首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A 26 years old agroforestry plantation consisting of four multipurpose tree species (MPTs) (Michelia oblonga Wall, Parkia roxburghii G. Don, Alnus nepalensis D. Don, and Pinus kesiya Royle ex-Gordon) maintained at ICAR Research Complex, Umiam, Meghalaya, India were compared with a control plot (without tree plantation) for soil fertility status and CO2 efflux. The presence of trees improved all the physico-chemical and microbial biomass parameters studied in this experiment. Relative to control, soils under MPTs showed significant increases of 17 % soil organic carbon, 26 % available nitrogen (AN), 28 % phosphorus (AP), 50 % potassium (AK), 65 % mean weight diameter (MWD) of aggregates, 21 % moisture and 34 % soil microbial biomass carbon (MBC) while reducing the mean bulk density (7 %). However, these parameters significantly differed among the tree species i.e., soils under A. nepalensis and M. oblonga had higher values of these attributes except bulk density, than under other species. Irrespective of treatments, the values of all these attributes were higher in surface soils while bulk density was highest in subsurface (60–75 cm). Cumulative CO2 efflux under MPTs was significantly higher (15 %) and ranged from 1.71 g 100 g?1 (M. oblonga) to 2.01 g 100 g?1 (A. nepalensis) compared to control at 150 days of incubation. In all the treatments, increment in temperature increased the oxidation of soil organic matter, thereby increased the cumulative CO2 efflux from soils. Of the tree species, with increment in temperature, A. nepalensis recorded more CO2 efflux (2.50 g 100 g?1) than other MPTs but the per cent increase was more in control plot. P. kesiya and A. nepalensis recorded highest activation energy (59.1 and 39 kJ mol?1, respectively). Net organic carbon sequestered in soil was highest under A. nepalensis (25.7 g kg?1) followed by M. oblonga (19.3 g kg?1), whereas control showed the lowest values. Amount of net carbon stored in the soil had significant and positive correlation with MBC (r = 0.706**), MWD (r = 0.636*), and AN (r = 0.825**).  相似文献   

2.
Agroforestry systems based on poplar (Populus deltoides) are becoming popular in eastern and northern parts of India. Therefore studies on the structure and function of the systems are important. The investigations included allometric equations for above- and belowground tree components, crop and plantation floor biomass and litter fall estimation at Pusa, Bihar, India. Biomass, floor litter mass, litter fall and net primary productivity (NPP) of plantations increased with an increase in age of trees whereas, crop biomass for any specific crop interplanted with poplar decreased with the age of the plantation. The total plantation biomass increased from 12.08 to 90.59 Mg ha−1 and NPP varied from 5.69 to 27.9 Mg ha−1 year−1. The biomass accumulation ratio ranged from 2.1 to 3.2. Total annual litter fall was in between 1.95 and 10.00 Mg ha−1 year−1, of which 92–94% was contributed by leaf litter. Compartmental models were developed for dry matter distribution in agroforestry systems involving young (3-year-old) and mature (9-year-old) poplar trees interplanted with various crops, the crops being grown in two rotations maize (Zea mays) – wheat (Triticum aestivum) – turmeric (Curcuma domestica) and pigeonpea (Cajanus cajan) – turmeric. This study substantiates the potential of Populus deltoides G3 under agroforestry combinations.  相似文献   

