首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The study was carried out over a period of 1999–2003 in the Dupniański Stream catchment located in Silesian Beskid Mts. Region (Southern Poland). Analysis of the chemical composition of bulk precipitation, throughfall, stemflow, surface flow, soil water (horizontal + vertical and vertical penetration) and outflow water samples was performed. The complex data matrix with more than 3,000 observations of water reaction, major anions (F, Cl, NO3 , SO4 2−) and cations (NH4 +, Na+, K+, Ca2+, Mg2+, Fe2+, Mn2+ and Zn2+) were treated by regression modelling. The modelling approach took into account seasonal variability according to winter and growing season, as well as chronosequence of spruce stands. The retention of considerable levels of contaminants by the canopy, and their removal or washout from needles by rainfall caused changes in the concentration of anions and cations reaching the soil surface compared to the concentrations in bulk precipitation. In the youngest stand, most elements except NH4 +, SO4 2− and K+ were retained in the canopy, and even H+ ions were neutralized. In the older stands, most elements increased in net throughfall fluxes, and the acidity increased strongly. Soil water was slightly correlated with throughfall, while outflow water showed no correlations with the above ground water flows, and seemed to depend mostly of the bedrock.  相似文献   

2.
Bulk precipitation, throughfall, and stemflow samples were collected in Petrohan site (Western Balkan, Bulgaria), operating in the framework of the Long-Term Ecological Research network, during a 6-year period (1995–2000). This mountain area is characterized by the presence of beech and spruce forests (Fagus sylvatica L. and Picea abies (L.) Karst.) and is utilized for drinking water supply. All samples were analyzed for pH and major inorganic anions (Cl?, NO3 ?, and SO4 2?) and cations (Ca2+, K+, Mg2+, Na+, and NH4 +). Results show that bulk precipitation in this region is mainly acidic (pH = 5.1), and the dominant neutralization components in the rainwater are Ca2+ and NH4 +. As for Ca2+, K+, Mg2+, Cl?, and SO4 2?, they are not originated by marine source. Cluster analysis and principal component analysis were used for investigating the possible sources contributing to the chemical composition of the bulk precipitation and its possible modifications during the passing through beech and spruce stands. Results highlight that local and long-range transport-related anthropogenic sources and natural sources contribute to the anion and cation content of the bulk precipitation. The enrichment of the solution through the foliage made up of dry depositions is significant in both stands, but canopy leaching processes are much greater in the spruce forest, especially for Ca2+. As for the stemflow, it follows the same pattern as the throughfall, but N uptake and a strong K+ and Mg2+ leaching are observed mainly in the spruce stand.  相似文献   

3.
重庆酸雨区缙云山典型林分冠层酸雨淋洗特征   总被引:3,自引:1,他引:2       下载免费PDF全文
选取重庆缙云山的针阔混交林、常绿阔叶林、毛竹林、灌木林4种典型林分,观测酸性降水过程中林外雨、穿透雨及干流等林内水分转换分量中的主要离子含量变化,分析林分冠层对雨水化学组成的影响,结果表明:(1)降雨中的离子当量浓度大小依次是SO42->Ca2+> NH4+>Mg2+>K+>Na+>NO3-;(2)降雨经过林冠层后pH值降低,干流的酸化程度增加最大;(3)降雨经林冠层后离子浓度明显增加(除灌木林),穿透雨中通量增加最大的阴离子和阳离子分别为SO42-(2.19×103~6.47×103 eq·hm-2)和Ca2+(1.41×103~3.39×103 eq-hm-2),离子来源主要为大气沉降和植物分泌物或淋出;(4)同一离子在不同林分的干流和穿透雨中的通量变化不同,反映出不同林分冠层的离子交换性差异.在针阔混交林中,林下降雨净淋溶量大小顺序为SO42->Ca2+> NO3->K+>NH4+>Mg2+> Na+;常绿阔叶林为SO42-> Ca2+> K+>NO3-> NH4+> Mg2+ >Na+;毛竹林为Ca2+> SO42-> K+>NO3-> NH4+>Na+>Mg2+;灌木林为Ca2+> NO3-> K+> Na+>Mg2+> NH4+> SO42-.  相似文献   

