首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The chemical composition of baled silage frequently differs from that of comparable conventional silage. The extents of wilting, chopping, compaction and air infiltration potentially contribute to these differences in conservation characteristics. An experiment was organized in a 3 (0, 24 or 48‐h wilting to influence herbage dry‐matter content) × 2 (unchopped or chopped) × 2 (with or without compaction) × 2 (with or without air infiltration) factorial arrangement of treatments, to elucidate the relative effects of these factors on the conservation characteristics of ensiled grass. Dry‐matter content of herbage and infiltration of air had a greater effect on silage conservation characteristics than chopping and compaction. The main interactions were between wilting and air infiltration, wilting and compaction, and compaction and air infiltration. Air infiltration stimulated a secondary fermentation in the unwilted herbage, reflected in a large increase (P < 0·001) in clostridial activity. As wilting progressed, air infiltration facilitated yeast respiration of water‐soluble carbohydrates (WSC) and resulted in an increase (P < 0·001) in in‐silo fresh‐weight losses. Compaction reduced (P < 0·05) silage pore space and, as a result, the extent to which air could penetrate the silage mass. Compaction of the wilted herbage restricted respiration and was reflected in increased (P < 0·05) concentrations of WSC and in a reduction (P < 0·001) in fresh‐weight loss. The rapid achievement and maintenance of adequately anaerobic conditions is the primary requirement for baled silage. This study showed that failure to achieve this will lead to progressively greater losses, especially with drier herbage.  相似文献   

2.
Laboratory experiments with lucerne (Medicago sativa) have shown that maceration at cutting improves silage fermentation. Samples taken during wilting and after various ensiling periods were analysed for lactic acid bacteria (LAB) numbers and indices of silage fermentation. In Experiment 1, in which maceration was tested in unwilted and wilted lucerne, there was an additive effect of maceration and wilting on LAB numbers at ensiling, thus LAB numbers were approximately 108 colony-forming units (cfu) g?1 fresh crop for wilted, macerated forage compared with 103 cfu g?1 fresh crop for unwilted, unmacerated forage at ensiling. Initially, maceration reduced pH (P < 0·001) and increased lactic acid (unwilted comparison only; P < 0·001) and insoluble N (wilted comparison only; P < 0·001) concentrations. After 70 d ensiling, beneficial effects of maceration were associated only with the wilted silage. In Experiment 2, macerated lucerne was compared with unmacerated material, which was either ensiled after a wilting period of similar length or after wilting had proceeded to the same DM concentration as in the macerated forage. During wilting, LAB numbers were significantly higher in macerated than unmacerated forage (P < 0·05). This was also the case during the first 16 h of ensiling (P < 0·01). A decline in pH was observed earlier in macerated silage. Two days after ensiling, lactic acid concentration was higher in macerated silage (P < 0·05), but insoluble N concentration was not different. In a third experiment, unconditioned forage was compared with forages ensiled after regular conditioning or maceration. Although drying rate over 30 h was not influenced by degree of conditioning, LAB numbers during wilting increased with the degree of conditioning. In silages made from these treatments after 6 h wilting, there were no major effects on fermentation characteristics. In a fourth experiment, digestibility and voluntary intake of precision-chopped silage were measured in sheep and found not to be increased by maceration. It was concluded that maceration per se resulted in marginal improvements in fermentation; however, when maceration also increased DM concentration, fermentation was markedly improved. In these precision-chopped silages, maceration had no effect on intake or digestibility.  相似文献   

3.
Two 2×2 factorial experiments are described in which a bacterial inoculant being developed as a silage additive and containing a strain of Lacto-bacillus plantarum (Ecosyl, ICI plc) was evaluated at two harvests (18 July and 30 September 1985) of two swards (perennial ryegrass and permanent pasture) in difficult ensiling conditions. On each occasion erbage was ensiled with and without inoculant using two 0·5–t capacity steel tower silos per treatment. The contents of the two replicate silos per treatment were combined for feeding to cross-bred wethers in digestibility and metabolizable energy (ME) partition studies.
Overall, inoculated herbage declined in pH post-harvest at a faster rate than control herbage (p<0·001) and three out of the four inoculated silages had lower pH, ammonia-N, acetate and alcohol and higher residual soluble carbohydrate content (p<0·001) than control. Significantly higher digestibility of nutrients (P<0·05) was found in three of the inoculant-treated silages and these also had significantly higher ME values than control (P<0·001), (10·58 and 8·77 MJ kg tol DM−1 for the treated and untreated silages respectively). The use of inoculant on herbage of only moderate ensiling potential therefore, produced significant improvements in fermentation quality and feeding value over control.  相似文献   