3.
In designing agroforestry systems, the combination of tree genotype (orspecies) and pasture species and the spatial arrangement of trees are importantconsiderations. The spatial variation of fine root length density (FRLD) ofthree radiata pine (Pinus radiata D. Don) genotypes,referred to here as clone 3, clone 4 and seedlings, was studied in athree-year-old temperate silvopastoral experiment. The genotypes were plantedwith three understorey types: ryegrass (Lolium perenne)mixed with clovers (Trifolium spp), lucerne(Medicago sativa), and control (bare ground). Also fineroot distribution of both tree and pasture species with soil depth and inrelation to tree row (0.9 m north or south of and within the rippedtree row) was studied. Greater FRLD was found in clonal than in seedling treesin the bare ground treatment but not in the two pasture treatments, and in the0–0.1 m but not in the 0.1–0.2 or 0.2–0.3m soil layers. Clonal trees had a greater ability to develop a moreextensive root system, especially in the 0–0.1 m soil layer,but that advantage disappeared when they were planted with pasture species sincecompetition from the pasture species was most severe in the 0–10cm layer. The FRLD of lucerne was greater than that ofryegrass/clovers, consistent with the greater aboveground biomass production oflucerne. Pasture species FRLD was greater on the south (wetter) than on thenorth side of the ripline or in the ripline. The interception of prevailingsoutherly rain-bearing wind by tree crowns resulted in the south side beingwetter than the north side. Results indicated that production and distributionof fine roots of both tree and pasture species responded to changes in themicroclimate. We suggest that to optimize pasture/tree biomass productionplanting trees in the north-south direction is better than in the east-westdirection at the studied site. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
A study on seasonal soil nutrient dynamics was made in large cardamom (Amonum subulatum) and mandarin (Citrus reticulata) agroforestry systems in the Sikkim Himalaya, India. Alnus nepalensis was the N2-fixing associate in the large cardamom system, and Albizia stipulata in the mandarin agroforestry system. Sites without N2-fixing species in both agroforestry types comprised native non-symbiotic mixed tree species. Soil was acidic in the cardamom agroforestry and slightly acidic to neutral in the mandarin agroforestry system. Total-N in soils was the highest in the forest-cardamom stand and the lowest in the mandarin-based agroforestry systems. Soil ammonium-N and nitrate-N concentrations were highly seasonal, and the ratio of seasonal maximum and minimum varied up to six times. The C/N ratio was higher in cardamom agroforestry indicating lower N availability than in the mandarin agroforestry. Cardamom stand with Alnus showed a relatively narrower C/N ratio. N2-fixing species help in maintenance of soil organic matter levels with higher N-mineralization rate as land use change from natural-forest system to agroforestry systems with sparse tree populations. Ratios of inorganic-P/total-P were lower in cardamom agroforestry than the mandarin agroforestry. Seasonal fluctuation in Ca-PO4, Al-PO4 and Fe-PO4 contents regulated the availability of phosphates to some extent for plant uptake.  相似文献   

5.
Litterfall and decomposition were studied in agroforestry systems involving large cardamom (Amomum subulatum) and mandarin (Citrus reticulata) in the Sikkim Himalaya, India. There were stands with N2-fixing trees (Alnus nepalensis over large cardamom, and Albizia stipulata over mandarin agroforestry) or without them (native non-symbiotic mixed tree species) in both systems. The total annual litter (litter + crop residue) production was higher in the Alnus-cardamom than in the forest-cardamom stand and in the mandarin than in the Albizia-mandarin stand. The ratio of litter production to floor litter was higher in the N2-fixing stands than in the non-N2-fixing stands, indicating a faster litter turnover in the former. Tree litterfall occurred throughout the year, but with marked peaks during November to April. Total soluble polyphenolics of fresh litter were higher in N2-fixing species than in mixed tree species and crops. Half-life values for ash-free mass were shortest in the leaves of N2-fixing species. N loss was higher from N2-fixing Alnus and Albizia leaves, whereas P loss was faster and nearly equal in Alnus leaf litter and cardamom residue in cardamom, and Albizia leaf litter and crop residue in mandarin agroforestry systems. The P turnover in N2-fixing Alnus and Albizia twigs was faster than in the twigs of mixed tree species. The N2-fixing tree species increased the N and P cycling through production of more above-ground litter and influenced greater release of these nutrients.  相似文献   

