首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid solid-phase extraction (SPE) method was developed for the determination of bentazone and the phenoxy acids 2,4-D, dichlorprop, MCPA, and mecoprop in Norwegian environmental water samples. Cartridges with a high-capacity cross-linked polystyrene-based polymer were used for off-line preconcentration. The effects of elution solvent, elution volume, sample volume, sorbent mass, pH, and flow rate on the recoveries of the pesticides were investigated using HPLC. Average recovery of >90% was achieved with 500 mg sorbents using 2 mL of methanol with 5% NH3 as elution solvent. The recoveries were independent of sample pH in the tested range of pH 1-7. Using a sample volume of 200 mL, the limits of determination for the phenoxy acids and bentazone are 0.02 microg/L. Sample volumes up to 2000 mL at a flow rate of 60 mL/min could be handled without any loss of analytes, which makes it possible to lower the limits of determination. The SPE method was compared to a routinely used liquid-liquid extraction method. Three different water matrices spiked at 1.0 and 0.05 microg/L were extracted, and the quantification was performed by GC-MS. Both methods permitted the determination of phenoxy acids and bentazone in distilled water, creek water, and well water down to a level of 0.05 microg/L with recoveries >80% for 200 mL samples. Important advantages of the SPE method compared to the liquid-liquid extraction method were the short extraction times, lack of emulsions, use of disposable equipment, and reduced consumption of organic solvents.  相似文献   

2.
Influence of organic matter and pH on bentazone sorption in soils   总被引:4,自引:0,他引:4  
Bentazone (3-isopropyl-1H-2,1,3-benzonthiadiazain-(4)3H-one 2,2-dioxide) is a postemergence herbicide which is used extensively worldwide, especially in China. The sorption of bentazone in various types of soils and extracted humic acids was investigated using a batch equilibration technique. Significant linearity was observed in sorption isotherms in five different types of soil, with distribution coefficients (K(d)) that varied between 0.140 and 0.321 mL g(-1). The distribution coefficient was determined to be a function of organic matter and pH in the soil. A model based on distribution coefficients was developed to predict bentazone sorption in soils. The organic matter-normalized partition coefficients for the neutral and anionic forms of bentazone were 370.3 and 2.40 mL g(-1), respectively. Hence, more attention should be given to the potential leaching problem when bentazone is applied in soils containing low organic matter and high pH.  相似文献   

3.
A method was developed for the simultaneous extraction and analysis of the insecticides indoxacarb and thiamethoxam from five Hawaiian soils. Using pressurized fluid extraction followed by liquid chromatography, optimized recoveries from the five soils were obtained ranging from 80% +/- 5 to 101% +/- 10 for thiamethoxam, and 83% +/- 6 to 106% +/- 7 for indoxacarb. Aging studies also showed strong binding of indoxacarb to all soils tested after 30 days, while thiamethoxam remained quite available for extraction during the length of the study (90 days). Freundlich constant (K(f)) and empirical value (n) for thiamethoxam sorption on Lihue soil were 0.007391 mmol((1-1/)(n)).L(1/)(n).g(-1) and 1.1377, respectively; K(f) and n were 0.007844 mmol((1-1/)(n)).L(1/)(n).g(-1) and 0.8473, respectively, on Wahiawa soil. The organic carbon adsorption constant (Koc) of thiamethoxam was 0.53 in Lihue soil and 0.23 in Wahiawa soil.  相似文献   

4.
Before wood ash can be safely used as a fertilizer in soils, possible negative effects such as input of organic contaminants or remobilization of contaminants already stored in the soil must be investigated. The objective of this study was to optimize and characterize extraction methods to isolate and quantitatively measure polycyclic aromatic hydrocarbons (PAHs) concentrations in wood ash that can be used as amendment of soils. It will be then possible to examine the effects of wood ash application on PAHs concentrations in the washing waters with the aim of evaluating their distribution by storage in the different compartments and what influences their stability and persistence. Simple, rapid and inexpensive methods have been set up for the determination of seven polycyclic aromatic hydrocarbons (PAHs) in wood ashes and ash aqueous extracts without interferences from other chemical contaminants using organic solvent extraction and/or SPE techniques and analyzed by an optimized RP-HPLC-FLD method. The feasibility of extraction for the determination of PAHs in wood ashes has been evaluated because PAHs are strongly sorbed to such a matrix, which explains why the PAHs content in ash was seldom studied. The method resulted to be of recoveries ranging from 81 to 97% for the different PAHs, with repeatabilities (RSDs%) better than 6%. Detection levels were from 0.2 to 2.2 microg/kg, while quantification limits were from 0.7 to 5.6 microg/kg, low enough to evaluate the presence of PAHs in wood ashes.  相似文献   

