首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To assess the likelihood of enhancing native fish populations by means of floodplain restoration projects, habitat characteristics and fish assemblages of seven perennial floodplain ponds in Yolo Bypass, the primary floodplain of the Sacramento River, California (USA), were examined during summer 2001. Although all ponds were eutrophic, based upon high chlorophyll a or dissolved nutrient concentrations, relatively large shallow ponds generally exhibited higher specific conductivity and dissolved phosphorus concentrations than small deep ponds, which exhibited greater water transparency and total dissolved nitrogen concentrations. Using multiple gear types, 13 688 fishes comprising 23 species were collected. All ponds were dominated by alien fishes; only three native species contributing <1% of the total number of individuals and <3% of overall biomass were captured. Fish assemblage structure varied among ponds, notably between engineered vs. natural ponds, and was related to specific conductance, total dissolved solids and water transparency.  相似文献   

2.
Tributaries of the Colorado River Basin, historically home to a complex of endemic omnivores collectively referred to as the ‘three species’; flannelmouth sucker (Catostomus latipinnis), bluehead sucker (C. discobolus) and roundtail chub (Gila robusta), have experienced the establishment of numerous non‐native fish species. In this study, we examine the impacts of the trophic ecology of non‐native fishes on the ‘three species’ in the San Rafael River, Utah, USA. We employ a suite of abundance comparisons, stable isotope techniques and size‐at‐age back‐calculation analyses to compare food web structure and growth rates of the ‘three species’ in study areas with and without established populations of non‐native species. We found that the ‘three species’ are more abundant in areas with few non‐native fishes present, regardless of habitat complexity. Stable isotope analyses indicate non‐native fishes lengthen the food chain by 0.5 trophic positions. Further, the trophic niche spaces of the native fishes shift and are narrower in the presence of non‐native fishes, as several non‐native species’ trophic niche spaces overlap almost entirely with each of the ‘three species’ (bluehead sucker and flannelmouth sucker 100%, roundtail chub 98.5%) indicating strong potential for competition. However, the ‘three species’ demonstrated no evidence of reduced growth in the presence of these non‐native fishes. Collectively, these results suggest that while non‐native fishes alter the food web structure presenting novel sources of predation and competition, mechanisms other than competition are controlling the size‐structure of ‘three species’ populations in the San Rafael River.  相似文献   

3.
Pilger TJ, Gido KB, Propst DL. Diet and trophic niche overlap of native and nonnative fishes in the Gila River, USA: implications for native fish conservation. Ecology of Freshwater Fish 2010: 19: 300–321. © 2010 John Wiley & Sons A/S Abstract –  The upper Gila River basin is one of the few unimpounded drainage basins west of the Continental Divide, and as such is a stronghold for endemic fishes in the region. Nevertheless, multiple nonindigenous fishes potentially threaten the persistence of native fishes, and little is known of the trophic ecology of either native or nonnative fishes in this system. Gut contents and stable isotopes (13C and 15N) were used to identify trophic relationships, trophic niche overlap and evaluate potential interactions among native and nonnative fishes. Both native and nonnative fishes fed across multiple trophic levels. In general, adult native suckers had lower 15N signatures and consumed more algae and detritus than smaller native fish, including juvenile suckers. Adult nonnative smallmouth bass (Micropterus dolomieu), yellow bullhead (Ameiurus natalis) and two species of trout preyed on small‐bodied fishes and predaceous aquatic invertebrates leading to significantly higher trophic positions than small and large‐bodied native fishes. Thus, the presence of these nonnative fishes extended community food‐chain lengths by foraging at higher trophic levels. Although predation on juvenile native fishes might threaten persistence of native fishes, the high degree of omnivory suggests that impacts of nonnative predators may be lessened and dependent on environmental variability.  相似文献   

4.
The reintroduction of beaver (Castor canadensis) into arid and semi‐arid rivers is receiving increasing management and conservation attention in recent years, yet very little is known about native versus non‐native fish occupancy in beaver pond habitats. Streams of the American Southwest support a highly endemic, highly endangered native fish fauna and abundant non‐native fishes, and here we investigated the hypothesis that beaver ponds in this region may lead to fish assemblages dominated by non‐native species that favour slower‐water habitat. We sampled fish assemblages within beaver ponds and within unimpounded lotic stream reaches in the mainstem and in tributaries of the free‐flowing upper Verde River, Arizona, USA. Non‐native fishes consistently outnumbered native species, and this dominance was greater in pond than in lotic assemblages. Few native species were recorded within ponds. Multivariate analysis indicated that fish assemblages in beaver ponds were distinct from those in lotic reaches, in both mainstem and tributary locations. Individual species driving this distinction included abundant non‐native green sunfish (Lepomis cyanellus) and western mosquitofish (Gambusia affinis) in pond sites, and native desert sucker (Catostomus clarkii) in lotic sites. Overall, this study provides the first evidence that, relative to unimpounded lotic habitat, beaver ponds in arid and semi‐arid rivers support abundant non‐native fishes; these ponds could thus serve as important non‐native source areas and negatively impact co‐occurring native fish populations.  相似文献   