6.
Quantity of litter fall, its chemical composition, nutrient addition and changes in chemical constituents of soil were studied under agroforestry systems involving Populus deltoides and Eucalyptus hybrid tree with intercrops of Cymbopogon martinii Wats and Cymbopogon flexuosus Wats in the tarai tract of Kumaon hills of U.P. India. P. deltoides had significantly more diameter (63%) as compared to E. hybrid. There was decrease in herb (5.4%) and oil yield (15.4%) of grasses due to trees, but both the grasses did not affect the performance of trees. On an average, dry litter production of P. deltoides was 5.0 kg tree−1 year−1 where as of E. hybrid 1.5 kg tree−1 year−1. The litter of P. deltoides contained 1.3 times more N and 1.5 times P and K of E. hybrid. Addition of N, P and K through P. deltoides litter was 36.6, 91.6, and 69.9 per cent more than E. hybrid litter, respectively. Under these two canopies soil organic carbon was enhanced by 33.3 to 83.3 per cent, available N by 38.1 to 68.9 per cent, available P by 3.4 to 32.8 per cent and available K by 5.8 to 24.3 per cent over control (no tree canopy) in 0—15cm layer. P. deltoides plantation was superior to E. hybrib in enriching the soil.  相似文献   

7.
A number of multipurpose tree species are conserved as scattered trees in settled farms on terraced slopes by the traditional farmers in Central Himalaya, India. Knowledge on growth rates and ecological impacts of these tree species is limited. Ten locally valued multipurpose tree species, viz., Albizzia lebbek, Alnus nepalensis, Boehmeria rugulosa, Celtis australis, Dalbergia sissoo, Ficus glomerata, Grewia optiva, Prunus cerasoides, Pyrus pashia and Sapium sebiferum, were established as mixed plantations at a degraded community forest land site and an abandoned agricultural land site in a village at 1200 m altitude in District Chamoli, India. At the abandoned agricultural land site, annual food crops were grown, along with planted trees, providing supplemental irrigation and organic manure following traditional farming practices. Survival, height, stem circumference, crown depth and width, number of branches, above-ground biomass and soil physico-chemical characteristics were monitored up to five years of plantation growth. Above-ground tree biomass accumulation at the abandoned agricultural land site was 3.9 t ha−1 yr−1 compared with 1.1 t ha−1 yr−1at the degraded forest land site. B. rugulosa, C. australis, F. glomerata, G. optiva, P. cerasoides and S. sebiferum showed more prominent differences in growth at the two sites compared with A. lebbek, A. nepalensis, D. sissoo and P. pashia. A. nepalensis and D. sissoo showed best growth performance at both the sites. A significant improvement in soil physico-chemical characteristics was observed after five years at both of the sites. Carbon sequestration in soil was higher than that in bole biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Large cardamom (Amomum subulatum Roxb.) is a shade loving plant grown in the Indian hill states of Sikkim and Dargeeling district of West Bengal. About 30 important tree species are used to provide shade to the cardamom plants. Alnus nepalensis, a deciduous, nitrogen fixing and fast growing tree, is the species most commonly underplanted with cardamom. In addition to providing shade, it is also used for fuelwood. The old trees are cut and young plants coming up are allowed to grow in cyclic order. The quick decomposing leaf litter of A. nepalensis also fertilises the cardamom plants. The nitrogen added to the soil in this way has been found to be as high as 249 kg/ha. Large cardamom thrives well in a moist soil, which is maintained by water diverted from seasonal springs on the upper slopes. The system is well suited to conserving soil, water and tree cover of the characteristically steep slopes of the region. Moreover, the management inputs required for growing cardamom are low but the crop gives a higher financial return than rice or maize. The shade trees used in the system are also a major source of fuel, fodder and timber, especially as access to state owned forests is restricted by legislation. However, increasing incidence of viral chirkey and foorkey disease, panicle rot and capsule borer are reducing the cardamom productivity. It has been observed that integrating dairying and apiculture will further augment profitability from large cardamom agroforestry system.  相似文献   

