首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Management practices can have significant implications for both soil quality and carbon (C) sequestration potential in agricultural soils. Data from two long‐term trials (one at field scale and the other at lysimeter scale), underway in north‐eastern Italy, were used to evaluate the dynamics of soil organic carbon (SOC) and estimate the impact of recommended management practices (RMPs) on soil carbon sequestration. Potential SOC sequestration was calculated as the differences between the change in SOC of treatments differing only for the specified RMP for a period of at least 25 years. The trials compared the following situations: (a) improved crop rotations versus monoculture; (b) grass versus improved crop rotations; (c) residue incorporation versus residue removal; (d) high versus low rates of inorganic fertilizers; (e) integrated nutrient management/organic manures versus inorganic fertilizers. At the lysimeter scale, some of these treatments were evaluated in different soils. A general decrease in SOC (1.1 t C ha?1 year?1) was observed after the introduction of intensive soil tillage, evidencing both the worsening of soil quality and the contribution towards global CO2 emissions. Initial SOC content was maintained only in permanent grassland, complex rotations and/or with the use of large quantities of livestock manure. SOC sequestration reached a maximum rate of 0.4 t C ha?1 year?1 comparing permanent grassland with an improved crop rotation. Crop residue incorporation and rates of inorganic fertilizer had less effect on SOC sequestration (0.10 and 0.038 t C ha?1 year?1, respectively). The lysimeter experiment highlighted also the interaction between RMPs and soil type. Peaty soil tended to be a source of C independent of the amount and quality of C input, whereas a proper choice of tillage practices and organic manures enhanced SOC sequestration in a sandy soil. The most promising RMPs in the Veneto region are, therefore, conversion to grassland and use of organic manures. Although some of these RMPs are already supported by the Veneto Region Rural Development Plan, their more intensive and widespread implementation requires additional incentives to become economically feasible.  相似文献   

2.
In grassland farming, especially on coarse‐textured soils, K can be a critical element. On these soils, the actual K management as well as fertilizer history to a large extent determine the leaching of K. The effects of four fertilizer regimes on the nutrient balances and leaching of K from grassland grown on a sandy soil were investigated. The swards differed in the source and level of N input and K fertilizer: no fertilizer N + 166 kg K ha?1 year?1 (Control), 320 kg inorganic N ha?1 + 300 kg K ha?1 year?1 (MIN 320), 320 kg N + 425 kg K ha?1 year?1 in form of cattle slurry (SLR 320) and a grass–clover sward + 166 kg K ha?1 year?1 (WCL 0) without any inorganic N input. In a second experimental phase, cores from these swards were used in a mini‐lysimeter study on the fate of K from urine patches. On cut grassland after 6 years K input minus removal in herbage resulted in average K surpluses per year of 47, 39, 56 and 159 kg K ha?1 for the Control, MIN 320, WCL 0 and SLR 320, respectively. Related leaching losses per year averaged 7.5, 5, 15 and 25 kg K ha?1. Losses of urinary‐K through leaching were 2.2–4.5 and 5.7–8.4% of the K supplied in summer and autumn applications, respectively. Plant and soil were the major sinks for K from fertilizer or urine. High levels of exchangeable K in the soil and/or large and late fertilizer or urine applications stimulated leaching of K.  相似文献   

3.
The aim of this study was to assess the changes in soil organic carbon (SOC) stock in relation to the carbon (C) input from nine wheat-based cropping systems and untilled grass. The SOC pool ranged from 32.1 to 49.4 Mg ha?1 at 0–20 cm and from 94 to 171 Mg ha?1 at 0–100 cm for the arable soil, while in untilled grassland, it was higher (54 and 185 Mg C ha?1, respectively). SOC stock was observed to be lower at the unfertilized 2-year rotation and higher at the 4-year rotation with manure and mineral fertilization. The study showed a winter wheat yield decrease of 176.8 kg ha?1 for a 1- Mg ha?1 SOC stock change in the 0–20-cm soil depth. The estimated C input for SOC stock maintenance was from 266 to 340 g C m?2 year?1 for winter wheat and rotations, respectively. Additional C input did not increase the SOC pool, suggesting that arable plots had a limited ability to increase SOC. These results provide guidance for the selection of management practices to improve C sequestration.  相似文献   