4.
Various management practices (e.g. wilting, application of silage additives or adding a grass component) can be used to improve silage fermentation of pure red clover (Trifolium pratense L.). Therefore, the aim of this laboratory ensiling study was to investigate the effects of varying proportions of red clover and perennial ryegrass (100/0, 66/33, 33/66, 0/100) on silage quality during two consecutive years. In addition, two wilting levels [target dry matter (DM): 300 vs. 400 g kg?1] in combination with lactic acid bacteria (LAB) additives were tested. Herbage was ensiled, either untreated or inoculated with homofermentative LAB (low wilted) or homo‐ and heterofermentative LAB (high wilted). In most cases, lactic and acetic acid decreased as the proportions of ryegrass were increased. Data concerning ammonia‐N concentrations showed considerable differences between cuts and years. Silages treated with homofermentative LAB generally had high lactic acid and low final pH, whereas acetic acid and 1,2‐propanediol tended to be higher when homo‐ and heterofermentative LAB were applied. Inoculants had a positive effect on DM losses and ammonia‐N in only a few silages. Wilting decreased DM losses and fermentation acids at most cuts, irrespective of the grass/clover ratio in the herbage mixture. There was a strong year effect on the organic matter digestibility (DOM) of the silages. In conclusion, the optimal strategy for successful silage fermentation of red clover is the ensiling in mixtures with ryegrass. Furthermore, herbage should be wilted to a DM content of about 300–350 g kg?1. The application of LAB inoculants did not alter the DOM but did improve silage fermentation.  相似文献   

5.
The influence of harvest date of the primary growth of grass herbages on the microbial flora of herbage pre-conservation and haylage post-conservation was studied along with fermentation variables and aerobic stability of haylage. The primary growths of two grass swards, one intensely (Int) and one extensively (Ext) managed, were cut at three different harvest dates (May, June, August) and ensiled in laboratory silos for 120 d. Later harvest dates resulted in increased counts of yeast, mould and enterobacteria in the pre-conserved herbage ( P  <   0·001). Counts of lactic acid bacteria (LAB) ( P  <   0·001) and number of mould species ( P  <   0·001) were highest in the pre-conserved herbage harvested in August. Later harvest dates resulted in higher yeast ( P  <   0·001) and LAB ( P  <   0·001) counts in the haylage while counts of enterobacteria decreased ( P  <   0·001). Clostridial spore counts were unaffected by harvest date both in herbage and haylage. The haylage harvested in August had the lowest pH and the lowest concentration of ethanol but the concentration of lactic acid was in general low. Aerobic stability was longer ( P  <   0·01) for haylage from herbage harvested in August compared with haylage from herbage harvested in May and June. Sward type had less influence than harvest date on microbial variables in herbage and haylage and on fermentation variables of haylage, and did not influence the aerobic stability of haylage.  相似文献   

6.
This work investigated the range of fatty acid concentrations in grass silages made from the regrowth of perennial ryegrass Lolium perenne using different techniques involving combinations of shading of the crop before cutting, wilting and the use of chemical additives. The effects of the different silage additives on overall fermentation were large, with many of the formic acid and formalin-treated silages having a very restricted fermentation. Nonetheless, effects on levels and proportions of fatty acids were numerically small. The major differences between silages were generated during field operations (shading and wilting), with little further changes in fatty acids within the silage clamp. The extended wilt had the most dramatic effect on fatty acids with a marked reduction in both total fatty acids (24·6 vs. 17·5 g kg−1 dry matter; s.e.d. = 0·65, P  < 0·001) as well as in the proportion of total fatty acids as α-linolenic acid (C18:3 n -3; 0·55 vs. 0·48; s.e.d. = 0·013, P  < 0·01). Shading the grass with a black plastic sheet for 24 h before cutting had a similar effect.  相似文献   