5.
A popular species for food and sport, the European catfish (Silurus glanis) is well‐studied in its native range, but little studied in its introduced range. Silurus glanis is the largest‐bodied freshwater fish of Europe and is historically known to take a wide range of food items including human remains. As a result of its piscivorous diet, S. glanis is assumed to be an invasive fish species presenting a risk to native species and ecosystems. To assess the potential risks of S. glanis introductions, published and ‘grey’ literature on the species’ environmental biology (but not aquaculture) was extensively reviewed. Silurus glanis appears well adapted to, and sufficiently robust for, translocation and introduction outside its native range. A nest‐guarding species, S. glanis is long‐lived, rather sedentary and produces relatively fewer eggs per body mass than many fish species. It appears to establish relatively easily, although more so in warmer (i.e. Mediterranean) than in northern countries (e.g. Belgium, UK). Telemetry data suggest that dispersal is linked to flooding/spates and human translation of the species. Potential impacts in its introduced European range include disease transmission, hybridization (in Greece with native endemic Aristotle’s catfish [Silurus aristotelis]), predation on native species and possibly the modification of food web structure in some regions. However, S. glanis has also been reported (France, Spain, Turkmenistan) to prey intensively on other non‐native species and in its native Germany to be a poor biomanipulation tool for top‐down predation of zooplanktivorous fishes. As such, S. glanis is unlikely to exert trophic pressure on native fishes except in circumstances where other human impacts are already in force. In summary, virtually all aspects of the environmental biology of introduced S. glanis require further study to determine the potential risks of its introduction to novel environments.  相似文献   

6.
Abstract  Low-head dams in arid regions restrict fish movement and create novel habitats that have complex effects on fish assemblages. The influence of low-head dams and artificial wetlands on fishes in Muddy Creek, a tributary of the Colorado River system in the USA was examined. Upstream, fish assemblages were dominated by native species including two species of conservation concern, bluehead sucker, Catostomus discobolus Cope, and roundtail chub, Gila robusta Baird and Girard. The artificial wetlands contained almost exclusively non-native fathead minnow, Pimephales promelas Rafinesque, and white sucker, Catostomus commersonii (Lacepède). Downstream, fish assemblages were dominated by non-native species. Upstream spawning migrations by non-native white suckers were blocked by dams associated with the wetlands. However, the wetlands do not provide habitat for native fishes and likely inhibit fish movement. The wetlands appear to be a source habitat for non-native fishes and a sink habitat for native fishes. Two non-native species, sand shiner, Notropis stramineus (Cope), and redside shiner, Richardsonius balteatus (Richardson), were present only downstream of the wetlands, suggesting a beneficial role of the wetlands in preventing upstream colonisation by non-native fishes.  相似文献   

7.
8.
9.
The consequences of introducing Cichla cf. monoculus Spix & Agassiz, Astronotus ocellatus (Agassiz) and Pygocentrus nattereri Kner into lakes in the River Doce basin, Brazil, on richness, diversity and efficiency of aquatic macrophytes as natural refugia to native fishes was investigated. Samples were taken from lakes with and without alien fishes in areas with and without aquatic macrophytes. The presence of alien fishes reduced richness and diversity of the native fish community. The refugia function, which could be attributed to the clustering of aquatic macrophytes, does not exist in these lakes probably because the alien fishes exploit such habitats for reproduction. Since introductions threaten the native fish diversity of the region, studies on regional dispersion and factors that minimise the spread of alien fishes are needed.  相似文献   

10.
Floodplain lakes are ecosystems characterised by annual flood and dry cycles. Fish ecology is influenced by the flood pulse due to the large influx of allochthonous food resources and diversification of habitats during the flood cycle, while during the dry cycle, fishes tend to be confined in reduced habitat. The aim of this study was to evaluate the seasonal variation in trophic niche width and overlap of four species—Mylossoma duriventre, Prochilodus nigricans, Cichla.pleiozona and Serrasalmus rhombeus—in an Amazonian floodplain lake. Stable isotope analyses were used to estimate trophic niche width and overlap during the flood and dry seasons. We hypothesised broader niche width for all species during the flood cycle and a higher degree of overlap between the two piscivorous fishes during the dry cycle. Isotopic niche width was 72% broader for P. nigricans, 61% for S. rhombeus and 54% for C. pleiozona during the dry cycle, which did not support our hypothesis. Core niche width overlaps were not observed between piscivorous species in either flood or dry cycle. The results indicate that seasonal variation in isotopic niche width is specific to feeding habit. Understanding how fish trophic ecology responds to changes in the hydrological regime during the seasons is crucial for sustainable fishery management in a region where many people rely heavily on fish for nutritional and economic purposes.  相似文献   