4.
Changes in soil organic carbon (SOC) storage in agricultural land are an important part of the Land Use, Land-Use Change and Forestry component of national greenhouse gas emission inventories. Furthermore, as climate mitigation strategies and incentives for carbon farming are being developed, accurate estimates of SOC stocks are essential to verify any management-induced changes in SOC. Based on agricultural mineral soils in the Danish soil-monitoring network, we analysed management effects on SOC stocks using data from the two most recent surveys (2009 and 2019). Between 2009 and 2019, the average increase in SOC stock was 1.2 Mg C ha−1 for 0–50 cm despite a loss of 1.2 Mg C ha−1 from the topsoil (0–25 cm), stressing the importance of including deeper soil layers in soil-monitoring networks. Comparing all four national surveys (1986, 1997, 2009, 2019), the mean SOC stock of mineral soils in Denmark appears stable. The change in SOC stock between 2009 and 2019 was analysed in detail in relation to management practices as reported by farmers. We found that the effects of single management factors were difficult to isolate from co-varying factors including soil parameters and that the use of farm management data to explain changes in SOC stocks observed in soil-monitoring networks appears limited. Uncertainty in SOC stock estimates also arises from low sampling frequency and statistical challenges related to regression to the mean. However, repeated stock measurements at decadal intervals still represent a benchmark for the overall development in regional and national SOC storage, as affected by actual farm management.  相似文献   

5.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Straw mulching has been used to conserve soil water and sustain dryland crop yields, but the impact of the quantity and time of mulching on soil C fractions are not well documented. We studied the effects of various amounts and times of wheat (Triticum aestivum L.) straw mulching on soil C fractions at 0–10- and 10–20-cm depths from 2009 to 2017 in the Loess Plateau of China. Treatments were no mulching (CK), straw mulching at 9.0 (HSM) and 4.5 Mg ha?1 (LSM) in the winter wheat growing season, and straw mulching at 9.0 Mg ha?1 in the summer fallow period (FSM). Soil C fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). All C fractions at 0–10 and 10–20 cm were 8–27% greater with HSM and LSM than FSM and CK. Both SOC and POC at 0–10 cm increased at 0.32 and 0.27 Mg ha?1 year?1 with HSM and at 0.40 and 0.30 Mg C ha?1 year?1 with LSM, respectively, from 2009 to 2017. Winter wheat grain yield was lower with HSM and LSM, but total aboveground biomass was greater with HSM than other treatments. All C fractions at most depths were correlated with the estimated wheat root residue returned to the soil and PCM at 0–10 and 0–20 cm was correlated with wheat grain yield. Wheat straw mulching during the growing season increased soil C sequestration and microbial biomass and activity compared with mulching during the fallow period or no mulching, regardless of mulching rate, due to increased C input, although it reduced wheat grain yield. Continuous application of straw mulching over time can increase soil C sequestration by increasing nonlabile C fractions while decreasing labile fractions. Straw mulching at higher rate and mulching during the summer fallow period had no additional benefits in soil C sequestration.  相似文献   

7.
The effects of atmospheric nitrogen (N) deposition on carbon (C) sequestration in terrestrial ecosystems are controversial. Therefore, it is important to evaluate accurately the effects of applied N levels and forms on the amount and stability of soil organic carbon (SOC) in terrestrial ecosystems. In this study, a multi‐form, small‐input N addition experiment was conducted at the Haibei Alpine Meadow Ecosystem Research Station from 2007 to 2011. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha?1 year?1. One hundred and eight soil samples were collected at 10‐cm intervals to a depth of 30 cm in 2011. Contents and δ13C values of bulk SOC were measured, as well as three particle‐size fractions: macroparticulate organic C (MacroPOC, > 250 µm), microparticulate organic C (MicroPOC, 53–250 µm) and mineral‐associated organic C (MAOC, < 53 µm). The results show that 5 years of N addition changed SOC contents, δ13C values of the bulk soils and various particle‐size fractions in the surface 10‐cm layer, and that they were dependent on the amounts and forms of N application. Ammonium‐N addition had more significant effects on SOC content than nitrate‐N addition. For the entire soil profile, small additions of N increased SOC stock by 4.5% (0.43 kg C m?2), while medium and large inputs of N decreased SOC stock by 5.4% (0.52 kg C m?2) and 8.8% (0.85 kg C m?2), respectively. The critical load of N deposition appears to be about 20 kg N ha?1 year?1. The newly formed C in the small‐input N treatment remained mostly in the > 250 µm soil MacroPOC, and the C lost in the medium or large N treatments was from the > 53 µm POC fraction. Five years of ammonium‐N addition increased significantly the surface soil POC:MAOC ratio and increased the instability of soil organic matter (SOM). These results suggest that exogenous N input within the critical load level will benefit C sequestration in the alpine meadow soils on the Qinghai–Tibetan Plateau over the short term.  相似文献   

