首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Ronidazole (RDZ) is the only known effective treatment for feline diarrhea caused by Tritrichomonas foetus. This study aimed to develop guar gum‐coated colon‐targeted tablets of RDZ and to determine the pharmacokinetics of this delayed‐release formulation in cats. Guar gum‐coated tablets were administered orally once to five healthy cats (mean dose 32.3 mg/kg). The tablets were then administered once daily for 5 days to four cats (mean dose 34.5 mg/kg), and absorption studies repeated on day 5. Plasma was collected and analyzed for RDZ concentration, and pharmacokinetic noncompartmental and deconvolution analysis were performed on the data. There was negligible RDZ release until after 6 h, and a delayed peak plasma concentration (mean Cmax 28.9 μg/mL) at approximately 14.5 h, which coincides with colonic arrival in cats. Maximum input rate (mg/kg per hour) occurred between 6 and 16 h. This delayed release of ronidazole from guar gum‐coated tablets indicates that release of RDZ may be delayed to deliver the medication to a targeted area of the intestine. Repeated dosing with guar gum tablets to steady‐state did not inhibit drug bioavailability or alter the pharmacokinetics. Such targeted RDZ drug delivery may provide improved efficacy and reduce adverse effects in cats.  相似文献   

2.
The pharmacokinetics of terbinafine was studied in six healthy fasted cats following a single intravenous and oral administration at a dose of 10 mg/kg and 30 mg/kg, respectively, according to a two-period crossover design. Plasma terbinafine concentrations were determined using a reverse phase liquid chromatographic method. The pharmacokinetic parameters were calculated by non-compartmental analysis with WinNonlin 5.2.1 software. After intravenous administration, the terminal half-life and area under the curve from time 0 to infinity were 10.40 ± 4.56 h, 15.20 ± 3.61 h·μg/ml, respectively. After oral dosing, the mean maximum concentration was 3.22 ± 0.60 μg/ml, reached at 1.33 ± 0.41 h. The terminal half-life, area under the curve from time 0 to infinity and apparent volume of distribution were 8.01 ± 3.46 h, 13.77 ± 4.99 h·μg/ml, 25.63 ± 6.29 l/kg, respectively. The absolute bioavailability of terbinafine hydrochloride tablets after oral administration was 31.00 ± 10.85%. Although bioavailability was low, excellent penetration at the site of infection and low minimum inhibitory concentrations values provided terbinafine with good efficacy against dermatophyte infections.  相似文献   

3.
The pharmacokinetics of selamectin were evaluated in cats and dogs, following intravenous (0.05, 0.1 and 0.2 mg/kg), topical (24 mg/kg) and oral (24 mg/kg) administration. Following selamectin administration, serial blood samples were collected and plasma concentrations were determined by high performance liquid chromatography (HPLC). After intravenous administration of selamectin to cats and dogs, the mean maximum plasma concentrations and area under the concentration-time curve (AUC) were linearly related to the dose, and mean systemic clearance (Clb) and steady-state volume of distribution (Vd(ss)) were independent of dose. Plasma concentrations after intravenous administration declined polyexponentially in cats and biphasically in dogs, with mean terminal phase half-lives (t(1/2)) of approximately 69 h in cats and 14 h in dogs. In cats, overall Clb was 0.470 +/- 0.039 mL/min/kg (+/-SD) and overall Vd(ss) was 2.19 +/- 0.05 L/kg, compared with values of 1.18 +/- 0.31 mL/min/kg and 1.24 +/- 0.26 L/kg, respectively, in dogs. After topical administration, the mean C(max) in cats was 5513 +/- 2173 ng/mL reached at a time (T(max)) of 15 +/- 12 h postadministration; in dogs, C(max) was 86.5 +/- 34.0 ng/mL at T(max) of 72 +/- 48 h. Bioavailability was 74% in cats and 4.4% in dogs. Following oral administration to cats, mean C(max) was 11,929 +/- 5922 ng/mL at T(max) of 7 +/- 6 h and bioavailability was 109%. In dogs, mean C(max) was 7630 +/- 3140 ng/mL at T(max) of 8 +/- 5 h and bioavailability was 62%. There were no selamectin-related adverse effects and no sex differences in pharmacokinetic parameters. Linearity was established in cats and dogs for plasma concentrations up to 874 and 636 ng/mL, respectively. Pharmacokinetic evaluations for selamectin following intravenous administration indicated a slower elimination from the central compartment in cats than in dogs. This was reflected in slower clearance and longer t(1/2) in cats, probably as a result of species-related differences in metabolism and excretion. Inter-species differences in pharmacokinetic profiles were also observed following topical administration where differences in transdermal flux rates may have contributed to the overall differences in systemic bioavailability.  相似文献   