9.
We assessed the vertical distribution of litter and its seasonal patterns in the canopy and on the forest floor (soil), as well as litterfall (the flux of litter from the canopy to the soil) in a 33-year-old plantation of Japanese cedar (Cryptomeria japonica D. Don). The masses of total litter, dead leaves, and dead branches in the canopy of C. japonica trees averaged 34.09, 19.53, and 14.56 t dry wt ha−1, respectively, and were almost constant during the study period. The total masses of the annual litterfall were 4.17 and 5.88 t dry wt ha−1 year−1 in the two consecutive years of the study. The mass of the soil litter averaged 7.95 t dry wt ha−1 during the same period. All relationships between the mass of canopy litter and tree-size parameters (diameters at breast height and at the lowest living branch) were linear in a log-linear regression. Compared with the results for this plantation at a younger stage (16 years old), our results suggest that the total mass of dead leaves attached to each tree increases markedly with increasing age, but that the trajectory of this increase as a function of tree size may change from an exponential to a saturation curve with increasing stand age.  相似文献   

10.
–  • Radiata pine (Pinus radiata D. Don) is the main exotic plantation tree species grown in New Zealand for wood production and as such represents a significant component of the terrestrial carbon cycle.  相似文献   

11.
Chinese fir (Cunninghamia lanceolata), a type of subtropical fast-growing conifer tree, is widely distributed in South China. Its plantation area covers more than 7 × 106 hm2, accounting for 24% of the total area of plantation forests in the country. In recent decades, the system of successive plantation of Chinese fir has been widely used in southern China due to anticipated high economic return. However, recent studies have documented that the practice of this system has led to dramatic decreases in soil fertility and forest environment as well as in productivity. Some forest ecologists and managers recognize the ecological role performed by broadleaf trees growing in mixtures with conifers, and a great deal of studies on mixture effects have been conducted, particularly on mixture species of temperate and boreal forests, but these research results were not completely consistent. Possibilities include dependence of the mixture effects in large part to specific site conditions, the interactions among species in mixtures and biological characteristics of species. Although some researchers also studied the effects of mixtures of Chinese fir and broadleaf tree species on soil fertility, forest environment and tree growth status, little information is available about the effects of Chinese fir and its mixtures with broadleaves on carbon and nitrogen stocks. The experimental site is situated at the Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Hunan Province (26°40′–27°09′ N, 109°26′–110°08′ E). It is located at the transition zone from the Yunnan-Guizhou Plateau to the low mountains and hills of the southern bank of the Yangtze River at an altitude of 300–1,100 m above mean sea level. At the same time, the site is also a member of the Chinese Ecosystem Research Network (CERN), sponsored by the Chinese Academy of Sciences (CAS). This region has a humid mid-subtropical monsoon climate with a mean annual precipitation of 1,200–1,400 mm, most of the rain falling between April and August, and a mean temperature of 16.5°C with a mean minimum of 4.9°C in January and a mean maximum of 26.6°C in July. The experimental field has red-yellow soil. After a clear-cutting of the first generation Chinese fir (Cunninghamia lanceolata) plantation forest in 1982, three different plantation forest ecosystems, viz. mixture of Michelia macclurei and Chinese fir (MCM), pure Michelia macclurei stand (PMS) and pure Chinese fir stand (PCS), were established in the spring of 1983. A comparative study on C and N stocks under these three plantation forest ecosystems was conducted in 2004. Results showed that carbon stocks were greater under the mixtures than under the pure Chinese fir forest and the pure broad-leaved forest, and the broadleaves and the mixtures showed higher values in nitrogen stocks compared with the pure Chinese fir forest. The spatial distribution of carbon and nitrogen stocks was basically consistent, the value being greater in soil layer, followed by tree layer, roots, understory and litter layer. The carbon and nitrogen stocks in soil layer were both highly correlated with the biomass in understory and litter layer, indicating that understory and forest litterfall exerted a profound effect on soil carbon and nitrogen stocks under plantation ecosystems. However, correlations among soil carbon, nitrogen stocks and below ground biomass of stand have not been observed in this study. Translated from Acta Ecologica Sinica, 2005, 25(12): 3,146–3,154 [译自: 生态学报]  相似文献   

