分平衡。本研究表明冬小麦-夏玉米一年两季种植,冬小麦耐盐能力较强的特征使其生育期可以通过不大于5g·L~(-1)的微咸水灌溉维持稳产,在保证夏玉米出苗水进行灌溉的条件下,夏玉米季通过雨季降水淋盐维持0~1m主要根层土壤不发生明显积盐过程,可实现长期微咸水灌溉下土壤和作物安全。  相似文献   

8.
采用盆栽试验方法,设计7种不同灌溉水质对苜蓿(Medicago sativaL.cv‘.Algonquin')进行灌溉处理,包括:清水灌溉(F)、再生水灌溉(R)、等营养水灌溉(E)、清水和再生水交替灌溉(T)、再生水和清水1∶1混合灌溉(FR)、再生水和清水1∶2混合灌溉(F2R)、再生水和清水2∶1混合灌溉(2FR)。研究结果表明,与清水灌溉(F)相比,再生水灌溉(R)可以明显提高苜蓿的株高和侧枝数水平;交替灌溉(T)和混合灌溉(2FR)对提高苜蓿干草产量作用明显;各灌溉水质对苜蓿叶茎比、根冠比和根系活力的影响都是暂时性的,长期进行灌溉影响不显著;混合灌溉(FR、F2R、2FR)和再生水灌溉(R)会提高苜蓿体内氮、钙和镁的含量,而对钾的含量没有影响,苜蓿体内磷的含量随各灌溉水质中磷含量的增加而减小。  相似文献   

9.
咸水安全利用农田调控技术措施研究进展   总被引:8,自引:3,他引:5  
淡水资源短缺已经成为全球性的问题,开发利用地下咸水资源,发展农业灌溉已成为各国关注的焦点问题。微咸水或咸水代替部分淡水进行农业灌溉,在一定程度上可缓解淡水资源的不足,但咸水和微咸水灌溉带来的土壤积盐和作物减产等问题始终是研究的重点和难点。本文从咸水或微咸水灌溉带来的潜在土壤盐渍化危害入手,就如何应对咸水和微咸水灌溉带来的次生盐渍化问题,通过总结前人大量的研究成果,分析了减轻土壤盐渍化对作物危害的各种途径,从微咸水灌溉和咸水灌溉两个层面就优化农田管理农艺措施、生物措施、水利工程措施等方面进行概述。重点介绍了咸水或微咸水灌溉对土壤微环境的影响,优化田间管理农业措施(如合理的灌溉制度和灌溉方式、覆盖、深耕等),土壤中施入有机物质(如植物秸秆、有机肥、绿肥、生物质炭等)和无机土壤改良剂(如石膏、沸石等)、施用根际促生菌肥、种植盐土植物和耐盐作物品种等,以及咸水结冰灌溉、暗管排盐等水利工程措施,这些都是降低咸水灌溉带来的土壤盐害行之有效的方法。以微咸水或咸水补灌为核心,结合雨水资源利用,通过种植耐盐植物品种、增施土壤微生物肥、土壤调理剂等措施提高土壤缓冲能力,配套垄作和地膜覆盖等降低土壤蒸发措施,抑制土壤盐分表层积聚,配套秸秆还田和土壤耕作技术,提高土壤蓄雨淋盐和养分快速提升,集成微咸水安全高效灌溉技术模式,制定规范化的技术应用规程,有机地结合各种改良措施,可有效控制咸水和微咸水灌区土壤次生盐渍化,达到咸水资源的高效安全可持续利用,提升水资源保障能力。  相似文献   