4.
Oral bioavailability and pharmacokinetic behaviour of clindamycin in dogs was investigated following intravenous (IV) and oral (capsules) administration of clindamycin hydrochloride, at the dose of 11 mg/kg BW. The absorption after oral administration was fast, with a mean absorption time (MAT) of 0.87+/-0.40 h, and bioavailability was 72.55+/-9.86%. Total clearance (CL) of clindamycin was low, after both IV and oral administration (0.503+/-0.095 vs. 0.458+/-0.087 L/h/kg). Volume of distribution at steady-state (IV) was 2.48+/-0.48 L/kg, indicating a wide distribution of clindamycin in body fluids and tissues. Elimination half-lives were similar for both routes of administration (4.37+/-1.20 h for IV, vs. 4.37+/-0.73 h for oral). Serum clindamycin concentrations following administration of capsules remained above the MICs of very susceptible microorganisms (0.04-0.5 microg/mL) for 12 or 10 h, respectively. Time above the mean inhibitory concentration (MIC) is considered as the index predicting the efficacy of clindamycin (T(>MIC) must be at least 40-50% of the dosing interval), so a once-daily oral administration of 11 mg/kg BW of clindamycin can be considered therapeutically effective. For less susceptible bacteria (with MICs of 0.5-2 microg/mL) the same dose should be given but twice daily.  相似文献   

5.
OBJECTIVES: To determine the efficacy of ronidazole (RDZ), tinidazole (TDZ), and metronidazole (MDZ) against Tritrichomonas foetus in vitro and of RDZ for treatment of feline naturally occurring or experimentally induced T. foetus infection. ANIMALS: A cat naturally infected with T. foetus infection and diarrhea. Ten specific-pathogen-free (SPF) kittens. PROCEDURE: RDZ, TDZ, and MDZ were tested for activity against 3 different feline isolates of T. foetus in vitro. RDZ then was administered to a naturally infected cat at 10 mg/kg PO q24h for 10 days. SPF kittens were infected orogastrically with feline T. foetus and treated with either placebo or RDZ (10 mg/kg PO q12h for 14 days). Cats with relapsing infection or those receiving placebo were treated subsequently with RDZ (either 30 or 50 mg/kg PO q12h for 14 days). Feces were examined for T. foetus by direct microscopy, culture, and polymerase chain reaction (PCR) testing weekly. RESULTS: Both RDZ and TDZ killed T. foetus at concentrations >0.1 microg/mL in vitro. In the naturally infected cat, RDZ abolished diarrhea and T. foetus infection for 85 days after treatment, at which time infection and diarrhea relapsed. Retreatment with RDZ eradicated diarrhea and T. foetus infection for over 407 days. In experimentally induced infection, RDZ at 10 mg/kg caused initial improvement, but infection relapsed in all 5 cats 2 to 20 weeks after treatment. At 30 or 50 mg/kg, 10/10 cats were negative for T. foetus infection for follow-up durations of 21 to 30 weeks after treatment. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of RDZ at 30 to 50 mg/kg q12h for 14 days resolved diarrhea and eradicated infection (on the basis of polymerase chain reaction [PCR] testing) in 1 naturally infected cat and 10 experimentally inoculated cats receiving a different isolate of T. foetus.  相似文献   