12.
An understanding of the rooting pattern of tree species used in agroforestry systems is essential for the development and management of systems involving them. Seasonal variation, depth wise and lateral distribution of biomass in roots of different diameter classes and their annual production were studied using sequential core sampling. The investigations were carried out in four tree species under tree only and tree+crop situations at ICAR Research Farm, Barapani (Meghalya), India. The tree species were mandarin (Citrus reticulata), alder (Alnus nepalensis), cherry (Prunus cerasoides) and albizia (Paraserianthes falcataria). The contribution of fine roots to the total root biomass ranged from 87% in albizia to 77% in mandarin. The bulk of the fine roots (38% to 47%) in the four tree species was concentrated in the upper 10 cm soil layer, but the coarse roots were concentrated in 10–20 cm soil depth in alder (46%) and albizia (51%) and at 0–10 cm in cherry (41%) and mandarin (48%). In all the four tree species, biomass of both fine- and coarse-roots followed a unimodal growth curve by showing a gradual increase from spring (pre-rainy) season to autumn (post rainy) season. Biomass to necromass ratio varied between 2 to 3 in the four tree species. The maximum (3.2) ratio was observed during spring and the minimum (2) in the rainy season. In alder and albizia, the fine roots were distributed only up to 1 m distance from the tree trunk but in the other two species they were found at a distance up to 1.5 m from the tree trunk. The annual fine root production varied from 3.6 Mg ha–1 to 6.2 Mg ha–1 and total production from 4.2 to 8.4 Mg ha–1 in albizia to mandarin, respectively. Cherry and mandarin had a large number of woody roots in the surface layers which pose physical hindrance during soil working and intercultural operations under agroforestry. But the high biomass of roots of these two species may be advantageous for sequential or spatially separated agroforestry systems. However, alder and albizia have the most desirable rooting characteristics for agroforestry systems.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Root biomass and distribution of five agroforestry tree species   总被引:1,自引:0,他引:1  
Knowledge of the quantitative assessment and structural development of root systems is essential to improve and optimize productivity of agroforestry systems. Studies on root biomass recovery by sieves of different mesh sizes (2.0, 1.0, 0.5 and 0.25 mm) and root distribution for four-year-old individuals of five agroforestry tree species viz.; Acacia auriculiformis A. Cunn. ex Benth, Azadirachta indica A. Juss, Bauhinia variegata L., Bombax ceiba L. and Wendlandia exserta Roxb. were conducted at the research farm of Rajendra Agricultural University, Pusa, Bihar, India. The results indicated that the 0.5 mm sieve was adequate for recovery of the majority of roots. All the tree species exhibited a large variation in root depth and horizontal root spread four years after planting. The maximum root depth was recorded in W. exserta (2.10 m) and minimum in B. variegata (1.00 m). Horizontal root spread was 2.05 m in B. ceiba and 8.05 m in A. auriculiformis. Root spread exceeded crown cover for all species. The primary roots were more horizontal than the secondary roots. The length and diameter of the main root were highest in A. indica (108.3 cm) and B. ceiba (23.2 cm), respectively. Highest length and diameter of lateral roots were recorded in B. variegata (201.6 cm) and A. indica (1.8 cm), respectively. Total root biomass among different species accounted for 18.2–37.9% of the total tree biomass. Results of this study infer that although all the species have potential to conserve moisture and improve fertility status of the soil, A. auriculiformis is the most effective for promoting soil fertility. The deep rooted W. exserta and A. auriculiformis will be preferred for cultivation under agroforestry systems and could reduce competition for nutrients and moisture with crops by pumping from deeper layers of soil.  相似文献   