10.
干热风是华北地区冬小麦生产的主要气象灾害之一,同时该区农业用水资源严重短缺,为缓解灌溉水资源不足,华北地区开展了微咸水灌溉应用技术,而微咸水灌溉对冬小麦抗干热风能力的影响尚无定论。为此,在中国科学院禹城综合试验站设置1 g·L–1(淡水对照)、3 g·L–1和5 g·L–1 3个矿化度微咸水在返青—拔节期和开花—灌浆期分别对冬小麦进行灌溉处理,在灌浆期进行干热风模拟试验,观测冬小麦叶片光合速率、蒸腾速率、气孔导度等生理参数。综合4年(2016—2019年)4次试验结果,发现:1)与1 g·L–1矿化度微咸水灌溉相比, 3 g·L–1和5 g·L–1矿化度微咸水灌溉可以显著降低冬小麦叶片光合速率32.2%和59.3%、蒸腾速率29.2%和51.9%、气孔导度30.7%和54.8%。2)干热风可以显著降低叶片光合速率35.4%~86.6%、蒸腾速率35.6%~67.5%、气孔导度36.4%~69.4%。3)在1 g·L–1、3 g·L–1和5 g·L–1矿化度微咸水灌溉下,叶片光合速率干热风胁迫指数4年均值分别为0.55、0.45和0.74;叶片标准化蒸腾速率(蒸腾速率/水汽压饱和差)热风胁迫指数4年均值分别为0.54、0.26和0.41;气孔导度干热风胁迫指数4年均值分别为0.56、0.28和0.43。这些结果表明:1)微咸水灌溉的生理胁迫作用与干热风的生理胁迫作用对叶片光合蒸腾和气孔行为产生的影响具有相似性;2)3g·L–1矿化度微咸水灌溉比淡水提高了叶片对干热风的生理适应能力,证明适量微咸水灌溉可以提高冬小麦叶片适应干热风的能力。  相似文献   

11.
交替隔沟灌溉水分入渗规律及其对作物水分利用的影响   总被引:35,自引:9,他引:26  
以玉米为试验材料,通过大田灌水技术和灌溉制度试验对交替隔沟灌溉水分入渗规律及其对作物水分利用的影响进行了研究。结果表明,交替隔沟灌溉与常规灌溉相比,水分的侧向入渗比较明显,由于其湿润锋到达深度小于常规灌溉,因此,交替隔沟灌溉可以减少土壤水分的深层渗漏;交替隔沟灌溉不降低光合速率而蒸腾速率有所下降,并有利于提高蒸腾效率;在同等灌水量水平下,交替隔沟灌溉因为其低蒸腾和较高产量总水分利用率和灌溉水利用效率均高于常规灌溉;在同等灌水量水平下,采用交替隔沟灌溉不降低玉米产量;收获等产量的玉米,交替隔沟灌溉比常规灌溉省水33.3%。  相似文献   

12.
以春玉米为研究对象,通过磁化水灌溉试验,研究磁化水灌溉条件下不同灌水量(4 200,4 800,5 400 m~3/hm~2)对土壤水盐分布、玉米干物质量积累、产量及生长特性的影响,以探寻3 500 Gs磁化强度磁化水灌溉条件下适宜的灌水量,为促进塔里木盆地农业资源高效利用提供相关数据支持。结果表明:不同灌水量下磁化水灌溉均能提高土壤含水量,40—60 cm土层土壤盐分淋洗效果优于0—20 cm土层;磁化水灌溉可促进玉米植株生长及产量增加,各处理磁化水灌溉玉米产量较非磁化处理增加了2.11%~19.31%;磁化水3 500 Gs磁化强度灌溉4 800 m~3/hm~2处理产量均最佳,水分利用效率及灌溉水利用效率均达到最大,分别为2.64,2.86 kg/m~3。因此,与非磁化灌溉相比,适宜的磁化水灌溉量可改善玉米穗部干物质积累,有利于提高玉米的产量及水分利用效率。  相似文献   

13.
海冰水灌溉对棉田水分及棉花产量的影响   总被引:4,自引:0,他引:4  
采用海冰水(全盐含量为3‰)灌溉与井水灌溉对比,结合3种施肥措施:无机肥(传统施肥)、有机肥与无机肥配施、土壤调理剂与无机肥配施和不施肥处理,研究不同施肥条件下海冰水灌溉对土壤水分、棉花产量及水分利用效率的影响。结果表明:1)棉花整个生育期海冰水灌溉处理1m土层的土壤含水率均高于井水灌溉的处理,尤其在灌溉后0—40cm土层的土壤含水率差异显著,约为12个百分点。2)海冰水灌溉条件下,有机肥与无机肥配施、土壤调理剂与无机肥配施较传统无机肥处理均可显著提高盐碱地棉花籽棉产量,分别增产约10%、27%,井水灌溉处理也有相同的趋势,分别增产约12%、22%。3)无论井水或海冰水灌溉,有机肥与无机肥配施或土壤调理剂与无机肥配施均可显著提高棉花的水分利用效率,海冰水灌溉小区的棉花水分利用效率,两种施肥处理均高于传统无机肥处理,约为8%、30%。两种灌溉水源对棉花产量和水分利用效率均无显著影响。  相似文献   