6.
OBJECTIVE: To determine the pharmacokinetics of metformin in healthy cats after single-dose IV and oral administration of the drug. ANIMALS: 6 healthy adult ovariohysterectomized cats. PROCEDURE: In a randomized cross-over design study, each cat was given 25 mg of metformin/kg of body weight, IV and orally. Blood and urine samples were collected after drug administration, and concentrations of metformin in plasma and urine were determined by use of high-performance liquid chromatography. RESULTS: Disposition of the drug was characterized by a three-compartment model with a terminal phase half-life of (mean +/- SD) 11.5+/-4.2 hours. Metformin was distributed to a small central compartment of 0.057+/-0.017 L/kg and to 2 peripheral compartments with volumes of distribution of 0.12+/-0.02 and 0.37+/-0.38 L/kg. Steady-state volume of distribution was 0.55+/-0.38 L/kg. After IV administration, 84+/-14% of the dose was excreted unchanged in urine, with renal clearance of 0.13+/-0.03 L/h/kg; nonrenal clearance was negligible (0.02+/-0.02 L/kg). Mean bioavailability of orally administered metformin was 48%. CONCLUSIONS: The general disposition pattern of metformin in cats is similar to that reported for humans. Metformin was eliminated principally by renal clearance; therefore, this drug should not be used in cats with substantial renal dysfunction. CLINICAL RELEVANCE: On the basis of our results, computer simulations indicate that 2 mg of metformin/kg administered orally every 12 hours to cats will yield plasma concentrations documented to be effective in humans.  相似文献   

7.
The pharmacokinetic properties of pentoxyfylline and its metabolites were determined in healthy chickens after single intravenous and oral dosage of 100 mg/kg pentoxyfylline. Plasma concentrations of pentoxyfylline and its metabolites were determined by a validated high-performance liquid chromatographic method. After intravenous (i.v.) and oral (p.o.) administration, the plasma concentration-time curves were best described by a one-compartment open model. The mean elimination half-life (t(1/2el)) of pentoxyfylline was 1.05 h, total body clearance 1.90 L/h x kg, volume of distribution 2.40 L/kg and the mean residence time was 2.73 h, after i.v. administration. After oral dosing, mean maximal plasma concentration of pentoxyfylline was 4.01 microg/mL and the interval from p.o. administration until maximum concentration was 1.15 h. The mean oral bioavailability was found to be 28.2%. Metabolites I, IV and V were present in chicken plasma after both i.v. and p.o. administration, with metabolite V being the most dominant.  相似文献   

8.
OBJECTIVE: To evaluate the pharmacokinetics of pentoxifylline (PTX) and its 5-hydroxyhexyl-metabolite, metabolite 1 (M1), in dogs after IV administration of a single dose and oral administration of multiple doses. ANIMALS: 7 sexually intact, female, mixed-breed dogs. PROCEDURE: A crossover study design was used so that each of the dogs received all treatments in random order. A drug-free period of 5 days was allowed between treatments. Treatments included IV administration of a single dose of PTX (15 mg/kg of body weight), oral administration of PTX with food at a dosage of 15 mg/kg (q 8 h) for 5 days, and oral administration of PTX without food at a dosage of 15 mg/kg (q 8 h) for 5 days. Blood samples were taken at 0.25, 0.5, 1, 1.5, 2, 2.5, and 3 hours after the first and last dose of PTX was administered PO, and at 5, 10, 20, 40, 80, and 160 minutes after PTX was administered IV. RESULTS: PTX was rapidly absorbed and eliminated after oral administration. Mean bioavailability after oral administration ranged from 15 to 32% among treatment groups and was not affected by the presence of food. Higher plasma PTX concentrations and apparent bioavailability were observed after oral administration of the first dose, compared with the last dose during the 5-day treatment regimens. CONCLUSIONS AND CLINICAL RELEVANCE: In dogs, oral administration of 15 mg of PTX/kg results in plasma concentrations similar to those produced by therapeutic doses in humans, and a three-times-a-day dosing regimen is the most appropriate.  相似文献   