7.
Determination of microbial protein in perennial ryegrass silage   总被引:1,自引:0,他引:1  
The microbial matter fraction was determined in perennial ryegrass silages of different dry-matter (DM) contents, ensiled with or without Lactobacillus plantarum . 15N-Leucine and the bacterial cell wall constituent diaminopimelic acid (DAPA) were used as markers for microbial-N. Perennial ryegrass crops with DM contents of 202, 280 or 366 g kg−1 fresh weight were ensiled in laboratory-scale silos and stored for 3 to 4 months. At different times after ensiling, silages were analysed and microbial fractions were isolated. Microbial-N concentration determined with 15N-leucine reached a maximum during the first week of ensilage. It remained unchanged thereafter, except in silage with a DM content of 280 g kg−1 in which it decreased ( P  < 0·01) by 32% during storage. After 3 to 4 months ensilage, microbial-N concentration varied from ≈0·3 to ≈1·7 g kg−1 DM. A negative relationship was observed between microbial-N concentration and silage DM content. Inoculation resulted in an approximately twofold increase ( P  < 0·001) in microbial-N concentration. Microbial-N concentrations determined with DAPA were 1·14–2·07 times higher than those determined with 15N-leucine. However, 19–35% of the DAPA in silage occurred in a soluble form, indicating that this fraction of DAPA was not associated with intact bacteria.  相似文献   

8.
Abstract Two experiments were carried out in consecutive years to examine the influence of cutting date and restricting fermentation by carboxylic acid treatment on the nutrient intake from grass silage by beef cattle. In year 1, four cutting dates during July and August after a primary growth harvest and, in year 2, five cutting dates of primary growth between mid‐May and early July were examined. Herbage was ensiled either untreated or treated with high levels of acid additive (‘Maxgrass’, mean 8·6 l t?1). Ninety‐six (year 1) or forty‐eight (year 2) continental cross steers were used in partially balanced changeover design experiments with each silage type either unsupplemented or supplemented with 4·5 (year 1) or 5·5 (year 2) kg concentrates head?1 d?1. Silage digestibility declined significantly between initial and final harvest dates (P < 0·001), whereas silage dry‐matter (DM) and digestible energy (DE) intakes were significantly higher in the initial compared with final harvest dates in both years of the study (P < 0·01). Similarly, silage DM and DE intakes, and total DM intakes, of acid‐treated and unsupplemented silages were greater than those of untreated and concentrate supplemented silages, respectively (P < 0·001). The results indicate that earlier cutting dates, and addition of acid to herbage before ensiling, can increase silage DM intake by beef cattle.  相似文献   

9.
Herbage, predominantly perennial ryegrass (Lolium perenne) grown in Northern Ireland, was harvested at four dates from June to October 1996 (H1, H2, H3 and H4). At each harvest approximately one-fifth of the grass harvested was artificially dried and pelleted (G). The remainder of the grass was either wilted for 28–52 h (W), depending on the weather conditions, or ensiled directly, i.e. unwilted (UW). Within the W and UW treatments an inoculant or formic acid additive was applied to the herbage before ensiling. After a minimum ensiling period of 10 weeks, sixty steers, mean initial live weight 432 (s.d. 37) kg, were offered the twenty forages in a four-period partially balanced changeover design experiment. Each period was of 2 weeks’ duration. Dry-matter (DM) intakes were recorded daily, with intakes in the second week of each period used in the statistical analysis of the data. The digestibility of each of the forages was also determined in vivo using four castrated male sheep per silage. Wilting increased the DM content of the silage and the pH, the largest increase in DM content occurring at the second harvest. On average, wilting proportionally increased silage DM intake by 0·21 compared with the unwilted silage (P < 0·001), but the intake of the wilted silage was not significantly different from that of the artificially dried and pelleted grass (P > 0·05). The intake of the wilted silage was higher than that of the unwilted silage at each harvest, the proportional increases being 0·22 (P < 0·001), 0·41 (P < 0·001), 0·19 (P < 0·001) and 0·05 (P > 0·05) at harvests H1, H2, H3 and H4 respectively. Treatment of the grass with formic acid before ensiling resulted in a proportional increase in silage intake of 0·08 compared with the inoculant-treated silage (P < 0·05). Compared with the inoculant-treated silage, formic acid increased silage intake by 0·08, 0·02, 0·14 and 0·10 at harvests H1 (P > 0·05), H2 (P > 0·05), H3 (P < 0·01) and H4 (P < 0·05). The results of this study indicate that the effect of wilting on silage intake varies across different harvests and additive treatments. The difference in response to wilting across different harvests is mainly a result of the prevailing weather conditions during wilting.  相似文献   