14.
In order to assess the possibility of root competition in agroforestry, the vertical distribution of fine roots (< 2 mm in diameter) of five tree species in pure two-year-old stands was compared to that of mature maize.Cassia siamea, Eucalyptus tereticornis, Leucaena leucocephala andProsopis chilensis had a rooting pattern similar to that of maize, i.e. a slow decline in fine root mass from 0–100 cm soil depth.Eucalyptus camaldulensis had its roots evenly distributed down to 100 cm. On an average, the fine root biomass of the tree species was roughly twice as that of the maize. We conclude that the studied tree species are likely to compete with maize and other crops with a similar rooting pattern for nutrients and water.  相似文献   

15.
Observations on the growth performance, rooting behaviour and distribution of fine roots of five tree species viz., Bauhinia purpurea, Grewia optiva, Eucalyptus tereticornis, Leucaena leucocephala and Ougeinia oojeinensis (Family: Papilionaceae) are being presented here. Roots were exposed at the time of planting, 6 months, 16 months, and 28 months after planting. Total root weight and root volume were highest in Eucalyptus tereticornis and lowest in Bauhinia purpurea. Major part of the root system confined within 90–120 cm soil depth in case of Bauhinia purpurea, Grewia optiva and Leucaena leucocephala but Eucalyptus tereticornis and Ougeinia oojeinensis strike their roots to deeper depths. Bauhinia purpurea had its roots evenly distributed down to 120 cm. In general, the vertical distribution of fine roots (< 2 mm in diameter) of the five species indicate that more the depth, fewer the number of roots. The observations on soil binding capacity, indicated that Ougeinia oojeinensis had the maximum and Eucalyptus tereticornis had the minimum binding value. Due to leaf shading and other litter fall significant increase of nutrient components in soils under the tree canopies has been observed. The study indicates that bulk of the roots of the five tree species are found near the surface, but observation on soil moisture and nutrient content does not indicate variation under the tree canopies and in open, hence there may not be root competition in initial years of plantation.Authorised for publication by the Institute as contribution No.3311/239/89.  相似文献   

16.
This study assessed the use of agroforestry to improve soil nutrient properties in plantations containing Ilex paraguariensis St. Hilaire (yerba mate). Intercropping within tree plantation systems is widely practiced by farmers around the World, but the influence of different species combinations on system performance still requires further investigation. I. paraguariensis is a major South American crop commonly cultivated in intensive monocultures on low activity clay soils, which are highly prone to nutrient deficiencies. Study plots were established in 20 plantations in Misiones, Argentina. These involved two species combinations (I. paraguariensis monoculture and I. paraguariensis intercropped with the native tree species Araucaria angustifolia) and two age classes (30 and 50 years old). Chemical soil samples were analysed to determine Ca, Mg, K, P, N, C and Al concentrations, effective CEC (eCEC) and pH at two soil depths (0–5 cm and 5–10 cm). In the younger plantations, the agroforestry sites had lower nutrient levels than I. paraguariensis monoculture sites. However, the monoculture plantations were more susceptible than agroforestry sites to a decline in soil nutrient status over time, particularly with respect to Ca, eCEC, N and C for both soil depths. P concentrations were below detection limits for all sites, potentially reflecting the high P-fixing capacity of the kaolinic soils of this region. While agroforestry systems may be better at maintaining soil quality over time, significant growth increase of I. paraguariensis was apparent only for the monoculture sites.  相似文献   