9.
Pharmacokinetics of amikacin in cats   总被引:1,自引:0,他引:1  
Six mixed-breed adult cats were given 5 mg of amikacin sulfate/kg of body weight by rapid IV, IM, and SC routes of administration. The serum concentration-vs-time data were analyzed, using a noncompartmental model. The harmonic mean +/- pseudo-SD of the effective half-life of amikacin was 78.8 +/- 19.3 minutes after IV administration, 118.7 +/- 14.4 minutes after IM administration, and 117.7 +/- 12.8 minutes after SC administration. The arithmetic mean +/- SD of mean residence time was 118.3 +/- 21.7 minutes, 173.4 +/- 19.9 minutes, and 171.7 +/- 19.1 minutes after IV, IM, and SC drug administration, respectively. The mean apparent volume of distribution at steady state was 0.17 +/- 0.02 L/kg, and the mean total body clearance was 1.46 +/- 0.26 ml/min/kg. Mean bioavailability was 95 +/- 20% after IM administration and 123 +/- 33% after SC drug administration. A recommended dosage of 10 mg/kg, q 8 h can be expected to provide a therapeutic serum concentration of amikacin with a mean steady-state concentration of 14 micrograms/ml. The SC route of administration is preferred, because of rapid absorption, good bioavailability, and ease of administration.  相似文献   

10.
A bioavailability and pharmacokinetics study of doxycycline was carried out on 30 healthy ostriches after a single intravenous (IV), intramuscular (IM) and oral dose of 15 mg/kg body weight. The plasma doxycycline concentration was determined by HPLC/UV at 0 (pretreatment), 0.08, 0.25, 0.5 1, 2, 4, 6, 8, 12, 24 and 48 h after administration. The plasma concentration-time curves were examined using non-compartmental methods based on the statistical moment theory for only the higher dose. After IV administration, the elimination half-life (t1/2β), mean residence time (MRT), volume of distribution at the steady-state (Vss), volume of distribution (Vdarea) and total body clearance (ClB) were 7.67 ± 0.62 h, 6.68 ± 0.86 h, 0.86 ± 0.16 l/kg, 1.67 ± 0.52 l/kg and 2.51 ± 0.63 ml/min/kg, respectively. After IM and oral dosing, the mean peak plasma concentrations (Cmax) were 1.34 ± 0.33 and 0.30 ± 0.04 µg/ml, respectively, which were achieved at a post-administration time (tmax) of 0.75 ± 0.18, 3.03 ± 0.48 h, respectively. The t1/2β, Vdarea and ClB after IM administration were 25.02 ± 3.98 h, 23.99 ± 3.4 l/kg and 12.14 ± 1.71 ml/min/kg, respectively and 19.25 ± 2.53 h, 61.49 ± 7 l/kg and 40.19 ± 3.79 ml/min/kg after oral administration, respectively. The absolute bioavailability (F) of doxycycline was 5.03 and 17.52% after oral and IM administration, respectively. These results show that the dose data from other animals particularly mammals cannot be extrapolated to ostriches. Therefore, based on these results along with those reported in the literature, further studies on the pharmacokinetic/pharmacodynamic, in vitro minimum inhibitory concentration values and clinical applications of doxycycline in ostriches are required.  相似文献   