10.
The effect of spreading mown perennial ryegrass (Lolium perenne) herbage over the total ground area on water loss during field-wilting was compared with leaving herbage in swaths (three swaths put together into one, occupying 0·18 of ground area) in three experiments. Spread crops were not tedded during wilting but were rowed up immediately before harvest. In all experiments, conventional silage-making equipment was used on a field scale. Feeding value was assessed with lactating dairy cows and growing heifers (Experiment 1) and sheep (Experiment 3). The periods of field wilting were 48 h (Experiment 1), 24 h (Experiment 2) and both 24 h and 48 h (Experiment 3). Spreading the crop was associated with larger increases in loss of water in all three experiments compared with leaving grass in swaths. Losses of dry matter (DM) during wilting were similar in Experiment 2 but were higher for the swathed crop wilted for 48 h than for 24 h in Experiment 3. Spreading resulted in restricted fermentations associated with higher crop DM contents at ensiling. In Experiment 1 the concentrations of DM, ash and water-soluble carbohydrate in silage were higher (P < 0·001) for spreading the crop and the concentrations of crude protein and neutral-detergent fibre were lower (P < 0·05) than for swathed material. In Experiment 3, spreading was associated with higher concentrations of water-soluble carbohydrates and ethanol and lower concentrations of fermentation acids, ammonia-N and neutralizing value in silage. Voluntary DM intake of silage by dairy cows and heifers was higher for spread than for swathed material (P < 0·05), but in Experiment 3 (sheep) there were no significant differences between treatments in voluntary intake of DM. The increased intake by dairy cows of silage from spread herbage was reflected in increased concentrations of milk fat (P < 0·01) and protein (P < 0·05) but not in milk yield (P > 0·05). It is concluded that spreading herbage during field wilting prior to ensiling accelerates water loss and has the potential to improve the feeding value of the ensiled product.  相似文献   

11.
Seven laboratory-scale experiments were carried out to study the effects of cellulases/hemicellulases on silage fermentation of herbage from mixed swards of timothy ( Phleum pratense ), meadow fescue ( Festuca pratensis ) and red clover ( Trifolium pretense ). Enzyme-treated silage (approximately 3500 HEC units kg−1 grass) reached a low pH sooner, had lower end pH, contained less NH3-N and more lactic acid than did the untreated silage ( P < 0·05). Applied with an inoculant, these effects were even stronger. With easily ensiled crops (experiments 1, 2, 5 and 6) preservation was first of all improved by inoculation of lactic acid bacteria; however, for the low-sugar crops (experiments 3, 4 and 7) enzyme treatment was more significant. The enzymes derived from Aspergillus spp. gave more acetic acid than the enzymes from Trichoderma reesei. The Trichoderma enzymes liberated 4·8 g WSC kg−1 FM gamma-irradiated grass during 60 d at pH 4·3 ( P < 0·05). On average, for all silages enzyme treatment increased the sum of residual sugar and fermentation products by 3·7 g kg−1 FM (21 g kg−1 DM) compared with the silages not treated with enzymes ( P < 0·001). Enzyme treatment increased the instantly degradable part of the feed, but total in sacco and in vitro digestibilities were not affected.  相似文献   

