首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A field experiment was carried out to assess the effect of a combined treatment involving addition of Aspergillus niger-treated dry olive cake (DryOC) in the presence of rock phosphate, plus pre-transplant inoculation of seedlings with the arbuscular mycorrhizal (AM) fungi Glomus intraradices, Glomus deserticola or Glomus mosseae, on the establishment of Dorycnium pentaphyllum L., in a degraded semiarid Mediterranean area. Associated changes in soil labile C fractions, enzyme activities and aggregate stability were also observed. One year after planting, the combined treatment of fermented DryOC addition and inoculation with AM fungi, particularly with G. mosseae (on average 328% greater than control plants), had the strongest effect on the shoot biomass of D. pentaphyllum. Only the fermented DryOC addition increased assimilable P, total N and aggregate stability, the greatest increase being in the soil available P content (about four-fold higher than in the non-amended soil). Both the addition of fermented DryOC and the mycorrhizal inoculation treatments significantly increased enzyme activities of rhizosphere soil (dehydrogenase, protease-BAA, acid phosphatase and β-glucosidase). The microbially-treated DryOC proved to be an effective amendment for improving the soil quality which, in turn, enhanced the success of revegetation with mycorrhizal D. pentaphyllum seedlings.  相似文献   

2.
A field experiment was carried out to compare the effectiveness of inoculation with three arbuscular mycorrhizal (AM) fungi, namely Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of Aspergillus niger‐treated dry olive cake (DOC) in the presence of rock phosphate, in increasing root nitrate reductase (NR) and acid phosphatase activities, mycorrhizal colonization, plant growth and nutrient uptake in Dorycnium pentaphyllum L. seedlings afforested in a semiarid degraded soil. Three months after planting, both the addition of fermented DOC and the mycorrhizal inoculation treatments had increased root NR activity significantly, particularly the inoculation with G. deserticola (by 75 per cent with respect to non‐inoculated plants), but they had no effect on root acid phosphatase. Mycorrhizal inoculation treatments with G. deserticola or G. mosseae on their own were even more effective than the addition of fermented DOC alone in improving the growth and (NPK) foliar nutrients of D. pentaphyllum plants. The combined treatment involving the application of microbially‐treated agrowastes and mycorrhizal inoculation with AM fungi, particularly with G. mosseae, can be proposed as a successful revegetation strategy for D. pentaphyllum in P‐deficient soils under semiarid Mediterranean conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A field experiment was carried out to evaluate the effectiveness of mycorrhizal inoculation with three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge), and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and the addition of composted sewage sludge (SS) with respect to the establishment of Retama sphaerocarpa L. seedlings, in a semiarid Mediterranean area. Associated changes in soil chemical (nutrient content and labile carbon fractions), biochemical (enzyme activities), and physical (aggregate stability) parameters were observed. Six months after planting, both the addition of composted SS and the mycorrhizal‐inoculation treatments had increased total N content, available‐P content, and aggregate stability of the soil. Values of water‐soluble C and water‐soluble carbohydrates were increased only in the mycorrhizal‐inoculation treatments. Rhizosphere soil from the mycorrhizal‐inoculation treatments had significantly higher enzyme activities (dehydrogenase, protease‐BAA, acid phosphatase, and β‐glucosidase) than the control soil. In the short‐term, mycorrhizal inoculation with AM fungi was the most effective treatment for enhancement of shoot biomass, particularly with G. mosseae (about 146% higher with respect to control plants). The addition of the composted SS alone was sufficient to restore soil structural stability but was not effective with respect to improving the performance of R. sphaerocarpa plants.  相似文献   

4.
The effectiveness of reforestation programs on degraded soils in the Mediterranean region is frequently limited by a low soil availability and a poor plant uptake and assimilation of nutrients. While organic amendments can improve the nutrient supply, inoculation with mycorrhizal fungi can enhance plant nutrient uptake. A pot experiment was conducted in 2004 to study the influence of inoculation with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) or with a mixture of three AM fungi (G. intraradices, G. deserticola Trappe, Bloss. & Menge, and G. mosseae (Nicol & Gerd.) Gerd. & Trappe) and of an addition of composted sewage sludge or Aspergillus niger–treated dry‐olive‐cake residue on plant growth, nutrient uptake, mycorrhizal colonization, and nitrate reductase (NR) activity in shoot and roots of Juniperus oxycedrus L. Six months after planting, the inoculation of the seedlings with G. intraradices or a mixture of three AM fungi was the most effective treatment for stimulating growth of J. oxycedrus. There were no differences between the two mycorrhizal treatments. All treatments increased plant growth and foliar N and P contents compared to the control plants. Mycorrhizal inoculation and organic amendments, particularly fermented dry olive cake, increased significantly the NR activity in roots.  相似文献   