8.
Changes in land‐use and agricultural management affect soil organic C (SOC) storage and soil fertility. Grassland to cropland conversion is often accompanied by SOC losses. However, fertilization, crop rotation, and crop residue management can offset some SOC losses or even convert arable soils into C sinks. This paper presents the first assessment of changes in SOC stocks and crop yields in a 60‐year field trial, the Zurich Organic Fertilization Experiment A493 (ZOFE) in Switzerland. The experiment comprises 12 treatments with different organic, inorganic and combined fertilization regimes. Since conversion to arable land use in 1949, all treatments have lost SOC at annual rates of 0.10–0.25 t C ha?1, with estimated mean annual C inputs from organic fertilizers and aboveground and belowground plant residues of 0.6–2.4 t C ha?1. In all treatments, SOC losses are still in progress, indicating that a new equilibrium has not yet been reached. Crop yields have responded sensitively to advances in plant breeding and in fertilization. However, in ZOFE high yields can only be ensured when mineral fertilizer is applied at rates typical for modern agriculture, with yields of main crops (winter wheat, maize, potatoes, clover‐grass ley) decreasing by 25–50% when manure without additional mineral fertilizer is applied. ZOFE shows that land‐use change from non‐intensively managed grassland to cropland leads to soil C losses of 15–40%, even in rotations including legumes and intercrops, improved agricultural management and organic fertilizer application.  相似文献   

9.
A long-term field experiment (1984–2011), was conducted on a Calcic Haploxeralf from semi-arid central Spain to evaluate the combined effect of three treatments: farmyard manure (FYM), straw and control without organic amendments (WOA) and five increasing rates of mineral N on: (1) some energetic parameters of crop production, and (2) the effect of the different treatments on soil organic carbon (SOC) and total N stocks. Crop rotation included spring barley, wheat and sorghum. The energy balance variables considered were net energy produced (energy output minus energy input), the energy output/input ratio and energy productivity (crop yield per unit energy input). Results showed small differences between treatments. Total energy inputs varied from 9.86 GJ ha?1 year?1 (WOA) to 11.14 GJ ha?1 year?1 in the FYM system. For the three crops, total energy inputs increased with increasing rates of mineral N. Energy output was slightly lower in the WOA (33.40 GJ ha?1 year?1) than in the two organic systems (37.34 and 34.96 GJ ha?1 year?1 for FYM and straw respectively). Net energy followed a similar trend. At the end of the 27-year period, the stocks of SOC and total N had increased noticeably in the soil profile (0–30 cm) as a result of application of the two organic amendments. Most important SOC changes occurred in the FYM plots, with mean increases in the 0–10 cm depth, amounting an average of 9.9 Mg C ha?1 (667 kg C ha?1 year?1). Increases in N stocks in the top layer were similar under FYM and straw and ranged from 0.94 to 1.55 Mg N ha?1. By contrast, simultaneous addition of increasing rates of mineral N showed no significant effect on SOC and total N storage.  相似文献   