12.
This experiment quantified the effects of: (i) heading date of perennial ryegrass, (ii) grazing frequency in spring and (iii) date of silage harvest, on the ensilability of herbages harvested for silage, and on the conservation and estimated nutritive value of the resultant silages. Replicated field plots with two perennial ryegrass mixtures (intermediate‐ and late‐heading cultivars) were subjected to three spring‐grazing regimes (no grazing, grazing in late March and grazing in both late March and late April) and were harvested on four first‐cut harvest dates between 20 May and 21 June. Herbage from each of the four replicates of these 24 treatments was precision‐chopped and ensiled unwilted and with no additive in laboratory silos. Herbage from the sward with the intermediate‐heading cultivar had a higher (P < 0·001) dry‐matter (DM) content and buffering capacity than that from the late‐heading cultivar, whereas water‐soluble carbohydrate concentrations increased (P < 0·001) with more frequent grazing in spring. Later harvesting enhanced herbage ensilability through an increased (P < 0·001) DM content and reduced (P < 0·001) buffering capacity and pH. Fermentation profiles of the silage were not markedly influenced by the cultivar mixture used but grazing in both late March and late April resulted in a more extensive fermentation with the acids produced increasingly dominated by lactic acid. The concentrations of acetic acid, and to a lesser extent, ethanol declined as silage harvest date was delayed. Overall, the relative effects of grass cultivar mixture were smaller than those of spring‐grazing treatment or silage‐harvesting date although on any given harvest date the herbage from the intermediate‐heading cultivar mixture was easier to preserve as silage than herbage from the late‐heading cultivar mixture. Delaying the harvesting of the late‐heading swards by 8 d removed the differences related to growth stage in buffering capacity, pH and DM content.  相似文献   

13.
Sixty multiparous, Holstein–Friesian pregnant dry dairy cows were allocated to three forage treatments ( n  = 20; fodder beet, kale or grass silage) at two feeding allowances ( n  = 30; high and low) for 70 (s.e. of mean, 16) d before parturition. Cows offered the high feeding allowance were offered 9 kg of dry matter (DM) of kale or fodder beet grazed in situ plus 5 kg DM of baled grass silage daily or clamp grass silage ad libitum offered indoors. Cows offered the low feeding allowance were offered 6 kg DM of kale or fodder beet grazed in situ plus 3·5 kg DM baled grass silage daily, or 9·5 kg DM of clamp grass silage daily offered indoors. After calving, all cows received a daily allowance of 14 kg DM perennial ryegrass herbage at pasture plus 4 kg concentrate cow−1 for the first 35 d of lactation. Cows offered grass silage had a greater increase in body condition score pre-partum compared to those offered kale or fodder beet. Cows offered fodder beet pre-partum had a greater milk solid and solids-corrected milk yield in the first 35 d of lactation than those offered kale and grass silage pre-partum. Offering fodder beet and kale pre-partum increased plasma non-esterified fatty acid concentrations pre-partum relative to offering grass silage. Offering kale pre-partum resulted in higher insulin-like growth factor-1 concentration post-partum but lower plasma copper concentration pre-partum and at calving than kale or grass silage. Offering the higher forage allowance pre-partum resulted in a higher plasma calcium concentration at calving and higher plasma non-esterified fatty acid concentration post-partum.  相似文献   

14.
The fatty acid (FA) concentration of herbage and lipid metabolism in silage, mainly oxidation and lipolysis, of different species (perennial ryegrass, red clover and white clover) and three cultivars of white and red clover at three cutting dates in the growing season (April, July and October) were studied. FA concentration and composition was strongly affected by species and cutting date. Perennial ryegrass had lower concentrations of C16:1, C18:0, C18:1 and C18:2 than red and white clover. Within red and white clover, the effect of cultivar was small. Oxidation of C18:3 during wilting was different between species and cutting date despite similar wilting conditions. Lipolysis in silage was also influenced by cutting date, species and to some extent by cultivar. Furthermore, in some cuts silages of red and white clover displayed a lower lipolysis than silage of perennial ryegrass. On average, over the three cutting dates proportionately 0·903, 0·864 and 0·857 of the membrane lipids in perennial ryegrass, red clover and white clover were hydrolysed during ensiling. In red clover this could be due to the lipid-protecting properties of polyphenol oxidase (PPO) activity. This was not observed in perennial ryegrass or white clover. Nevertheless, differences in lipolysis in silage between cultivars of red clover were not correlated with PPO activity.  相似文献   