4.
The chemistry and deposition pattern in bulk precipitation andthroughfall (TF) were examined and evaluated based on the 3-yearobservations in Shaoshan subtropical deciduous-conifer mixedforest in central-south China. The TF chemistry was notablychanged when passing through canopies, which probably was attributedto the dry deposition (DD) on leaf surface and the canopy exchanges.Base cations' (Ca2+, Mg2+ and K+) fluxes were significantlyenriched in TF, in particular for K+. The annual K+ canopy exchangewas 12 times larger than DD, and canopy exchange of Ca2+, Mg2+and K+ was four times as high as the DD. The canopy exchangeof base cations in association with weak acid accounted for28.4 per cent of total leached base cations, which was one ofthe important factors to modify the TF chemistry.  相似文献   

5.
Leaching of major ions from acid precipitation in a subtropical forest was examined based on an experiment in four sample sites in Shaoshan City, Hunan Province, China, from January 2001 to June 2002. Results clearly show that when rain passed through the canopy, pH increased and the evidence of ion uptake was presented for SO4 2−, NO3 , Mg2+ and NH4 + ions, especially of NH4 + and NO3 . The percentages of dissolved SO4 2−, Ca2+ and Mg2+ show a decreasing trend with increasing rainfall. Percentages of leaching Ca2+, K+ and Cl ions show an increasing trend as a function of increased pH values. The forest canopy in Shaoshan City has a strong effect on the uptake of SO4 2− and NO3 ions under acid rain conditions. The decreasing order of ions leaching in the forest canopy is as follows: K+ > Ca2+ > Cl > Mg2+ > SO4 2− > NO3 > NH4 + > Na+. __________ Translated from Scientia Silvae Sinicae, 2007, 43(7): 1–4 [译自: 林业科学]  相似文献   

6.
广州市酸雨对不同森林冠层淋溶规律的研究   总被引:20,自引:2,他引:20       下载免费PDF全文
1998年4月至1999年3月对广州市白云山马尾松林和常绿阔叶林、广州市龙眼洞马尾松林两试验点进行了酸雨的监测,并测定和分析了林内穿透雨物理量及化学量,旨在探讨酸雨对不同森林冠层养分淋溶规律的影响。结果表明:(1)广州市酸雨占次数的79.7%或占降雨量的95.1%。(2)酸雨通过林冠层后,pH值明显增加。(3)在马尾松林和常绿阔叶林中,某些单次降雨出现SO4^2-、NO3^-、NH4^+Al^3+、Na^+的负淋溶现象,说明森林对这些离子(特别是NO3^-、Aa^3+)具有吸收作用;阔叶林全年的NO3^-和Al^3+净淋溶为负值,说明阔叶林比马尾松林对这两种离子具有更强的吸收能力。(4)雨水酸度增加(即pH值减小),明显提高阳离子Ca^2+、Mg^2+、K^+和Na^+冠层淋溶面分率。(5)NH4^+、SO4^  相似文献   