11.
The pharmacokinetics and pharmacodynamics of A77 1726 and leflunomide after intravenous (i.v.) and oral (p.o.) administration were evaluated in adult cats. Three treatments were administered: a single i.v. dose of A77 1726 (4 mg/kg), a single oral dose of leflunomide (4 mg/kg), and multiple oral doses of leflunomide (2 mg/kg). Mean pharmacokinetic parameter values after a single i.v. dose of A77 1726 were distribution (A) and elimination (B) intercepts (15.2 μg/mL and 34.5 μg/mL, respectively), distribution and elimination half-lives (1.5 and 71.8 h, respectively), area under the curve (AUC(0 → ∞); 3723 μg*h/mL), mean residence time (MRT; 93 h), clearance (Cl(obs); 1.1 mL/kg/h), and volume of distribution at steady state (Vd(ss); 97 mL/kg). Mean pharmacokinetic parameter values after a single oral dose of leflunomide were absorption and elimination rate constants (0.3 1/h and 0.01 1/h, respectively), absorption and elimination half-lives (2.3 and 59.1 h, respectively), AUC(0 → ∞) (3966 μg*h/mL), and maximum observed plasma concentration (C(max); 38 μg/mL). The bioavailability after a single oral dose of leflunomide was 100%. The mean ± SD A77 1726 concentration that inhibited 50% lymphocytes (EC(50) ) was 16 ± 13.5 μg/mL. The mean ± SD maximum A77 1726 concentration (EC(max)) was 61.0 ± 23.9 μg/mL.  相似文献   

12.
OBJECTIVE: To determine the pharmacokinetics of enrofloxacin administered IV and orally to foals. ANIMALS: 5 clinically normal foals. PROCEDURE: A 2-dose cross-over trial with IV and oral administration was performed. Enrofloxacin was administered once IV (5 mg/kg of body weight) to 1-week-old foals, followed by 1 oral administration (10 mg/kg) after a 7-day washout period. Blood samples were collected for 48 hours after the single dose IV and oral administrations and analyzed for plasma enrofloxacin and ciprofloxacin concentrations by use of high-performance liquid chromatography. RESULTS: For IV administration, mean +/- SD total area under the curve (AUC0-infinity) was 48.54 +/- 10.46 microg x h/ml, clearance was 103.72 +/- 0.06 ml/kg/h, half-life (t1/2beta) was 17.10 +/- 0.09 hours, and apparent volume of distribution was 2.49 +/- 0.43 L/kg. For oral administration, AUC0-infinity was 58.47 +/- 16.37 microg x h/ml, t1/2beta was 18.39 +/- 0.06 hours, maximum concentration (Cmax) was 2.12 +/- 00.51 microg/ml, time to Cmax was 2.20 +/- 2.17 hours, mean absorption time was 2.09 +/- 0.51 hours, and bioavailability was 42 +/- 0.42%. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with adult horses given 5 mg of enrofloxacin/kg IV, foals have higher AUC0-infinity, longer t1/2beta, and lower clearance. Concentration of ciprofloxacin was negligible. Using a target Cmax to minimum inhibitory concentration ratio of 1:8 to 1:10, computer modeling suggests that 2.5 to 10 mg of enrofloxacin/kg administered every 24 hours would be effective in foals, depending on minimum inhibitory concentration of the pathogen.  相似文献   