10.
Soils are an effective sink for carbon storage and immobilization through biomass productivity and enhancement of soil organic carbon (SOC) pool. The SOC sink capacity depends on land use and management. Degraded lands lose large amounts of C through SOC decomposition, erosion, and leaching. Thus, restoration of disturbed and degraded mine lands can lead to increase in biomass productivity, improved soil quality and SOC enhancement and sequestration. Reclamation of mined lands is an aggrading process and offers significant potential to sequester C. A chronosequence study consisting of 0‐, 5‐, 10‐, 15‐, 20‐ and 25‐year‐old reclaimed mine soils in Ohio was initiated to assess the rate of C sequestration by pasture and forest establishment. Undisturbed pasture and forest were used as controls. The SOC pool of reclaimed pasture sites increased from 15·3 Mg ha−1 to 44·4 Mg ha−1 for 0–15 cm depth and from 10·8 Mg ha−1 to 18·3 Mg ha−1 for 15–30 cm depth over the period of 25 years. The SOC pool of reclaimed forest sites increased from 12·7 Mg ha−1 to 45·3 Mg ha−1 for 0–15 cm depth and from 9·1 Mg ha−1 to 13·6 Mg ha−1 for 15–30 cm depth over the same time period. The SOC pool of the pasture site stabilized earlier than that of the forest site which had not yet attained equilibrium. The SOC sequestered in 0–30 cm depth over 25 years was 36·7 Mg ha−1 for pasture and 37·1 Mg ha−1 for forest. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Irrigation of grazed pasture significantly increases plant and animal production, which may in turn increase soil organic carbon (SOC), depending on the balance between primary production and below‐ground allocation of C on the one hand, and the decomposition and export of C from the soil on the other. To evaluate the effect of irrigation on SOC we sampled a grazed pasture field experiment maintained under different irrigation treatments for 62 years. The dry‐land treatment in this experiment only received rainfall at an average of 740 mm year?1. The 10 and 20% irrigation treatments involved application of 100 mm of irrigation when the soil reached 10 and 20% gravimetric moisture content, respectively. The 10 and 20% irrigation treatments received average total annual irrigation inputs of 260 and 770 mm year?1, respectively. The 10 and 20% irrigation treatments increased pasture production by 44 and 74%, respectively, compared with that from the dry‐land. Analysis of soils taken to 1‐m depth revealed that amounts of SOC were not significantly different between the dry‐land (125.5 Mg ha?1) and 10% irrigation (117.8 Mg ha?1) treatments, but these were significantly greater than the 20% irrigation treatment (93.0 Mg ha?1). At 50–100 cm, SOC was also less (34%) for the 20% irrigation treatment than for the 10% irrigation treatment. The relative quantities of carbon (C) and nitrogen (N) in the light fraction (LF) at all soil depths decreased successively from dry‐land to the 20% irrigation treatment, suggesting that wetter soil conditions accelerated decomposition of the LF fraction, a comparatively labile SOC fraction. The C‐to‐N ratio of the bulk soil was also less for the 20% irrigation treatment, indicating more decomposed SOM in the irrigated than in the dry‐land treatment. There were no significant differences in the microbial biomass between the three different irrigation treatments, but the respiration rate (CO2 production) of soil organisms in the 20% irrigation treatment was consistently greater than in the other two treatments. It was concluded that large increases in plant productivity as a result of irrigation had either no effect or significantly reduced SOC stocks under grazed pasture. The reduced SOC content observed in the 20% irrigation treatment was attributed to a combination of increased C losses in animal products and drainage associated with greater stocking, together with accelerated decomposition of organic C resulting from elevated soil moisture maintained throughout the growing season.  相似文献   

12.
Based on a long-term finger millet-groundnut rotation study conducted for 24-years during 1992–2015 under Alfisols at Bangalore, organic and inorganic fertilizer effects on soil organic carbon (SOC) sequestration and sustainability of yield were assessed. Field experiments were conducted with T1:Control; T2:FYM@ 10t ha?1; T3:FYM@ 10t ha?1 + 50% NPK; T4:FYM@ 10t ha?1 + 100% NPK, and T5:100% recommended NPK in same plot every year. T5 comprised of 50 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for finger millet and 25 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for groundnut. Sustainability yield index of treatments was assessed using measurements made on variability of yield over years. The amount of carbon sequestered was assessed to identify a superior treatment for improving soil quality. Balanced use of 100% NPK+ FYM for maintenance of SOC at antecedent level with biomass-C of 1.62 Mg C ha?1 year?1 was feasible for sustaining production under semi-arid Alfisols.  相似文献   

13.
The change in soil carbon (C) stock over a 19–31‐year period (mean 25 years) has been measured at 179 sites on a 20‐km grid across Scotland. Sampling was by horizon from a profile pit. Although soil bulk density determinations were absent at the first sampling time, we used bulk density values from the second sampling time calibrated against NIR spectra to predict the missing values. There was no detectable change in overall total soil C stock (mean ± standard error, to a depth of 100 cm), which was 266 ± 15 and 270 ± 15 t C ha?1 for the first and second sampling times, respectively, or generally in C stock within specific vegetation or soil types. The exception was for soils under woodland, excluding those on deep peat, which exhibited a significant (P = 0.05) gain of 1.0 t C ha?1 year?1. Soils under woodland (mainly coniferous plantation) also showed a significant (P = 0.04) increase in C content (g kg?1), a significant decrease in bulk density (P = 0.006) and an increase in the thickness of the Litter‐Fermentation‐Humus (LFH) layer (P = 0.06). Recalculating the C stock to a depth of 15 cm showed a significant increase in overall C stock (when deep peat sites were excluded) as well as specifically in moorland and woodland soils, suggesting that had we sampled only to 15 cm, we would have reached a different conclusion. Both improved grassland soils and those initially under arable cultivation showed a significant decrease in C content. However, the mean thickness of Ap horizons increased from 29 to 32 cm, with a concomitant decrease in C content and a slight increase in bulk density; this we ascribe to deeper ploughing between the sample periods. In the context of possible soil C losses, we can be 95% confident that the mean loss does not exceed 0.2% year?1 and 99% confident that it does not exceed 0.4% year?1.  相似文献   