7.
在六盘山香水河小流域的华北落叶松人工林样地,测定了2011年生长季降水转化过程中的大气降水、穿透水、干流、枯落物渗透水和主根系层(30 cm土层)土壤渗透水的pH值与多种阳离子的浓度及通量变化.结果表明:林外降水的pH值平均为7.13,转化为穿透雨和干流后降为6.73和6.00,转化为枯落物渗透水和土壤渗透水后回升为6.87和7.28.在降水转为由穿透雨和干流组成的林下降水后,绝大多数阳离子的浓度都不同程度地增大,但Zn2+浓度下降;虽然林冠截持使林下降水的数量减小,但由于雨水对林冠的离子交换及淋洗,林下降水的多数阳离子通量都比林外降水明显增大,K+、Mg2+、H+、Mn2+、Cu2+、Fe3+由林外的17.23、12.51、0.06、0.09、0.13、0.19 mmol·m-2分别上升到林下的141.87、32.93、0.10、0.68、0.24、0.56 mmol·m-2,但Na+、Ca2+、Zn2+的通量分别由林外的33.73、112.91、2.05 mmol·m-2减小为林内的30.70、75.75、1.10 mmol·m-2.在枯落物层渗透水中,绝大多数阳离子的浓度都不同程度地下降,仅Mg2+浓度微弱上升;受枯落物截持部分降水及雨水中阳离子与枯落物交换的影响,枯落物渗透水中所有阳离子的通量都比林下降水明显减小,K+、Na+、Mg2+、Ca2+、H+、Mn2+、Cu2+、Zn2+、Fe3+分别降至83.06、12.30、23.96、65.73、0.04、0.12、0.09、0.13、0.32 mmol·m-2.在主根系层土壤渗透水中,一些阳离子(K+、Mn2+、Cu2、Fe3+)的浓度下降,另一些阳离子(Na+、Mg2+、Ca2+、Zn2+)的浓度则上升,尤其Ca2+浓度显著上升;Na+、M2+、Ca2+、Mn2+、Zn2+的通量比枯落物渗透水增大,其值分别为37.49、62.83、202.41、0.22、1.05 mmol·m-2,但K+、Cu2+、Fe3+的通量比枯落物渗透水减小,其值分别为27.14、0.07、0.09 mmol·m-2.相对于林外降水的阳离子输入通量,林冠层对多数阳离子(除Na+、Ca2+、Zn2+)的通量为净淋出(增加)作用,枯落物层对多数阳离子(除K+、Mg2+、Mn2+、Fe3+)的通量为净固定(减少)作用,主根系层土壤对盐基离子(Na+、K+、Mg2+、Ca2+)和Mn2+的通量为净淋失(增大)作用,但对其他阳离子(H+、Cu2+、Zn2+、Fe3+)的通量为净固定(减少)作用.  相似文献   

8.
Forest precipitation chemistry is a major issue in forest hydrology and forest ecology. Chemical contents in precipitation change significantly when different kinds of external chemical materials are added, removed, translocated and transformed to or in the forest ecosystem along with precipitation. The chemistry of precipitation was monitored and analyzed in a 31-year-old Pinus tabulaeformis forest in the West Mountain of Beijing. Movement patterns of nutrient elements in hydrological processes can be discovered by studying this monitored data. Also, the information is useful for diagnosing the function of ecosystems and evaluating the impact of the environment on the ecosystem. Samples of rainfall, throughfall and stemflow were collected on the site. In the lab, Ca2+ and Mg2+ were analyzed by flame atomic absorption and K+ and Na+ by flame emission. NH4 +-N was analyzed by indophenol blue colorimetry and NO3 -N was analyzed by phenoldisulfonic acid colorimetry. The results showed that: 1) The concentration gradient of nutrient elements clearly changed except for Na+. The nutrients in stemflow were significantly higher than those of throughfall and rainfall as the precipitation passed through the P. tabulaeformis forest. The monthly patterns showed distinct differentiation. There are indications that a large amount of nutrients was leached from the canopy, which is a critical function of intra-ecosystem nutrient cycling to improve the efficiency of nutrient use. 2) The concentrations of NO3 -N and K+ changed more than those of the other nutrient elements. The concentration of NO3 -N in throughfall and stemflow was 4.4 times and 9.9 times higher than those in rainfall, respectively. The concentration of K+ in throughfall and stemflow was 4.1 times and 8.1 times higher than those in rainfall, respectively. 3) The leaching of nutrient elements from the stand was an important aspect of nutrient return to the P. tabulaeformis forest, which returned a total amount of nutrient of 54.1 kg/hm2, with the contribution of Ca2+ and K+ much greater than that of other elements. Also, K+ was the most active element in leaching intensity. 4) Nutrient input through precipitation was the main source in the West Mountain of Beijing and the amount of nutrient added was 66.4 kg/hm2, of which Ca2+ and N contributed much more than the other nutrient elements. When precipitation passes through the P. tabulaeformis forest, 121 kg/hm2 of nutrient is added to the forest floor. Ca2+ recorded the greatest nutrient increase, with 61.2 kg/hm2, followed by N (NH4 +-N and NO3 -N), K+ and Mg2+, with 31.3 and 16.5, and 8.11 kg/hm2, respectively. The least was Na+, 3.34 kg/hm2. Translated from Acta Ecologica Sinica, 2006, 26(7): 2,101–2,107 [译自: 生态学报]  相似文献   