11.
Forty-six white sturgeon females captured prior to their spawning migration in the San Francisco Bay and during their spawning run in the Sacramento River were induced to ovulate with three different hormonal substances: white sturgeon and common carp crude pituitary extracts, and [D-Ala6] GnRH analogue. All three inducing agents were potent at the respective doses of 2.5 mg, 4.0 mg and 0.1 mg dry matter per kilogram of female body weight. The best ovulatory responses and egg fertilities were observed in fish administered hormonal treatment during the months of March and April. Fish captured prior to and during their spawning migration exhibited similar spawning success.  相似文献   

12.
Quantifying fish movements in river networks helps identify critical habitat needs and how they change with environmental conditions. Some of the challenges in tracking fish movements can be overcome with the use of passive integrated transponder (PIT) tagging and antennas. We used PIT technology to test predictions of movement behaviour for four fish species at a mainstem–tributary confluence zone in an arid‐land river system. Specifically, we focused on the McElmo Creek tributary confluence with the San Juan River in south‐western Utah, USA. We quantified variation in species occurrences at this confluence zone from May 2012 to December 2015 relative to temporal and environmental conditions. We considered occurrences among species relative to tagging origins (tributary versus mainstem), season and time of day. Generally, fishes tagged in the focal tributary were more likely to be detected compared to fish tagged in the mainstem river or other tributaries. Additionally, adults were most likely to be detected across multiple years compared to subadults. Based on a Random Forests model, the best performing environmental variables for predicting seasonal detections included mainstem discharge during run‐off season (razorback sucker Xyrauchen texanus), tributary discharge during monsoon season (Colorado pikeminnow Ptychocheilus lucius) and mainstem water temperature (flannelmouth sucker Catostomus latipinnis and channel catfish Ictalurus punctatus). The variable responses by endemic and introduced fishes indicate tributary habitats provide several key functions within a fish community including spawning, rearing, foraging and refuge.  相似文献   

13.
Although a large number of fish species have been introduced into Guangdong Province in Southern China, a few species, such as tilapia (Tilapia spp.), North African catfish Clarias gariepinus Burchell, mrigal carp, Cirrhinus mrigala (Bloch) and the sucker mouth catfish (Hypostomus sp.), have established natural populations and can be considered “successful invaders” in large rivers. The specific mechanisms underlying these contrasting results among different introduced fish species remain understudied. The relationship between multiple abiotic–biotic factors and the success of four invasive species was investigated using survey data for the Guangdong Province river ecosystem. In contrast to previous studies that have considered species‐specific traits, the focus was on economic, ecological and anthropogenic factors to predict invasion success. Four main predictive indicators were found: (1) successful invaders were of low or no commercial value; (2) successful invaders tolerated a wide range of environmental conditions, including poor water quality; (3) biodiversity loss accelerated the growth of non‐native populations; (4) human disturbance facilitated population growth and spread of invasive fish species. To lessen the impacts of invasive fish species, the selection of breeding species and breeding areas, maintenance of water quality and reduction in water pollution, protection of the diversity of fish species and reduction of human interference should be addressed.  相似文献   

14.
Water resource development and non‐native species have been cited as primary drivers associated with the decline of native fishes in dryland rivers. To explore this topic, long‐term trends in the fish community composition of the Bill Williams River basin were studied over a 30‐year period (Arizona, USA). We sampled 31 sites throughout the basin that were included in fish surveys by Arizona Game and Fish in 1994–97 and the Bureau of Land Management in 1979–80. We found that non‐native species have proliferated throughout the entire basin, with greater densities in the lower elevations. Native species have persisted throughout most of the major river segments, but have experienced significant declines in frequency of occurrence and abundance in areas also containing high abundances of non‐native species. Next, we assessed the short‐term response of the fish assemblage to an experimental flood event from the system's only dam (i.e. Alamo Dam). In response to the flood, we observed a short‐term reduction in the abundance of non‐native species in sites close to the dam, but the fish assemblage returned to its preflood composition within 8 days of the event, with the exception of small‐bodied fish, which sustained lower postflood densities. Our findings demonstrate the importance of natural flow regime on the balance of native and non‐native species at the basin scale within dryland rivers and highlight minimal effects on non‐native fishes in response to short duration flood releases below dams.  相似文献   