14.
基于植物水分生理的节水灌溉效果评估   总被引:1,自引:0,他引:1  
以新垦绿洲主干防护林树种俄罗斯杨(Populus russkii Jabl.)为研究对象,通过对A(膜侧细流沟灌,灌溉定额3 750m3/hm2,少量多次灌溉)和B(漫灌,灌溉定额7 500m3/hm2,隔月灌)灌溉方式下俄罗斯杨树干液流、当年生枝条水势(ψs)以及叶片光合特征的同步监测,结合气象因子数据,分析比较2种灌溉方式下的俄罗斯杨水分生理特征。结果表明:B方式下俄罗斯杨树干液流速度与A方式比较有所降低,日均下降4.7%,但差异未达到显著水平(Sig.〉0.10);2种灌溉方式下俄罗斯杨当年生枝条水势没有通过差异显著性检验(Sig.〉0.142);A方式下的俄罗斯杨叶片净光合速率(Pn)、气孔导度(Gs)、瞬时蒸腾速率(Tr)、水分利用效率(WUE)均高于B方式的。综合分析认为,A方式节水效果显著,能够满足研究区俄罗斯杨生长的水分需求,过度灌溉会对俄罗斯杨产生不利影响;植物液流、水势等水分生理指标可做作调控和节水灌溉的科学依据。  相似文献   

15.
微咸水滴灌对绿洲棉田水盐运移特征及棉花产量的影响   总被引:2,自引:1,他引:1  
在南疆绿洲棉田,以河水为对照(CK),利用咸水与河水混合方式,设置矿化度为3,5g/L的微咸水,研究微咸水滴灌对棉田水盐运移特征及棉花产量的影响。结果表明:矿化度为3,5g/L处理的土壤含水量、含盐量在整个生育期呈上升趋势,且随矿化度增加而增大,盛花期(7月21日)前土壤含水量差异不显著,CK的土壤含盐量最高,盛花期后土壤含盐量5g/L3g/LCK,差异显著(p0.05)。垂直方向,土壤深度增加土壤含水量增大,且随着微咸水矿化度增加土壤含水量呈增大趋势,不同处理在盛花期以后差异显著;随土壤深度的增加土壤含盐量呈下降趋势,滴灌次数越多处理间差异越大,至盛铃期(8月4日)达显著水平。水平方向,距离滴头越远土壤含水量越小,且随着矿化度增加土壤含水量逐渐增大;3,5g/L土壤含盐量在盛花期前低于CK,盛花期后距离滴头越远土壤含盐量下降越小,且与矿化度呈正相关。与CK相比,3g/L皮棉产量下降2.1%,差异不显著,5g/L则下降9.6%,差异显著,产量下降主要原因是单株结铃数和单铃重显著下降,而对衣分影响不显著。因此,棉花盛花期前可利用微咸水进行滴灌,且微咸水矿化度不宜超过3g/L。  相似文献   