9.
For the protection and promotion of biodiversity in forest edges and interiors, forest edge management practices are put forward like the creation of gradual forest edges (i.e., edges with a gradual increase of vegetation height from open area to forest, e.g., by means of a fringe, a belt, and a mantle). In this study, we tested the mitigating effect of gradual forest edges on the atmospheric deposition of inorganic nitrogen (N) and the potentially acidifying pollutants SO42−, NO3, and NH4+ (N + S). We conducted field experiments at three exposed forest edges in Flanders and the Netherlands and compared throughfall deposition at steep edges (i.e., edges with an abrupt transition from open area to forest) and at adjacent gradual edges. Along transects perpendicular to the edges, during three months in both winter and summer, throughfall deposition of Cl, SO42−, NO3, and NH4+ was monitored in the forest between 0 and 64 m from the edges and in the gradual edge vegetation. At the smoothest and best fitting gradual edge, the extra N + S throughfall deposition the forest received due to edge effects was lower than at the adjacent steep edge, with on average 80 and 100% in winter and summer, respectively. This was due to a halving of the depth of edge influence and an almost full reduction of the magnitude of edge influence. This decrease in throughfall deposition in the forest was not compensated by the additional throughfall deposition on the gradual edge vegetation itself, resulting in a final decrease in throughfall deposition in the forest edge by 60% in winter and 74% in summer. While this result confirms that gradual edges can mitigate edge effects on atmospheric deposition, the results of the other sites indicate the importance of size and shape of the gradual edge vegetation in mitigating edge effects on deposition: due to insufficient height (‘size’) or inadequate shape of the gradual edge vegetation, only small or insignificant decreases in throughfall deposition were observed. Hence, for mitigating edge effects on N + S and N deposition, our results support the recommendation of creating gradual edges at forests with poorly developed, abrupt edges, but it stresses the importance of a thorough consideration of the shape and size of the gradual edge vegetation in the design and management of gradual forest edges.  相似文献   

10.
Data have been compiled from published sources on nitrogen (N) fluxes in precipitation, throughfall, and leaching from 69 forest ecosystems at 50 sites throughout China, to examine at a national level: (1) N input in precipitation and throughfall, (2) how precipitation N changes after the interaction with canopy, and (3) whether N leaching increases with increasing N deposition and, if so, to what extent. The deposition of dissolved inorganic N (DIN) in precipitation ranged from 2.6 to 48.2 kg N ha−1 year−1, with an average of 16.6 kg N ha−1 year−1. Ammonium was the dominant form of N at most sites, accounting for, on average, 63% of total inorganic N deposition. Nitrate accounted for the remaining 37%. On average, DIN fluxes increased through forest canopies, by 40% and 34% in broad-leaved and coniferous forests, respectively. No significant difference in throughfall DIN inputs was found between the two forest types. Overall, 22% of the throughfall DIN input was leached from forest ecosystems in China, which is lower than the 50–59% observed for European forests. Simple calculations indicate that Chinese forests have great potential to absorb carbon dioxide from the atmosphere, because of the large forest area and high N deposition.  相似文献   