15.
Wilting grass prior to ensiling generally increases the dry matter (DM) intake but the effect of wilting on animal performance is still poorly understood. There is a need to improve understanding of the effects of wilting on the nutritional components and chemical composition of grass silage. This study focused on the effects of the extent and rate of wilting on N components of grass silage. Meadow grass was wilted to four DM contents (200, 350, 500, 650 g kg?1) at two different rates (fast, slow), creating a total of eight silages. Crude protein (CP) fractions were measured using the Cornell Net Carbohydrate and Protein System. Utilizable CP at the duodenum (uCP), a measure of feed protein value, was estimated using the modified Hohenheim gas test. Ruminally insoluble, undegraded feed CP (RUP) was measured using an in situ technique. Amino acid (AA) composition prior to and after rumen incubation was also investigated. Utilizable CP at the duodenum, RUP and true protein fractions B2 and B3 were increased by rapid wilting and high DM content (DM > 500 g kg?1), although the increase with DM was only mild for uCP, probably due to lower ME content in the DM‐650 silages. Non‐protein‐N decreased with increasing DM and rapid wilting. The higher RUP content from both DM‐650 silages leads to a higher total AA content after rumen incubation. Treatment also influenced the AA composition of the ensiled material, but the AA composition after rumen incubation was similar across treatments. Rapid and extensive wilting (DM > 500 g kg?1) improved protein value and reduced CP degradability. Increased uCP may result in higher milk protein yield, while reduced degradability may reduce N lost from urinary excretion. The primary effect of wilting on post‐ruminal AA supply from RUP appeared to be quantitative, rather than qualitative.  相似文献   

16.
An experiment was carried out during 1982 in which the effects of three differing harvesting systems on the field losses occurring during the conservation of grass as silage were examined. The treatments were either (a) harvesting herbage directly by means of a flail harvester (unwilted flail, UF), or (b) pre-cu ing of herbage with a rotary drum mower and lifting using a precision-chop forage harvester with wilting (WP) and without wilting (UP). Herbage was harvested on 26 May, 21 July and 7 September 1982. The mean yields of herbage produced from plots harvested by the three systems were not significantly different, with dry ma er (DM) yields of 12470, 12300 and 12230 kg ha-1 for the UF, UP and WP treatments respectively. However, field losses with the UP and WP treatments were greater than with the UF treatment (P<0·01). As a result the yields of herbage ensiled with the UP and WP treatments, 11690 and 11320 kg DM ha-1 respectively, were significantly lower than with the UF treatment, 12710 kg DM ha-1 (P <0·05). Wilting of first cut herbage for a period of 72 h resulted in a significant reduction (P<0·05) in digestible organic ma er (DOM) concentration (determined in vitro), whereas small increases in DOM concentration were observed following wilting of second and third harvest material.
It is concluded that, even under favourable weather conditions, both pre-cutting and wilting of herbage prior to harvesting can result in considerable losses of nutrients in the field.  相似文献   

17.
Leymus chinensis is an important grass in China and Russia. Six lactic acid bacteria (LAB) strains (LB, LPL1, LPL2, LPL3, LCL and WH) from L. chinensis silage were screened and identified and their effects on fermentation quality were investigated. All six strains were grown at 6·5% NaCl and pH 4·00. Strains LPL1, LPL2 and LPL3 were identified as Lactobacillus plantarum, and LB, WH and LCL were classified as Lactobacillus brevis, Weissella hellenica and Lactobacillus casei respectively. The six isolated strains and a commercial inoculant (Lactobacillus buchneri) were added to L. chinensis for ensiling at densities of 500 and 600 kg m?3. The control was sprayed with the same volume of distilled water. The effects of the strains on fermentation quality after 45 d ensiling and aerobic stability during 8 d of exposure to air were evaluated. The 600 kg m?3 silage had lower pH, butyric acid, ammonia nitrogen content and coliform bacteria counts than the 500 kg m?3 density silage (< 0·05). The six isolated strains decreased pH, butyric acid content and increased lactic acid content, and all inoculants increased L. chinensis silage aerobic stability except LCL (< 0·05). The fermentation quality of L. chinensis silage increased with higher ensiling density. The LAB strains improved the fermentation quality, and high‐quality silage could be obtained at low ensiling density with the addition of the LAB strains. The strains improved the aerobic stability; Lb. buchneri and Lb. brevis showed the best performance.  相似文献   