13.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Pharmacokinetic properties of enrofloxacin in rabbits.   总被引:4,自引:0,他引:4  
The pharmacokinetic properties of the fluoroquinolone antimicrobial enrofloxacin were studied in New Zealand White rabbits. Four rabbits were each given enrofloxacin as a single 5 mg/kg of body weight dosage by IV, SC, and oral routes over 4 weeks. Serum antimicrobial concentrations were determined for 24 hours after dosing. Compartmental modeling of the IV administration indicated that a 2-compartment open model best described the disposition of enrofloxacin in rabbits. Serum enrofloxacin concentrations after SC and oral dosing were best described by a 1- and 2-compartment model, respectively. Overall elimination half-lives for IV, SC, and oral routes of administration were 2.5, 1.71, and 2.41 hours, respectively. The half-life of absorption for oral dosing was 26 times the half-life of absorption after SC dosing (7.73 hours vs 0.3 hour). The observed time to maximal serum concentration was 0.9 hour after SC dosing and 2.3 hours after oral administration. The observed serum concentrations at these times were 2.07 and 0.452 micrograms/ml, respectively. Mean residence times were 1.55 hours for IV injections, 1.46 hours for SC dosing, and 8.46 hours for oral administration. Enrofloxacin was widely distributed in the rabbit as suggested by the volume of distribution value of 2.12 L/kg calculated from the IV study. The volume of distribution at steady-state was estimated at 0.93 L/kg. Compared with IV administration, bioavailability was 77% after SC dosing and 61% for gastrointestinal absorption. Estimates of predicted average steady-state serum concentrations were 0.359, 0.254, and 0.226 micrograms/ml for IV, SC, and oral administration, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Tramadol is a centrally acting analgesic drug that has been used clinically for the last two decades to treat moderate to moderately severe pain in humans. The present study investigated tramadol administration in horses by intravenous, intramuscular, oral as immediate-release and oral as sustained-release dosage-form routes. Seven horses were used in a four-way crossover study design in which racemic tramadol was administered at 2 mg/kg by each route of administration. Altogether, 23 blood samples were collected between 0 and 2880 min. The concentration of tramadol and its M1 metabolite were determined in the obtained plasma samples by use of an LC/MS/MS method and were used for pharmacokinetic calculations. Tramadol clearance, apparent volume of distribution at steady-state, mean residence time (MRT) and half-life after intravenous administration were 26+/-3 mL/min/kg, 2.17+/-0.52 L/kg, 83+/-10 min, and 82+/-10 min, respectively. The MRT and half-life after intramuscular administration were 155+/-23 and 92+/-14 min. The mean absorption time was 72+/-22 min and the bioavailability 111+/-39%. Tramadol was poorly absorbed after oral administration and only 3% of the administered dose was found in systemic circulation. The fate of the tramadol M1 metabolite was also investigated. M1 appeared to be a minor metabolite in horses, which could hardly be detected in plasma samples. The poor bioavailability after oral administration and the short half-life of tramadol may restrict its usefulness in clinical applications.  相似文献   

16.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Maropitant is the first NK1 receptor antagonist developed to treat and prevent emesis in dogs; it is administered by subcutaneous (s.c.) injection at 1 mg/kg, or orally (p.o.), in tablet form, at either 2 or 8 mg/kg depending on indication. The absolute bioavailability of maropitant was markedly higher (90.7%) following s.c. injection than after oral administration (23.7% at the 2 mg/kg dose and 37.0% at the 8 mg/kg dose). First-pass metabolism contributes to the low bioavailability of maropitant following oral administration. The difference in bioavailability between the two oral doses reflects the nonlinear kinetics characterizing the disposition of maropitant within the 2-8 mg/kg dose range. Systemic clearance of maropitant following intravenous (i.v.) administration was 970, 995 and 533 mL/h.kg at doses of 1, 2 and 8 mg/kg, respectively. Nonproportional kinetics were observed for p.o. administered maropitant at doses ranging from 2 to 16 mg/kg but dose proportionality was demonstrated at higher doses (20-50 mg/kg). Linearity was also demonstrated following s.c. administration at 0.5, 1 and 2 mg/kg. Maximum plasma drug concentration (Cmax) occurred 0.75 h (tmax) after s.c. administration at 1 mg/kg, and at 1.7 and 1.9 h after oral administration of 8 and 2 mg/kg doses, respectively. The apparent terminal half-life of maropitant was 7.75, 4.03 and 5.46 h after dosing at 1 mg/kg (s.c.), 2 mg/kg (p.o.) and 8 mg/kg (p.o.), respectively. Feeding status had no effect on oral bioavailability. Limited accumulation occurred following once-daily administration of maropitant for five consecutive days at 1 mg/kg (s.c.) or 2 mg/kg (p.o.). At the dose of 8 mg/kg (p.o.) once daily for two consecutive days, the mean AUC(0-24h) (second dose) was 218% that of the first dose value. Urinary recovery of maropitant and its main metabolite was minimal (<1%), thus supporting the evidence that maropitant clearance is primarily hepatic.  相似文献   