11.
Chemical characteristics of forest soils subjected to long-term deposition of alkaline and acid air pollutants were analysed in spruce (Picea abies (L.) Karst.) stands in eastern Germany. Three forest sites along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant were selected, representing high, intermediate, and low fly-ash input rates. Past emissions caused an accumulation of mineral fly-ash constituents in the organic layer, resulting in an atypically high mass of organic horizons of forest soils, especially in the F and H horizons. Total mass of organic layers at the site with heavy deposition loads was as high as 128 t ha–1, compared to 58 t ha–1 at the low input site. Fly-ash deposition significantly increased the pH values in the L, F and H horizons and mineral topsoil (0–10 cm). Significantly higher concentrations of NH4Cl-extractable cations (i.e. effective cation exchange capacities) and base saturations of >66% were found in the humic horizons at sites where the pH was increased due to the direct and indirect (i.e. higher proportions of deciduous trees) effects of fly-ash emissions. Stocks of basic cations were dominated by Ca2+ and decreased significantly along the fly-ash deposition gradient from 33.6 to 5.3 kmolc ha–1. Proportions of water-soluble basic cations out of the total potentially exchangeable (i.e. NH4Cl-extractable) basic cations generally increased in the forest soil with decreasing deposition loads following the cation exchange capacity and base saturation along the fly-ash gradient. Higher proportions of monovalent cations, such as K+ and Na+, were observed in the water extracts from fly-ash-affected forest soils, while the NH4Cl-extracts were dominated by bivalent cations, such as Ca2+ and Mg2+. These results suggest a greater leaching tendency for monovalent cations in these soils. Stocks of organic C and total N in the humus layer decreased from sites with high fly-ash deposition levels to sites with low levels, from 57.4 to 46.4 t C ha–1 and from 2.43 to 1.99 t N ha–1. The C/N ratios of the organic horizons varied from 22 to 25, revealing no distinct pattern along the fly-ash gradient. Measurements of hot-water-extractable and water-soluble organic C suggested a reduced availability or a faster decomposition of soil organic matter in soils with historically high fly-ash loads.  相似文献   

12.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

13.
麻竹人工林水文生态效应   总被引:4,自引:0,他引:4       下载免费PDF全文
在福建南靖连续4a对1995年春在杉木采伐迹地上营造的株行距为3m×4m、4m×5m和5m×6m3种密 度的麻竹试验林进行水文生态效应观测。结果分析表明:(1)麻竹林冠截持量与降水量和林分密度均呈正相关,而 秆茎流和林内降水量与降水量呈正相关,与林分密度呈负相关。密度为825丛·hm-2的麻竹林的年林冠平均截持 量和截持率为155.2 mm和14.61%,林内平均降水量和降水率为829.0 mm和78.11%,竹秆茎流量和茎流率为 77.3mm和7.31%。(2)麻竹林地表枯落物具有吸持其自身干质量2.8倍水量的潜在能力。(3)3种密度麻竹林的 0-60 cm土壤层最大潜在蓄水量为315.3-326.3 mm,略低于毛竹林367.9mm。(4)麻竹林地表径流和泥沙流 失量与降水量呈正线性相关,与林分密度呈负相关;竹林密度为825丛·hm-2的麻竹林年地表平均径流量、土壤侵 蚀模数是密度为330丛·hm-2的麻竹林的0.55、0.45倍,其NO3-、NH4 、PO43-、K 等养分年流失量则分别是密 度为330丛·hm-2的麻竹林的0.58、0.49、0.36、0.49倍。  相似文献   

14.
15.
Nitrate, ammonium, total dissolved nitrogen (TDN), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and flux were measured for one year in bulk deposition and throughfall from three stand types (upland deciduous, upland conifer and wetland conifer) on the Boreal Plain, Canada. Annual (November 2006 to October 2007 water year) flux rates in bulk deposition were 80, 216, 114 and 410 mg N m−2 for nitrate, ammonium, DON and TDN, respectively, and 3.5 g C m−2 for DOC. The nitrate and ammonium flux in throughfall were approximately 50% of the flux in bulk deposition, while TDN flux in throughfall was 60–74% of the flux in bulk deposition. The DOC flux in throughfall was approximately 2 times greater than DOC flux in bulk deposition, while there was no detectable difference in DON flux. The forest canopy generally had the most impact on throughfall chemistry during the active growing season as compared with the dormant season, although DOC concentrations in throughfall of deciduous stands was highest during autumn. For the upland stands, TDN flow-weighted mean concentrations in the snowpack were not detectably different from the concentrations in throughfall and bulk deposition throughout the rest of the year. However, ammonium concentrations were lower and DON concentrations were higher in the snowpack than in either throughfall or bulk deposition for the other seasons, suggesting some transformation of ammonium to DON within the snowpack.  相似文献   