5.
Adequate soil structural stability favours the establishment and viability of a stable plant cover, protecting the soil against water erosion in desertified Mediterranean environments. We studied the effect of soil drying-rewetting, inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and addition of a composted organic residue on aggregate stabilisation of the rhizosphere soil of Juniperus oxycedrus. The AM fungi and composted residue produced similar increases in plant growth, independently of the water conditions. Under well-watered conditions, the highest percentages of stable aggregates were recorded in the amended soil, followed by the soil inoculated with AM fungi. Excepting microbial biomass C, the soil drying increased labile C fractions (water soluble C, water soluble and total carbohydrates), whereas the rewetting decreased significantly such C fractions. Desiccation caused a significant increase in aggregate stability of the rhizosphere soil of all plants, particularly in the amended and inoculated plants. In all treatments, the aggregates formed after soil drying were unstable, since, in the rewetting, they disappear, reaching the initial levels before soil drying. Our results suggest that the aggregation mechanisms developed by rhizosphere microbial community of the amended and inoculated plants under water stress can be particularly relevant in desertified soils exposed to long desiccation periods.  相似文献   

6.
《Applied soil ecology》2007,35(3):480-487
This study evaluated the interactions between the inoculation with an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, a plant growth-promoting rhizobacterium, Bacillus subtilis, and a filamentous soil fungus, Aspergillus niger, with respect to their effects on growth of lettuce plants and on indicators of biological soil quality (microbial biomass C, water-soluble C and carbohydrates and dehydrogenase, urease, acid phosphatase and benzoyl argininamide hydrolyzing protease activities). Water-soluble carbohydrates and microbial biomass were increased only in the rhizosphere soil of G. intraradices-plants. Rhizosphere soil from all microbial inoculation treatments had significantly higher dehydrogenase activity than the control soil, particularly in the soil inoculated with B. subtilis (about 21% higher than control soil). Inoculation with A. niger or B. subtilis increased significantly the urease, protease and phosphatase activities of the rhizosphere soil of the lettuce plants. The foliar P and K contents increased significantly with the B. subtilis or G. intraradices inoculation, alone or in combination. The most effective co-inoculation was observed in the combined treatment of inoculation with G. intraradices and B. subtilis, which synergistically increased plant growth compared with singly inoculated (about 77% greater with respect to the control plants).  相似文献   

7.
 The effect of the interaction between a vesicular-arbuscular (VA)-mycorrhiza (Glomus intraradices no. LAP8) and Streptomyces coelicolor strain no. 2389 on the growth response, nutrition and metabolic activities of sorghum (Sorghum bicolor) plants grown in non-sterilized soil amended with chitin waste was studied in a greenhouse over 8 weeks. Chitin amendment resulted in an increase in the microbial population and chitinase activity in soils. Growth of mycorrhizal G. intraradices no. LAP8 and non-mycorrhizal sorghum plants increased as compared with other treatments either in the presence or absence of S. coelicolor strain 2389. VA-mycorrhizal inoculation significantly increased the growth, photosynthetic pigments, total soluble protein and nutrient contents of sorghum compared to non-mycorrhizal sorghum. Such increases were related to increased mycorrhizal colonization. Inoculation with S. coelicolor 2389 significantly increased the intensity of mycorrhizal root colonization and arbuscular formation, but the levels of mycorrhizal infection and their beneficial effects were significantly reduced with the addition of chitin waste to the soil. Analysis of the content of total amino acids and ammonia in leaves on the basis of dry matter production showed that, in most instances, total amino acids of mycorrhizal plants were significantly higher than those of non-inoculated plants. The microflora of the rhizosphere was highly affected by mycorrhizal inoculation. Quantitative changes in acid and alkaline phosphatase activities of the roots in response to the mycorrhizal inoculation are discussed. Received: 11 August 1999  相似文献   