18.
The neurokinin‐1 (NK) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood and likely under‐recognized in horses. Use of NK‐1 receptor antagonists in horses has not been reported. The purpose of this study was to determine the pharmacokinetic profile of maropitant in seven adult horses after single intravenous (IV; 1 mg/kg) and intragastric (IG; 2 mg/kg) doses. A randomized, crossover design was performed. Serial blood samples were collected after dosing; maropitant concentrations were measured using LC‐MS/MS. Pharmacokinetic parameters were determined using noncompartmental analysis. The mean plasma maropitant concentration 3 min after IV administration was 800 ± 140 ng/ml, elimination half‐life was 10.37 ± 2.07 h, and volume of distribution was 6.54 ± 1.84 L/kg. The maximum concentration following IG administration was 80 ± 40 ng/ml, and elimination half‐life was 9.64 ± 1.27 hr. Oral bioavailability was variable at 13.3 ± 5.3%. Maropitant concentrations achieved after IG administration were comparable to those in small animals. Concentrations after IV administration were lower than in dogs and cats. Elimination half‐life was longer than in dogs and shorter than in cats. This study is the basis for further investigations into using maropitant in horses.  相似文献   

19.
The pharmacokinetic properties of the fluoroquinolone levofloxacin, were investigated in five cats after single intravenous and repeat oral administration at a daily dose of 10 mg/kg. Levofloxacin serum concentration was analyzed by microbiological assay using Klebsiella pneumoniae ATCC 10031 as test microorganism. Serum levofloxacin disposition after intravenous and oral dosing was best fitted to a bicompartmental and a monocompartmental open models with first-order elimination, respectively. After intravenous administration, distribution was rapid (t(1/2(d)) 0.26 +/- 0.18 h) and wide as reflected by the steady-state volume of distribution of 1.75 +/- 0.42 L/kg. Drug elimination was slow with a total body clearance of 0.14 +/- 0.04 L/h.kg and a t(1/2) for this process of 9.31 +/- 1.63 h. The mean residence time was of 12.99 +/- 2.12 h. After repeat oral administration, absorption half-life was of 0.18 +/- 0.12 h and Tmax of 1.62 +/- 0.84 h. The bioavailability was high (86.27 +/- 43.73%) with a peak plasma concentration at the steady state of 4.70 +/- 0.91 microg/mL. Drug accumulation was not significant after four oral administrations. Estimated efficacy predictors for levofloxacin after either intravenous or oral administration indicate a good profile against bacteria with a MIC value below of 0.5 microg/mL. However, for microorganisms with MIC values of 1 microg/mL it would be efficacious only when administered intravenously.  相似文献   

20.
The intravenous and oral disposition of the antithyroid drug methimazole was determined in 10 clinically normal cats and nine cats with naturally occurring hyperthyroidism. After intravenous administration of 5 mg methimazole, the mean residence time was significantly (P less than 0.05) shorter in the cats with hyperthyroidism than in the normal cats, but there was no significant difference between the mean values for total body clearance (CL), steady state volume of distribution (Vdss), terminal elimination rate constant (ke), or serum terminal half-life (t1/2) in the two groups of cats. After oral administration, the mean bioavailability of methimazole was high in both the normal cats (77.6 per cent) and cats with hyperthyroidism (79.5 per cent). The values for mean residence time, ke and serum terminal t1/2 after oral dosing were significantly shorter in the cats with hyperthyroidism than in the normal cats. However, after oral administration of methimazole there were no significant differences between the mean values for CL, Vdss, bioavailability and maximum serum concentrations or the time for maximal concentrations to be reached in the two groups of cats. Overall, most pharmacokinetic parameters for methimazole were not altered by the hyperthyroid state. However, the cats with hyperthyroidism did show a trend toward faster elimination of the drug compared with the normal cats, similar to what has been previously described for the antithyroid drug propylthiouracil in cats. These results also indicate that methimazole is well absorbed when administered orally and has a higher bioavailability than that of propylthiouracil in cats with hyperthyroidism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号