16.
Despite growing attention to the role of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in forest nutrient cycling, their monthly concentration dynamics in forest ecosystems, especially in subtropical forests only were little known. The goal of this study is to measure the concentrations and monthly dynamics of DOC and DON in precipitation, throughfall and stemflow for two plantations ofSchima superba (SS) and Chinese fir (Cunninghamia lanceolata, CF) in Jianou, Fujian, China. Samples of precipitation, throughfall and stemflow were collected on a rain event base from January 2002 to December 2002. Upon collection, all water samples were analyzed for DOC, NO3 −N, NH4 +−N and total dissolved N (TDN). DON was calculated by subtracting NO3 −N and NH4 +−N from TDN. The results showed that the precipitation had a mean DOC concentration of 1.7 mg·L−1 and DON concentration of 0.13 mg·L−1. The mean DOC and DON concentrations in throughfall were 11.2 and 0.24 mg·L−1 in the SS and 10.3 and 0.19 mg·L−1 in the CF respectively. Stemflow DOC and DON concentrations in the CF (19.1 and 0.66 mg·L−1 respectively) were significantly higher than those in the SS (17.6 and 0.48 mg·L−1 respectively). No clear monthly variation in precipitation DOC concentration was found in our study, while DON concentration in precipitation tended to be higher in summer or autumn. The monthly variations of DON concentrations were very similar in throughfall and stemflow at both forests, showing an increase at the beginning of the rainy season in March. In contrast, monthly changes of the DOC concentrations in throughfall of the SS and CF were different to those in stemflow. Throughfall DOC concentrations were higher from February to April, while relatively higher DOC concentrations in stemflow were found during September–November period. Foundation item: This study was supported by the Teaching and Research Award program for MOE P.R.C. (TRAPOYT). Biography: Guo Jian-fen (1977-), female, Ph. Doctor in College of Life Science, Xiamen University, Xiamen 361005, P.R. China. Responsible editor: Zhu Hong  相似文献   

17.
Tropical montane cloud forest hydrology is complex because of the presence of epiphytic life-forms that increase canopy surfaces and fog persistency. Fog precipitation is a hydrological input common to cloud forests, and forms when fog droplets are intercepted by the canopy and fall to the forest floor. Interception and fog precipitation was determined for a 2100 m site and a 2550 m site in a first-order tributary of the Sierra de las Minas Biosphere Reserve, Guatemala by calculating the difference between throughfall and gross precipitation for a 44-week period. Both sites were situated within closed-canopy cloud forests. The 2100 m site was on the windward slope of Montaña de Miranda near the lower boundary of the cloud forest and the 2550 m site was at the summit. Fog precipitation was found during periods in which throughfall exceeds gross precipitation. Fog precipitation was greater at 2550 m than at 2100 m. Data collected by precipitation and throughfall gauges demonstrate the existence of seasonal fog precipitation with the greatest fog precipitation occurring in the dry season (November–April). Fog precipitation contributes approximately 1 mm per day to the hydrological budget of the cloud forest at 2550 m during the dry season, and 0.5 mm per day during the rainy season (May–October).  相似文献   