5.
A robust multi-residue procedure is needed for the analysis of the pro-herbicide isoxaflutole and its degradates in soil and plant materials at environmentally relevant (<1 microg kg-1) levels. An analytical method using turbo-spray and heat-nebulizer high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the analysis of isoxaflutole (IXF) and its two metabolites, diketonitrile (DKN) and the benzoic acid metabolite (BA), at sub-microgram per kilogram levels in soil and plant samples. The average recoveries of the three compounds in spiked soil and plant samples ranged from 84 to 110% and 94 to 105%, respectively. The limits of quantification were validated at 0.06 microg kg-1 for soil and 0.3 microg kg-1 for plant samples. The limits of detection (LOD) for soil analysis were 0.01, 0.002, and 0.01 microg kg-1 for IXF, DKN, and BA, respectively. Corresponding LOD for the plant analysis method were 0.05, 0.01, and 0.05 microg kg-1. The developed method was validated using forage grass and soil samples collected from a field lysimeter study in which IXF was applied to each of four forage treatments. Forage plants and soils were sampled for analyses 25 days after IXF application to the soil. In soils, IXF was not detected in any treatment, and DKN was the predominant metabolite found. In forage plants, the concentrations of DKN and BA were 10-100-fold higher than that in soil samples, but IXF was not detected in any forage plants. The much higher proportion of BA to DKN in plant tissues (23-53%), as compared to soils (0-5%), suggested that these forages were capable of detoxifying DKN. The developed methods provided LODs at sub-microgram per kilogram levels to determine the fate of IXF and its metabolites in soils and forage plants, and they also represent considerable improvements in extraction recovery rates and detection sensitivity as compared to previous analytical methods for these compounds.  相似文献   

6.
The fate of benzofenap [2-[4-(2,4-dicholoro-m-toluoyl)-1,3-dimethylpyrazol-5-yloxy]-4'-methylacetophenone] applied to flooded rice was studied at two locations in New South Wales (Australia). Solid-phase extraction (SPE) was compared with liquid-liquid extraction (LLE) for the determination of the commercial chemical in water samples. SPE performed well as compared to LLE (84 vs 80%) in irrigation waters. However, at the lower end of the concentration range (3 microg/L), LLE achieved higher recoveries than SPE (72 vs 59%). Rates of dissipation (DT50) from floodwaters and soils were measured. Dissipation of the herbicide from water and soil occurred fairly erratically in both mediums and can be best explained by a first-order decay process. The DT50 value for benzofenap was <1 day in irrigation water due to rapid deposition of the suspension concentrate formulation. The DT50 in surface soil was 44 days. The maximum measured concentration of benzofenap in a rice field floodwater was 39 microg/L, taking approximately 32 days to dissipate to <1 microg/L.  相似文献   

7.
We developed and validated three different sample preparation and extraction methods followed by HPLC-MS/MS (negative electrospray ionization) analysis for the quantification of estrogenic isoflavones (formononetin, daidzein, equol, biochanin A, and genistein) and coumestrol in red clover, soil, and manure. Plant and manure samples were solid-liquid extracted, whereas soil was extracted with accelerated solvent extraction. Absolute recoveries were between 80 and 93%, 20 and 30%, and 14 and 91% for plant, soil, and manure samples, respectively. Relative recoveries ranged from 75 to 105% for all matrices, indicating that isotope-labeled internal standards (13C?-formononetin, 13C?-daidzein, 13C?-equol, 13C?-biochanin A, and 13C?-genistein) were capable to compensate for losses during analysis. The limits of detection in red clover, soil, and manure were 3-9 μg/g(dryweight(dw)), 0.6-8.2 ng/g(dw), and 34.2 ng/g(dw) to 17.0 μg/g(dw), respectively. Formononetin was the most dominant compound in red clover plants (up to 12.5 mg/g(dw)) and soil (up to 3.3 μg/g(dw)), whereas equol prevailed in manure (up to 387 μg/g(dw)).  相似文献   