15.
16.
The survival and establishment of alien fishes in novel environments can result in resource partitioning with native fishes. This can cause ecological impact and suppression of native populations. However, quantifying the impact of novel interactions between alien and native species remains highly challenging in the wild. Consequently, to determine the ecological risk of Lepomis gibbosus in case of introduction to a small stream, experimental approach was used to predict its competitive interaction with a poorly studied endemic fish, Capoeta aydinensis. The aim was to test whether Lgibbosus has an adverse effect on native species using an experimental design under allopatric and sympatric context with temperature regimes of 15 and 24ºC. The results indicated that temperature and fish proportion had effects on the growth of Caydinensis while these factors were not important for Lgibbosus. These results provided little evidence of Lgibbosus presence being detrimental for endemic Caydinensis, but nevertheless steps should be taken to avoid their further co-habitation in the wild.  相似文献   

17.
Abstract – Common carp Cyprinus carpio is a widespread invasive species that, in high abundance, can impose numerous deleterious effects in aquatic ecosystems. Common carp increase turbidity and nutrient availability while reducing invertebrate prey resources and aquatic macrophytes, transforming shallow lakes from the clear‐ to turbid‐water state. However, potential effects of common carp on native fish communities have received limited attention. We evaluated the relationships among relative abundances of nine native fishes and common carp for 81 lakes in eastern South Dakota and their associated physicochemical characteristics. Inverse threshold relationships among relative abundances of native fishes and common carp were identified for black bullhead Ameiurus melas, black crappie Pomoxis nigromaculatus, bluegill Lepomis macrochirus, white bass Morone chrysops and northern pike Esox lucius, while marginally significant relationships were detected for largemouth bass Micropterus salmoides and smallmouth bass M. dolomieu. Lakes where common carp relative abundance exceeded 0.6 fish per net night had low abundance of native fishes, whereas lower abundance of common carp resulted in variable abundance of native fishes. Lakes with abundance of common carp surpassing 0.6 fish per net night were also characterised by larger surface areas and watersheds and impaired water quality (higher dissolved solids and chlorophyll a concentrations and lower secchi depth). Our results are consistent with the biotic‐abiotic constraining hypothesis that proposes biotic factors can regulate fish populations regardless of abiotic conditions. Thus, common carp abundance may need to be reduced and sustained below ecological thresholds to improve water quality and increase abundance of native fishes.  相似文献   

18.
19.
Due to the increasing globalisation and ongoing introduction of alien species specifically regarding European freshwater ecosystems, native and already present alien species will be confronted with competitors with unknown outcomes. One such case is the situation of the European catfish Silurus glanis introduced in the Arno River (Central Italy), a species sought after by anglers, which is facing competition from the later introduced alien North American channel catfish Ictalurus punctatus. Large catfish species are highly valued among anglers, but their interspecific interactions and potential ecosystem-level impacts are still poorly known. We used stomach contents and stable isotope analyses to study niche partitioning between these two alien catfish species, coexisting in the Arno River. The results suggest partial niche segregation, with immature S. glanis showing a narrower dietary and isotopic niche and a slightly higher trophic position than I. punctatus. Monitoring the catfish population sizes, trophic niches and effects on lower trophic levels are essential for future management and mitigation of their potential impacts on invaded freshwater ecosystems.  相似文献   

20.
Jiménez‐Segura LF, Palacio J, Leite R. River flooding and reproduction of migratory fish species in the Magdalena River basin, Colombia.
Ecology of Freshwater Fish 2010: 19: 178–186. © 2010 John Wiley & Sons A/S Abstract – In most tropical rivers subject to a single‐yearly flooding, migratory fish usually spawn in the onset of the flooding and larvae drift to their nursery habitats. To define when the migratory fish species reproduce, its relationship with the water level and when nursery areas in floodplain lakes are supplied with ichthyoplankton in the Magdalena River, a two‐yearly peak flooding river, we sampled the ichthyoplankton weekly throughout 2 years. The fish species Pseudoplatystoma magdaleniatum, Prochilodus magdalenae, Leporinus muyscorum, Sorubim cuspicaudus and Curimata mivartii spawn twice a year in the main channel and its larvae input into the floodplain lakes are not always associated with flooding. Spawning in the main channel and larvae inputs into the floodplain lakes suggest that the habitat used by the migratory fishes may be consistent with some hypotheses on habitats used by these fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号