18.
The effectiveness of the polyethylene stretch‐film barrier to air infiltration is the major factor affecting the preservation of silage in bales. Three separate experiments investigated the effects of the number of layers of stretch‐film cover, film colour, stretch extent, film type and frequency of bale handling on gas composition, surface mould growth and conservation characteristics of baled grass silages. Monitoring gas composition in bales during ensiling proved useful for assessing the success with which wrapped bales were stored anaerobically. Under good storage conditions the early stages of ensiling were characterized by the rapid reduction of O2 concentration in the bale and the creation of a CO2‐rich environment. However, wrapping bales in only two layers of stretch‐film failed to create the anaerobic conditions required for a successful fermentation and the inhibition of visible fungal growth. In contrast, a minimum of four layers of stretch‐film were required to achieve suitably anaerobic conditions, but the additional benefits of applying more layers were relatively small. Under temperate climatic conditions with moderate solar radiation, film colour had little effect on the gas composition in baled silage. Likewise, the extent of stretching applied to the film at wrapping and film type had no influence on gas composition, baled silage quality or mould development. However, frequent mechanical handling of bales after wrapping had a negative effect on gas composition and surface mould growth, and thus should be kept to a minimum.  相似文献   

19.
This study attempted to separate the effects of forage source and field microbiota on silage fermentation quality and aerobic stability. Single samples of grass, red clover and maize were used. Field microbiota was obtained by centrifugation of microbial suspensions of the three samples. The intact forages were dried and sterilized by heating at 60°C for 3 h + 103°C for 15 h, inoculated in a 3 (forage) × 3 (inoculum) design and reconstituted to a dry‐matter level of 400 g kg?1 before ensiling. After ensiling for 71 d, subsamples were subjected to an 8‐d aerobic stability test, which included temperature and pH measurements. Bacterial community analysis was performed on samples before and after ensiling by 16S rRNA gene amplicon sequencing. Forage source had a marked effect on the levels of lactic acid, acetic acid, ammonia‐N and 2,3‐butanediol, but microbiota source only affected the acetic acid concentration. The forage and microbiota as well as their interactions affected silage stability variables. The maize microbiota improved silage stability, whereas silages made from the maize forage had the poorest stability. Bacterial community analysis revealed higher abundance of lactic acid bacteria on the maize forage, with Lactococcus and Leuconostoc being the dominant genera. These preliminary results suggested that fermentation quality is mainly affected by forage source, whereas the aerobic stability is affected by both forage and field microbiota.  相似文献   

20.
Nutrient losses during the in-silo period were determined following the ensiling of grass using three differing harvesting systems. The treatments were either (a) harvesting herbage directly by means of a flail harvester (unwilted flail, UF) or (b) pre-mowing of herbage with a rotary drum mower and lifting using a precision chop forage harvester with wilting (WP) and without wilting (UP). Herbage was harvested and ensiled over the period 26–29 May 1982, and a good fermentation was achieved with all three silages. Losses of dry matter (DM), organic matter (OM) and crude protein (CP) during the in-silo period were greatest with the UF system, intermediate with the UP system and lowest with the WP system. Gross energy losses followed the same trend with losses (as a percentage of ensiled levels) of 18·6, 9·8 and 4·4% for the UF, UP and WP systems, respectively. Gross energy loss as effluent accounted for 24% and 22% of total gross energy ensiled for the UF and UP treatments. Patterns of effluent flow differed between the two unwilted silages with a higher peak flow rate with the UF material. Total effluent production at 354 ml (kg DM ensiled)-1 was greater for the UF material than for the UP material (288 ml (kg DM ensiled)-1). Nutrient loss through surface waste was similar for all three silages whereas gross energy losses arising through residual respiration, fermentation and gaseous loss amounted to 149%, 6·7% and 31% of that ensiled for the UF, UP and WP silages, respectively. The results of this study, taken in conjunction with those of an earlier study where field losses were assessed, indicate that recovery of gross energy during silage making was very similar for the UP and WP systems and only marginally greater than that recovered with the UF system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号