8.
Pressurized fluid extraction (PFE) is a new sample extraction method operated at elevated temperatures and pressures with liquid solvents. The use of PFE was investigated for the extraction of four Hawaiian clayey soils fortified with the selected chloroacetanilide and nitrogen heterocyclic herbicides Alachlor, Bromacil, Hexazinone, Metribuzin, and Tebuthiuron. The effects of operation temperature, pressure, flush volume, and static cycles on PFE performance were studied. Water was the most effective modifier of PFE for quantitative recoveries of the five herbicides in soils. The simple extraction method required pretreatment of the soil with 37.6% water and subsequent two-static-cycle extraction with a total of 32 mL of acetone at 1500 psi and 100 degrees C. Average recoveries of Alachlor, Bromacil, Hexazinone, Metribuzin, and Tebuthiuron ranged from 93 to 103% by the water-assisted PFE, compared with only 68-83% recoveries of the corresponding chemicals when no water was used. The extraction time and total organic solvent consumption were reduced from 18 h and 300 mL by Soxhlet to 22 min or less and 80 mL or less of organic solvent by PFE.  相似文献   

9.
An ETAAS method was validated to quantify total Cr and Cr(VI) in mushrooms and the underlying soils. The method includes a sample pretreatment for total Cr dissolution using a wet acid digestion procedure and a selective alkaline extraction for Cr(VI). The limits of detection were, expressed in microg/L, 0.15 and 0.17 for total Cr and Cr(VI), respectively. The linearity ranges under the optimized conditions were 0.15-25.0 and 0.17-20.0 microg/L for total Cr and Cr(VI), respectively. The limits of quantification were, expressed in microg/g of dry weight, 0.0163 and 0.0085 for total and hexavalent chromium, respectively. The precision of the instrumental method for total Cr and Cr(VI) was lower than 1.6%, and for the analytical method, it was lower than 10%. The accuracy of the method for Cr(VI) quantification was evaluated by the standard additions method, with the recoveries being higher than 90% for all of the added concentrations. For total Cr, certified reference materials (lichen CRM 482 and soil sample NCS ZC73001) were used. An interference study was also carried out in a mushroom simulated matrix, and it was verified that the deviations of the expected values were lower than 4.0% for both total Cr and Cr(VI). The validated method was applied to the evaluation of total Cr and Cr(VI) in 34 wild mushrooms and 34 respective underlying soil samples collected in two different regions of Portugal (Beira Interior and TrAs-os-Montes), with different locations regarded as noncontaminated or contaminated areas. The species were identified by a mycologist and subdivided into 10 genera and 15 species: Amanita (rubescens, muscaria, and ponderosa), Boletus (regius), Lactarius (deliciosus, vellereus, and piperatus), Suillus (granulatus and luteus), Tricholoma (acerbum), Agaricus (sylvicola), Volvariella (gloiocephala), Lecopaxillus (giganteus), Macrolepiota (procera), and Psilocybe (fascicularis). The mean values found for total Cr were 1.14 and 1.11 microg/g of dry weight, and for Cr(VI), the mean values were 0.103 and 0.143 microg/g of dry weight for cap and stalk, respectively. For soils, the mean concentrations found were, for total Cr, 84.0 microg/g and, for Cr(VI), 0.483 microg/g. The bioconcentration factors (BCFs) based on dry weight for cap and stalk were determined, and the values found, for both total Cr and Cr(VI), were always <1, although for hexavalent chromium, the BCFs were 10 times higher than for total chromium.  相似文献   