8.
In this paper, the establishment and growth of medicinal species Ziziphora clinopodioides Lam. were studied through inoculation with two mycorrhizal fungi species, Glomus mosseae and Glomus intraradices, in arid/semi-arid Bahar-Kish rangelands, Iran in 2012 and 2013. The root colonization percentage of Ziziphora, as well as their establishment and growth were enhanced in 2013 using G. mosseae. In this year, less rainfall and higher temperature decreased the survival, growth and morphological traits of the studied plants. Growth and establishment of the inoculated plants using G. intraradices improved in 2013, while inoculation with G. mosseae showed more beneficial effects in 2012. In both years, the strain, the growth and establishment percentage of seedlings in inoculated treatments with mycorrhizal species were significantly improved. According to the results, G. intraradices mycorrhizal fungi is recommended as a biological fertilizer in increasing the forage production and the initial establishment of Ziziphora in arid and semi-arid rangelands.  相似文献   

9.
Arbuscular Mycorrhizae Fungi (AMF) inoculations may improve growth and nutrient uptake of cotton (Gossypium hirsutum L.) plant. Although the importance of mycorrhizal symbioses for growth and nutrient acquisition of cotton plant is known, less is known about mycorrhizal dependency on P and Zn nutrition under low Zn fertile soil conditions. A greenhouse experiment was conducted to investigate the effect of different of P and Zn fertilizer addition on cotton plant growth as well as Zn and P uptake. Sterilized and non-sterilized low Zn fertile Konya series soil was treated with different levels of P and Zn. Soils were inoculated with two mycorrhizae species like Funneliformis mosseae and Claroideoglomus etunicatum after sterilization. Results showed that mycorrhizal inoculation on plant growth and nutrient uptake has significant effect when soil was sterilized. Cl. etunicatum mycorrhizae species has greater effect than Fu. mosseae mycorrhizae species. Root colonization increased 23–65% due to mycorrhizal amendment. The shoot: root ratio increased by 13 and 22% for non-sterile and sterile condition respectively in mycorrhiza amended soil. Mycorrhizal dependency varies 1–55% and 3–64% for non-sterile and sterile soil respectively on mycorrhizae, P and Zn amended soil. Mycorrhizal dependency analysis showed that cotton plant in both sterile and non-sterile soil conditions depends on mycorrhizae species, P nutrition, however is less depend on Zn nutrition. This study concluded that the inoculation of cotton plant with selected mycorrhizae is necessary under both sterile and non-sterile soil conditions.  相似文献   

10.
ABSTRACT

The need for salinity resistance in turfgrass is increasing because of the enhanced use of effluent and other low-quality water for turfgrass irrigation. Although most turfgrasses form an arbuscular mycorrhizal fungus (AMF) symbiosis, there is little information on the mycorrhization of turfgrass species. Therefore, the aim of this study was to determine the effects of three AMF species, Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus deserticola Trappe & John, and a mixture thereof on the growth, productivity, and nutrient uptake of two species of cool-season turfgrasses, Challenger Kentucky bluegrass (Poa pratensis L.) and Arid tall fescue (Festuca arundinacea Schreb.), and to relate the effects to colonization of the roots by mycorrhiza to assess the dependency of the plants (mycorrhizal dependency [MD]). Following the experimental period (4 months) and measurements, the mycorrhizal inoculated plants had significantly greater biomass production compared to that of non-inoculated plants. MD and shoot mineral contents (particularly P) differed among turfgrass hosting AMF, and the highest value (13%) occurred for P. pratensis and F. arundinacea seedlings colonized with G. intraradices and G. deserticola, respectively. The P content was highest for the F. arundinacea/mixed AMF combination compared to other treatments. We confirmed that mycorrhizal inoculation (P. pratensis/G. intraradices and F. arundinacea/mixed AMF combinations) enhanced plant productivity and nutrient uptake (especially P) even under non-optimum conditions.  相似文献   