14.
The native vegetation in the Tropics is increasingly replaced by crops, pastures, tree plantations, or settlements with contradictory effects on soil organic carbon (SOC). Therefore, the general objective was to estimate the SOC stock depth distribution to 100-cm depth in soils of Costa Rica and to assess their theoretical carbon (C) sink capacity by different management practices. A study was established in three ecoregions of Costa Rica: the Isthmian-Atlantic Moist Forest (AM), the Pacific Dry Forest (PD), and the Montane Forest (MO) ecoregions. Within each ecoregion, three agricultural land uses and a mature forest were sampled to 100-cm depth. The SOC stock in 0–100 cm depth was 114–150 Mg C ha?1 for AM, 76–165 Mg C ha?1 for PD, and 166–246 Mg C ha?1 for MO. Land use had only weak effects on SOC concentrations and stocks except at PD where both were lower for soils under mango (Mangifera indica) and pasture. This may indicate soil degradation which was also supported by data on SOC stratification. However, it was generally unclear whether differences among land uses within each ecoregion already existed particularly at deeper depths before land-use change, and whether the sampling approach was sufficient to investigate them. Nevertheless, about 26–71% of Costa Rica's total C emissions may be offset by SOC sequestration in agricultural and forest soils. However, ecoregion-specific practices must be implemented to realize this potential.  相似文献   

15.
Nitrogen balances and total N and C accumulation in soil were studied in reseeded grazed grassland swards receiving different fertilizer N inputs (100–500 kg N ha?1 year?1) from March 1989 to February 1999, at an experimental site in Northern Ireland. Soil N and C accumulated linearly at rates of 102–152 kg N ha?1 year?1 and 1125–1454 kg C ha?1 year?1, respectively, in the top 15 cm soil during the 10 year period. Fertilizer N had a highly significant effect on the rate of N and C accumulation. In the sward receiving 500 kg fertilizer N ha?1 year?1 the input (wet deposition + fertilizer N applied) minus output (drainflow + animal product) averaged 417 kg N ha?1 year?1. Total N accumulation in the top 15 cm of soil was 152 kg N ha?1 year?1. The predicted range in NH3 emission from this sward was 36–95 kg N ha?1 year?1. Evidence suggested that the remaining large imbalance was either caused by denitrification and/or other unknown loss processes. In the sward receiving 100 kg fertilizer N ha?1 year?1, it was apparent that N accumulation in the top 15 cm soil was greater than the input minus output balance, even before allowing for gaseous emissions. This suggested that there was an additional input source, possibly resulting from a redistribution of N from lower down the soil profile. This is an important factor to take into account in constructing N balances, as not all the N accumulating in the top 15 cm soil may be directly caused by N input. N redistribution within the soil profile would exacerbate the N deficit in budget studies.  相似文献   

16.
The impacts of a wildfire and subsequent rainfall event in 2013 in the Warrumbungle National Park in New South Wales, Australia were examined in a project designed to provide information on post‐fire recovery expectations and options to land managers. A coherent suite of sub‐projects was implemented, including soil mapping, and studies on soil organic carbon (SOC) and nitrogen (N), erosion rates, groundcover recovery and stream responses. It was found that the loss of SOC and N increased with fire severity, with the greatest losses from severely burnt sandstone ridges. Approximately 2.4 million t of SOC and ~74,000 t of N were lost from soil to a depth of 10 cm across the 56,290 ha affected. Soil loss from slopes during the subsequent rainfall event was modelled up to 25 t ha?1, compared to a long‐term mean annual soil loss of 1.06 t ha?1 year?1. Groundcover averages generally increased after the fire until spring 2015, by which time rates of soil loss returned to near pre‐fire levels. Streams were filled with sand to bank full levels after the fire and rainfall. Rainfall events in 2015–2016 shifted creek systems into a major erosive phase, with incision through the post‐fire sandy bedload deposits, an erosive phase likely related to loss of topsoils over much of the catchment. The effectiveness of the research was secured by a close engagement with park managers in issue identification and a communications programme. Management outcomes flowing from the research included installation of erosion control works, redesign of access and monitoring of key mass movement hazard areas.  相似文献   