10.
The sorption and desorption behaviors of four phenoxyalkanoic acid herbicides and their metabolites on four agricultural soils and soil particle size fractions were examined. Generally, there was a trend of increasing adsorption and decreasing desorption in the order mecoprop < MCPA < dichlorprop < 2,4-D. The significant increase in adsorption of the phenolic metabolites can be explained by their lower polarity and enhanced partition in the organic soil matrix. Estimation of sorption distribution coefficients from particle size fraction adsorption data was possible for a sandy soil and a silty Cambisol soil only. It is suggested that increasing steric demand, for example, molecular volume, and slight changes in the polarity of the compounds affect their adsorption properties. Comparison of adsorption and desorption data of structurally similar compounds obtained from a variety of soils allows investigation of structure-induced differences in sorption strength.  相似文献   

11.
A method was developed for extraction of weathered residues of atrazine and metolachlor from field soils; soils had last been treated with commercial formulations of the herbicides 8-15 months prior to sample collection. Maximum yields were obtained by batch extraction at 75 degrees C for 2-16 h with methanol-water (80 + 20) in a sealed vial. Hydrolysis or other decomposition reactions were minor or negligible, depending on the extraction time. This method is an improvement over published methods that are validated by spike recoveries; the proposed method gives 1.7-1.8 times higher yields compared to shaking for 2 h at room temperature, and 1.3-1.8 times higher yields compared to Soxhiet extraction. The reproducibility of the method was better than 12%. The results underscore the impact of nonequilibrium sorption of organic compounds on analytical methodology and emphasize the need to validate extraction methods with field samples.  相似文献   

12.
Eco-risk of an organic pollutant in soil is quite influenced by the property of the soil and contamination history. To evaluate the influence of these factors on the availability of organic pollutants, earthworm accumulation of pyrene in six different soils were studied in this paper used unaged and aged samples. Moreover, butanol extraction and supercritical fluid extraction (SFE) of pyrene in these samples were determined simultaneously, and the relationship between bioaccumulation and extraction by butanol and SFE before and after aging were investigated in order to find a rapid method to predict the bioavailability. The results showed that, for unaged samples, percentages of pyrene accumulated by the earthworms (Eisenia foetida), extracted by butanol and mild supercritical fluid were 1.9–18.5%, 41.8–50.8% and around 50%, respectively. Generally, the percentages of the earthworm accumulation decreased significantly and butanol extraction decreased slightly with the content of soil organic matter (SOM) in soils. Clay content might also influence pyrene availability when SOM content is smaller than 1%. However, mild SFE could not differentiate the availability of the pyrene in unaged soils. Both the bioavailability and the chemical availability of pyrene decreased significantly after aged in soils for 120 days, and the percentages of availability by the three test methods were 0.87–3.65%, 18.7–27.6% and 12.9–28.2%, respectively. A correlation relationship study of pyrene extractability by butanol and mild SFE with bioavailability to earthworm uptake for aged soils suggested that mild SFE was a better approach to predict the bioavailability of organic chemicals in field soils compared to butanol extraction.  相似文献   

13.
采用盆栽试验,研究了连续3年施用生物有机肥对3种土壤有机质组分、 棉花养分吸收量及产量的影响。结果表明,连续施肥3年后,不同有机质含量土壤的有机质组分含量、 棉花养分吸收量及产量均较不施肥有不同程度的提高。3种土壤随着施肥量的增加,土壤有机质总量和活性有机质组分(活性有机质、 中活性有机质、 高活性有机质)增加,活性有机质在3年后的增加幅度高于有机质总量,说明连续施用生物有机肥可以改善土壤有机质质量。高等、 中等有机质含量的土壤施用生物有机肥2030 g/kg时养分吸收量最大; 低等有机质含量的土壤在施用生物有机肥40 g/kg时养分吸收量最高。高、 中、 低等有机质含量的土壤棉花产量分别在施用生物有机肥20、 20、 40 g/kg时最大,较不施肥增加了54.05%、 37.15%、 104.08%。通过相关分析表明,随着土壤的本底有机质含量由高到低,有机质组分、 棉花养分吸收量及产量之间的相关性则越好,养分吸收量和产量存在极显著相关。  相似文献   