18.
Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen (N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropical Pleioblastus amarus bamboo forest ecosystems. An experiment with four N treatment levels (0, 50, 150, and 300 kg N ha?1 a?1, applied monthly, expressed as CK, LN, MN, HN, respectively) in three replicates. After 6 years of N additions, soil base cations, acid-forming cations, exchangeable acidity (EA), organic carbon fractions and nitrogen components were measured in all four seasons. The mean soil pH values in CK, LN, MN and HN were 4.71, 4.62, 4.71, and 4.40, respectively, with a significant difference between CK and HN. Nitrogen additions significantly increased soil exchangeable Al3+, EA, and Al/Ca, and exchangeable Al3+ in HN increased by 70% compared to CK. Soil base cations (Ca2+, Mg2+, K+, and Na+) did not respond to N additions. Nitrogen treatments significantly increased soil NO3?–N but had little effect on soil total nitrogen, particulate organic nitrogen, or NH4+–N. Nitrogen additions did not affect soil total organic carbon, extractable dissolved organic carbon, incorporated organic carbon, or particulate organic carbon. This study suggests that increasing N deposition could increase soil NO3?–N, reduce soil pH, and increase mobilization of Al3+. These changes induced by N deposition can impede root grow and function, further may influence soil carbon storage and nutrient cycles in the future.  相似文献   

19.
[目的]以大兴安岭地区兴安落叶松林为研究对象,分析降雨特征对兴安落叶松林降雨再分配过程中K~+的影响。[方法]对林外降雨、穿透雨、灌木穿透雨、树干径流和枯透水进行了野外观测、取样和室内实验测定。[结果]结果表明:(1)研究期间兴安落叶松林林外降雨总量为266.0 mm,平均次降雨强度0.074 mm·min~(-1);降雨再分配过程中K~+含量平均值排序为枯透水树干径流灌木穿透雨穿透雨林外降雨,其中林外降雨中K~+含量在0.227 2.631 mg·L~(-1)之间,变化幅度较大,穿透雨中K~+含量波动在2.198 3.053 mg·L~(-1)之间,枯透水中K~+含量波动较小,稳定在3.077 3.281 mg·L~(-1)之间。(2)降雨量和降雨历时对降雨再分配过程中K~+含量均表现为正相关,随降雨量和降雨历时的增加K+含量的增加幅度呈上升趋势;而降雨强度和降雨间隔期对K~+含量增加幅度的影响则反之,但当降雨强度大于0.041 mm·min~(-1)时,K+含量的增加幅度开始出现转折,呈上升趋势;当降雨间隔期增大至233.28 h时,K~+含量的增加幅度趋于稳定。(3)影响林外降雨中K~+含量的主导因子是降雨间隔期,影响穿透雨、灌木穿透雨和树干径流中K~+含量的主导因子均为林外降雨量,而对枯透水中K~+含量起主导作用的则为降雨强度。[结论]降雨量、降雨历时、降雨强度以及降雨间隔期均会对降雨再分配过程中各个层次的K~+含量产生不同程度的影响。降雨再分配过程中K~+含量平均值大小排序为枯透水树干径流灌木穿透雨穿透雨林外降雨,其中大气降雨中K~+含量在5月和9月较高,穿透雨中K~+含量在5—10月呈波动式变化,灌木穿透雨中K~+含量变化幅度较大,而树干径流和枯透水中K~+含量较稳定。降雨量和降雨历时对降雨再分配过程中K~+含量的影响均表现为正相关。对林外降雨中K~+含量影响程度由大到小排序依次为降雨间隔期降雨强度降雨历时降雨量,穿透雨中K~+含量与各影响因素的灰关联度大小顺序依次为降雨量降雨历时降雨强度降雨间隔期,灌木穿透雨和树干径流中K~+含量与各影响因素的灰关联度排序和穿透雨一致,影响的主导因子均为降雨量,枯透水中K~+含量与各影响因素的灰关联度大小顺序依次为降雨强度降雨间隔期降雨历时降雨量。  相似文献   

20.
We have observed acid fog in Mt. Oyama adjacent to the Kanto Plains in Japan, where acid fog under pH 3 has been frequently observed and natural fir forest (Abies firma) has been declining. We applied the simulated acid fog to the needles of fir twigs and the treatment removed calcium, boron, and cell-wall acidic sugars from the needles. We also observed high contents of calcium, boron, and acidic sugars in throughfall collected under the declining forest canopy. Ca++ and Mg++ ion leach via ion-exchange with major cations of fog-water and the amount of leached boron increased with the increase in the concentration of leached Ca++. The deficiency of calcium and boron by leaching could be one of the main causes of decline of the fir forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号