16.
为了探究有限灌溉对绿洲沙地春玉米农田耗水特征及水分利用效率的影响,利用中子仪结合烘干秤重法连续监测了河西走廊荒漠绿洲沙地春玉米不同生育期农田土壤水分动态,分析了玉米农田日耗水量动态与土壤蒸散及作物水分利用效率。结果表明,整个生育期除播种-五叶期和拔节-孕穗期外,所有有限灌溉处理及充分供水对照间日耗水量均无显著差异(P0.05),各生育时段内日耗水量随生育过程呈由小到大再由大到小的变化趋势,其峰值出现在吐丝—灌浆中期且高达6.8~10.0mm/d。灌水最少但产量最高的有限灌溉处理MI1全生育期蒸散量仅次于灌水较多的处理MI5。对照CK全生育期蒸散量远高于MI5,增幅达16.0%,而以MI3最低。水分利用效率以MI1和MI3最高,且与其他处理及对照间差异显著(P0.05)。水分利用效率以MI4最低,MI1和MI3水分利用效率均比MI2、MI4、MI5和CK显著提高19.3%,34.1%,15.3%和25.4%。MI1与其他所有处理及对照间、MI3与其他所有处理及对照间灌溉水利用效率差异显著,且以灌水最少但产量最高的MI1最高,以MI4最低。处理MI1灌溉水利用效率分别比MI2、MI3、MI4、MI5及CK显著提高35.1%,14.6%,61.0%,36.7%,48.4%,而MI3比MI2、MI4、MI5、CK分别显著提高17.9%,40.4%,19.3%,29.4%,MI5比MI4则显著提高17.7%。因此,有限灌溉能提高绿洲玉米水分利用效率和灌溉水利用效率,但有限灌溉对作物水分利用效率和灌溉水利用效率提高的促进作用并不具有稳定性。  相似文献   

17.
为了充分利用这种咸水资源,在甜菜生育期进行了以淡水、咸水、咸淡轮灌和咸水磁化4种处理的灌溉试验,对甜菜产量、含糖量、不同土层含盐量、甜菜叶片脯氨酸含量、叶绿素含量、蔗糖酶活性、还原糖含量进行了3年定期测定。结果表明,在地下水含盐量较高的情况下,可以适当地利用咸水对甜菜进行咸淡水轮灌。  相似文献   

18.
交替灌溉下不同水氮供给对番茄产量和品质的影响   总被引:2,自引:1,他引:1  
为探明交替灌溉条件下蔬菜的最佳水氮供给模式,采用盆栽试验,以常规充分灌水为对照,研究交替灌溉条件下不同水氮供给对番茄产量、水分利用效率和品质的影响.结果表明:和常规充分灌水相比,交替持续高水、交替开花坐果期低水、交替结果期低水和交替持续低水的产量分别下降5.08%,13.31%,21.28%和28.22%,而灌溉水分利用效率分别增加11.90%,7.36%,10.30%和6.74%.中氮处理的产量和灌溉水分利用效率最大.和常规充分灌水相比,交替持续高水、交替开花坐果期低水、交替结果期低水和交替持续低水处理可提高番茄可溶性固形物、可溶性糖、番茄红素、维生素C和硝酸盐含量,而减少有机酸含量.交替灌水条件下,高氮处理的番茄可溶性固形物、有机酸和硝酸盐含量最高,而中氮处理的番茄可溶性糖、番茄红素、维生素C含量最高.综合考虑产量、水分利用和品质的因素,交替灌溉条件下番茄的最佳水氮供给模式为开花结果期低水中氮处理.  相似文献   

19.
灌区节水防盐灌溉制度设计方法探讨   总被引:4,自引:0,他引:4  
黄河上游灌区长期以来过量引水,不仅造成土壤次生盐碱化,而且成为黄河每年多次断流的一个重要原因。引入农业用水量、水盐平衡等新概念,结合典型灌区,进行全区域灌溉制度设计方法探讨,其成果可用于井渠结合类型灌区设计及旧灌区改造。  相似文献   

20.
利用识别后的SWAP模型,探讨了微咸水灌溉条件下土壤水盐及其均衡要素的转化关系和土壤的积盐趋势预测。结果显示,两种灌溉定额下土壤盐分都有所增加,但淋洗灌溉定额下比正常灌溉定额下小麦、葵花和玉米模型土壤盐分分别降低了6.5%、0.7%、4%;小麦、葵花和玉米的相对减产率分别比正常灌溉定额下降低了1%、2%、6%。微咸水灌溉后在灌溉定额和灌溉水浓度不变的前提下,土壤盐分的积累随着时间的推移而呈递减趋势,大约在10a后盐分达到进出平衡状态,此时土壤的含盐量达到0.1852mg·cm^-3,比微咸水灌溉前增加0.0822mg·cm^-3。但仍属于轻度盐渍土(土壤含盐量0.126%),不会对土壤水土环境产生较大的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号