14.
The recovery of light hydrocarbon constituents from three soils using three kinds of extraction methods, conducted in duplicates, was evaluated. Higher molecular weight compounds were recovered at greater than 80% whereas the recoveries of benzene, toluene, ethylbenzene, and xylene were generally less than 50%. Using the most efficient extraction procedure, the average recovery of light hydrocarbon from a soil, was 78%. Increased soil moisture content decreased the extent of recovery. Methanol and 2-propanol showed similar extracting potential for light hydrocarbon from soil. The rate of hydrocarbon removal was faster when methanol was used as a solvent, but its efficiency was similar to 2-propanol. The batch and column extraction methods gave very similar results for both solvents. However, column extraction offered an advantage over the soxhlet and batch procedures by reaching equilibrium faster.  相似文献   

15.
Foraging on lettuce seeds and seedlings by horned larks (Eremophila alpestris) causes millions of dollars in losses to the California lettuce crop annually. Anthraquinone (AQ; 9,10-anthracenedione) has been shown to deter pest birds from consuming the seeds and seedlings of several plant species and was evaluated as a repellent to horned larks when applied to lettuce seedlings. A set of analytical methods using simple liquid extraction followed by high-performance liquid chromatography analysis were developed for the quantitation of AQ as technical material, as an active ingredient in a commercial formulation, and as a residue in lettuce plants. The methods were easy, reliable, and repeatable. AQ recoveries from control formulation fortified to concentrations of either 24 or 600 mg g(-)(1) were 99 (+/-1.2%) and 98% (+/-1.2%), respectively, with a control formulation method limit of detection (MLOD) of 0.50 mg g(-)(1). Control lettuce tissues from three growth stages were AQ-fortified to concentrations of 0.50 and 500 microg g(-)(1). The resulting AQ recoveries for the two fortification levels were 99 (+/-8.5) and 89% (+/-1.5%) for 11 day old seedlings, 95 (+/-2.6%) and 86% (2.1%) for 16 day old plants, and 92 (+/-1.4%) and 93% (+/-1.1%) for adult head lettuce cover leaves, respectively. The MLODs for the same three lettuce tissues were 0.055, 0.058, and 0.077 microg g(-)(1), respectively. These methods were used to quantify AQ residues from field-grown, treated lettuce and associated fortified quality control samples.  相似文献   

16.
There is no data currently available on acidic pesticides in the drinking water of Greece, although considerable quantities of them are in use. In this study, the occurrence of the six most important acidic herbicides in the drinking water of Greece was investigated. The target compounds studied include four chlorophenoxy herbicides, namely mecoprop, dichlorprop, MCPA and 2,4-D, and two other acidic herbicides, i.e. bromoxynil and bentazone. Analysis was carried out at a concentration level of 100 ng L?1 using capillary gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring (SIM). The method involved a pre-concentration with solid phase extraction and derivatization with pentafluorobenzyl bromide. Thirty-eight samples of drinking water from nine regions in Greece were screened. No herbicides were detected although fortification experiments with parallel water samples resulted in recovery rates better than 70%. The detection limits of the recovered compounds were found to be between 10 and 50 ng L?1.  相似文献   

17.
The ability to monitor multiple analytes from various classes of compounds in a single analysis can increase throughput and reduce cost when compared to traditional methods of analyses. This method for analyzing free (parent estrogen) and conjugated estrogens (metabolites) along with sulfonamides and tetracyclines utilizes a high pH (10.4) mobile phase with an ammonium hydroxide buffer for both positive- and negative-mode electrospray ionization. A single-step sample preparation by solid-phase extraction (SPE) was used to isolate and concentrate all analytes simultaneously. The analytical method was developed and validated for recoveries at 3 concentration levels for water and soil and produced recoveries of 42-123% and 21-105% respectively. Method detection limits ranged from 0.3 to 1.0 ng/L for water samples and 0.01 to 0.1 ng/g for soils. The method quantification limit ranged from 0.9 to 3.3 ng/L for water samples and 0.06 to 0.7 ng/g for soils. The single-point standard addition calibration procedure was validated across a linear range of MQL to 100 ng/L with ≥82% accuracy against a matrix matched standard curve. Furthermore, sorption of tetracyclines onto glassware was investigated and minimized by 10% using nitric acid-rinsed glassware, while separation parameters were further optimized based on retention time and signal responses. This method has been used for the quantification of estrogens, tetracyclines, and sulfonamides in soil and runoff waters with multiple compounds detected simultaneously in a single analysis.  相似文献   