17.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

18.
Cover crop and nitrogen(N) fertilization may maintain soil organic matter under bioenergy perennial grass where removal of aboveground biomass for feedstock to produce cellulosic ethanol can reduce soil quality. We evaluated the effects of cover crops and N fertilization rates on soil organic carbon(C)(SOC), total N(STN), ammonium N(NH_4-N), and nitrate N(NO_3-N) contents at the0–5, 5–15, and 15–30 cm depths under perennial bioenergy grass from 2010 to 2014 in the southeastern USA. Treatments included unbalanced combinations of perennial bioenergy grass, energy cane(Saccharum spontaneum L.) or elephant grass(Pennisetum purpureum Schumach.), cover crop, crimson clover(Trifolium incarnatum L.), and N fertilization rates(0, 100, and 200 kg N ha~(-1)). Cover crop biomass and C and N contents were greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1) than in the treatment of energy cane and elephant grass. The SOC and STN contents at 0–5 and 5–15 cm were 9%–20% greater in the treatments of elephant grass with cover crop and with or without 100 kg N ha~(-1)than in most of the other treatments. The soil NO_3-N content at 0–5 cm was 31%–45% greater in the treatment of energy cane with cover crop and 100 kg N ha~(-1)than in most of the other treatments.The SOC sequestration increased from 0.1 to 1.0 Mg C ha~(-1)year~(-1)and the STN sequestration from 0.03 to 0.11 Mg N ha~(-1)year~(-1)from 2010 to 2014 for various treatments and depths. In contrast, the soil NH_4-N and NO_3-N contents varied among treatments,depths, and years. Soil C and N storages can be enriched and residual NO_3-N content can be reduced by using elephant grass with cover crop and with or without N fertilization at a moderate rate.  相似文献   

19.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   

20.
Abstract

Soil organic carbon (SOC) and nutrient stocks in the soil profile (0–80 cm) in four dominant land uses [forest, upland maize and millet (Bari), irrigated rice (Khet), and grazed systems)] and 0–15 cm depth along elevation gradient 1000 to 3000 m, and aspects in the Mardi watershed were measured. Soil properties at 0–15 cm depth were also measured in undisturbed forest, forest with free grazed system, managed forest, and grassland to compare the soil quality index (SQI) of topsoils. The SOC and nutrient concentration decreased with increasing profile depth. The SOC and N contents in the 0–15 cm depth of forest soils were significantly greater than the corresponding depth in upland maize and millet, irrigated rice, and grazed systems. On the other hand, available P and K concentrations at the same depth were significantly greater in upland maize and millet compared to irrigated rice, grazed system, and forest land uses. The SOC and N stocks (0–15 cm) increased from agricultural land at the valley bottom at about 1000 m above mean sea level (a.s.l.) (24 and 3 Mg ha?1) compared to undisturbed forest (74 and 5.9 Mg ha?1) at 2600 m a.s.l, demonstrating the effects of cover and elevation. Both SOC and N stocks decreased sharply in grassland (54 and 4.5 Mg ha?1) at elevations of 2600 to 2800 m a.s.l. compared with undisturbed forest. Above 2800 m a.s.l. the cover type changed from grass to coniferous forest, and the SOC and N stocks steadily increased at the summit level (3200 m a.s.l.) to 65 and 6.9 Mg ha?1, respectively. Slope and aspect significantly affected SOC with the northwest aspect having significantly higher concentrations (46 g kg?1) than other aspects. Similarly, SOC concentration at the lowest slope position (39 g kg?1) was significantly higher than the middle or upper positions (25 and 13 g kg?1). Integrated soil quality index (SQI) values varied from 0.17 to 0.69 for different land uses, being highest for undisturbed forest and lowest for irrigated rice. The SQI demonstrated the degradation status of land uses in the following ascending order: irrigated rice?>?grazed system?>?forest with free grazing?>?upland maize and millet?>?managed forest?>?grass land?>?undisturbed forest. The irrigated rice, grazed system, upland maize and millet, and freely grazed forestlands need immediate attention to minimize further deterioration of soil quality in these land uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号