17.
Microclimate was recorded and soil organisms were collected 1997-1999 in ecosystem stands of contrasting structure in central Amazonia (a primary forest, a 12-year secondary forest, two different agroforestry systems, a rubber tree (Hevea brasiliensis) plantation, and a peach palm (Bactris gasipaes) monoculture with a densely closed canopy). The aim was to look at the effects of canopy closure on microclimate and soil organisms. Monthly maxima temperature, average air and soil temperatures, and saturation deficit were highest in September 1997, and total annual rainfall in 1997 was 12-28% lower than in the other study years. The monthly average litter temperatures were consistently 2-4 °C higher in the plantation sites than in the rainforest and the secondary forest, and temperatures on single days (not the monthly averages) in the plantations were up to 10 °C higher than in the primary forest. The highest average litter and soil temperatures and the highest temperature maxima were recorded in the agroforestry plantations. Canopy closure strongly determined the litter temperatures in the sites. Soil macrofauna biomass was also strongly correlated to canopy closure (linear regression, P = 0.05). We conclude that a well developed canopy effectively protects the soil macrofauna from high temperature variation and drought stress. Therefore, optimizing these agroforestry systems for canopy closure may contribute to a better management of the beneficial soil decomposer community. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The objective of this study was to quantify and compare the amount and distribution of soil organic carbon (SOC) under a linear simultaneous agroforestry system with different tree species treatments. Field work was conducted at Kifu National Forestry Resources Research Institute in Mukono District, Central Uganda, in a linear agroforestry system established in 1995 with four different tree species and a crop only control treatment. Soil samples were collected in 2006 at three depths; 0–25, 25–50, and 50–100 cm, before planting and after harvesting a maize crop. The results indicate that an agroforestry system has significant potential to increase SOC as compared to the crop only control. There was no significant difference in the amount of SOC under exotic and indigenous tree species. Among the exotic species, Grevillea robusta had higher SOC than Casuarina equisetifolia across the entire depth sampled. There is significant difference in SOC among the indigenous species, where Maesopsis eminii has more SOC than Markhamia lutea. Distance from the tree row did not significantly influence SOC concentration under any of the tree species. In selecting a tree species to integrate with crops that will sequester reasonable quantities of carbon as well as boost the performance of the crops, a farmer can either plant an exotic species or an indigenous. In this study, the soil under Grevillea robusta and Maesopsis eminii have the highest potential to store organic carbon compared to soil under other tree species.  相似文献   

19.
Nutrient concentrations in plant and soil and their rates of cycling in poplar (Populus deltoides)-based agroforestry systems were studied at Pusa, Bihar, India. The nutrient concentrations in the standing biomass of the crop were more than those in tree, whereas the nutrient contents showed the reverse trend. Soil, litter and vegetation accounted for 80.3–99.5, 0.1–5.0 and 0.4–14.7%, respectively, of the total nutrients in the system. Considerable reduction (40–54%) in concentration of nutrients in leaves occurred during senescence. The uptake of nutrients by vegetation, and also by different components with and without adjustment for internal recycling, were calculated separately. Annual transfer of litter nutrient to the soil by vegetation was 37.3–146.2 N, 5.6–17.9 P and 25.0–66.3 K kg ha−1 year−1 in young (3-year-old) and mature (9-year-old) plantations. Turnover rate and time for different nutrients ranged between 0.86–0.99 year−1 and 1.01–1.16 years, respectively. Compartmental models for nutrient dynamics have been developed to represent the distribution of nutrient contents and net annual fluxes within the system. This study shows that the poplar-based agroforestry system can be sustainable in terms of soil nutrient status.  相似文献   

20.
Growing concern for economic and environmental issues emphasizes the potential value of intercropping systems in temperate regions. However, the selection of relevant tree species to be associated with crops has been little documented. The growth and the nitrogen nutrition of two economically valuable species, wild cherry (Prunus avium L.) and hybrid walnut (Juglans nigra L.×Juglans regia L.), were compared over six years after plantation. These two species were associated with non-irrigated cereal crops in the agroforestry treatment or grown separately (weeded control and fallow). Intercropping increased diameter growth as soon as year 2 in the two species. Leaf biomass assessment using allometric models showed an earlier and greater leaf biomass increase in hybrid walnut than in wild cherry tree. After six years, the relative growth increase of the agroforestry trees with respect to the control trees varied with the parameter considered (diameter at breast height from +26 to +65%, leaf biomass from +54 to +142%) and with the tree species (higher relative growth for hybrid walnut trees). The beneficial effect on tree growth can be accounted for in terms of enhanced nitrogen nutrition. The tree–crop association in intercropping systems, which improves tree growth, might thus allow the planting of more demanding trees on soils of lower fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号