18.
A simple and rapid method based on microwave-assisted extraction (MAE) coupled to gas chromatographic analysis was developed for the analysis of triazine (atrazine, cyanazine, metribuzine, simazine and deethylatrazine, and deisopropylatrazine) and chloroacetanilide (acetochlor, alachlor, and metolachlor) herbicide residues in soils. Soil samples are processed by MAE for 5 min at 80 degrees C in the presence of acetonitrile (20 mL/sample). Mean recovery values of most solutes are >80% in the 10 to 500 microg/kg fortification range with respective RSDs (relative standard deviations) < 20%. The limits of quantification (LOQ) and limits of detection (LOD) are 10 and 1 to 5 microg/kg, respectively. The method was validated with two types of soils containing 1.5 and 3.0% organic matter content, respectively; no statistically significant differences were found between solute recovery values from the two types of soils. The solute mean recovery values from freshly spiked (24 h aging) and spiked samples stored refrigerated for one week before processed were also not statistically different. Residue levels determined in field weathered soils were higher when soils were processed by MAE than with a comparison method based on flask-shaking of soil suspensions overnight. Extracts were analyzed by a gas chromatographic system equipped either with a thermionic (GC-NPD) or a mass spectrometric detector (GC-MS).  相似文献   

19.
In this study, using high-power low-frequency ultrasound, heated slurries with anionic surfactant sodium dodecyl sulfate (SDS) were treated to enhance desorption of DDT from soils with high clay, silt, and organic matter content and different pH (5.6?C8.4). The results were compared with DDT extracted using a strong solvent combination as reference. Slurry ranges from 5 to 20 wt.% were studied. For a soil slurry (10 wt.%) at pH 6.9 with 0.1% v/v SDS surfactant heated to 40°C for 30 min, desorption was above 80% in 30 s using 20 kHz, 932 W/L ultrasonic intensity without solvent extraction. Other soils gave lower desorption efficiency in the range 40?C60% after 30 s ultrasonic treatment. The percentage of organic matter, dissolved organic carbon, soil surface area, clay and silt percentage, and soil pH level were the key parameters influencing variations in desorption of DDT in the three soils in similar experimental conditions. DDT dissolution in SDS and soil organic matter removal employing the ultrasonic-enhanced organic matter roll-up mechanism emerged as the two best possible methods of DDT desorption. The method offers a practical, potentially low-cost alternative to high volume, costly, hazardous solvent extraction of DDT.  相似文献   

20.
Abstract

Rapid, methanol‐extraction techniques for fluometuron (N, N‐dimethyl‐N'‐[3‐(trifluoromethyl) phenyl] urea) and norflurazon (4‐chloro‐5‐(methylamino)‐2‐(3‐(trifluoromethyl)phenyl)‐3(2(H)‐pyridazinone) from fortified soils have been reported to attain >90% recoveries. Analytical methods involving chromatographic separation coupled with fluorescence detection have also been described. The objectives of this study were to describe an analytical method for the simultaneous detection of fluometuron and norflurazon using ultraviolet spectro‐scopy in soil leachates and extracts and to examine the influence of residence time on herbicide recovery from fortified soil. The analytical method requires a gradient HPLC system, a reverse‐phase C‐18 column, and ultraviolet spectroscopy at a wavelength of 240 nm. The method is characterized by high reproducibility (spike recovery and diluted sample results are generally within 10% of the expected herbicide concentrations), low limits of detection (less than 1 (μg/L in soil leachates and 20 μg/L in soil extracts, depending on organic carbon content), and an applicable concentration range of more than two orders of magnitude. The recovery of fluometuron and norflurazon from fortified soils was significantly influenced by equilibration time, loading rate, and soil type (assuming zero chemical degradation). Most significantly, as herbicide contact time with the soil increased, recovery decreased. Thus, herbicide recoveries determined in the laboratory may not provide a true measure of herbicide recoveries from field soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号