11.
ABSTRACT

A pot experiment was conducted out to investigate the yield and pungency of spring onion (Allium fistulosum L.) as affected by inoculation with arbuscular mycorrhizal (AM) fungi and addition of nitrogen (N) and sulfur (S) fertilizers. Plants were inoculated with either Glomus mosseae or Glomus intraradices or grown as uninoculated controls. Two levels of N and S were applied to the soil in factorial combinations of 50 and 250 mg N kg?1 soil and 0 and 60 mg S kg?1 soil. Plants were grown in a greenhouse for 25 weeks and then harvested. Mycorrhizal colonization resulted in increased shoot dry weight, shoot-to-root ratio, shoot length, sheath diameter, and phosphorus (P) concentrations. Shoot dry-matter yield was significantly affected by added N, but not by S. Shoot dry weight increased with increasing N supply (except for non-mycorrhizal controls without additional S fertilizer). Shoot total S concentration (TSC), enzyme-produced pyruvate (EPY), and organic sulfur concentration (OSC) in plants inoculated with Glomus mosseae were significantly lower than those of non-mycorrhizal controls, while these parameters in plants inoculated with Glomus intraradices were comparable to or higher than in the controls. Neither N nor S supply affected shoot EPY or OSC, whereas shoot TSC (except in plants inoculated with Glomus mosseae) and SO4 2? concentrations were usually significantly increased by S supply. In soil of high S and low P availability, mycorrhizal colonization had a profound influence on both the yield and the pungency of spring onion.  相似文献   

12.
丛枝菌根真菌对西藏高原固沙植物吸磷效率的影响   总被引:3,自引:0,他引:3  
采用盆栽方法,就外源菌种、土著菌种(含混合菌种)对固沙植物白草(Pennisetum.flaccidum)生长和吸磷效率的影响进行了研究。结果表明,白草具有较高的菌根依赖性(平均达166.4%);不同AM真菌(或真菌组合)对白草根系均具显著的侵染效应。随菌根侵染率的提高,植株生物量、吸磷量均呈显著增加(相关系数分别为0.7465*、0.6000*);菌根菌丝对白草吸收土壤磷素的贡献十分明显,各接种处理菌根菌丝对植物吸收土壤磷素的贡献量、贡献率分别在3.2~11.6.mg/pot和61.5%~85.3%之间;接种菌根处理植株吸磷量呈Glomus.intraradicesG.mosseae+G.etunicatum+G.intraradices+Scutellospora.erythropaG.mosseae(外源菌种)G.mosseae+G.intraradices+Scutellospora.calosporaG.mosseae-I(土著菌种)G.etunicatum的趋势。此外,不同AM真菌对寄主植物地上部、根部生物量和吸磷量的影响程度明显不同,一般呈地上部根系的趋势,但寄主植物根系的生长速率相对较快;土著菌种中,多菌混合接种对寄主植物的侵染效应明显高于单一接种。  相似文献   

13.
Plants inoculated with arbuscular mycorrhizal (AM) fungi utilize more soluble phosphorus from soil mineral phosphate than non-inoculated plants. However, there is no information on the response of soil microflora to mineral phosphate weathering by AM fungi and, in particular, on the catabolic diversity of soil microbial communities.The AM fungus, Glomus intraradices was examined for (i) its effect on the growth of Acacia holosericea, (ii) plant-available phosphate and (iii) soil microbial activity with and without added rock phosphate.After 4-months culture, AM fungal inoculation significantly increased the plant biomasses (by 1.78× and 2.23× for shoot and root biomasses, respectively), while mineral phosphate amendment had no effect in a sterilized soil. After 12-months culture, the biomasses of A. holosericea plants growing in a non-sterilized soil amended with mineral phosphate were significantly higher than those recorded in the control treatment (by 2.5× and 5× for shoot and root biomasses, respectively). The fungal inoculation also significantly stimulated plant growth, which was significantly higher than that measured in the mineral phosphate treatment. When G. intraradices and mineral phosphate were added together to the soil, shoot growth were significantly stimulated over the single treatments (inoculation or amendment) (1.45×). The P leaf mineral content was also higher in the G. intraradices+mineral phosphate treatment than in G. intraradices or rock phosphate amendment. Moreover, the number of fluorescent pseudomonads has been significantly increased when G. intraradices and/or mineral phosphate were added to the soil. By using a specific type of multivariate analysis (co-inertia analysis), it has been shown that plant growth was positively correlated to the metabolization of ketoglutaric acid, and negatively linked to the metabolisation of phenylalanine and other substrates, which shows that microbial activity is also affected.G. intraradices inoculation is highly beneficial to the growth of A. holosericea plants in controlled conditions. This AM symbiosis optimises the P solubilization from the mineral phosphate and affects microbial activity in the hyphosphere of A. holosericea plants.  相似文献   

14.
A greenhouse experiment was focused on the application of arbuscular mycorrhizal fungi (AMF) in effective crop production during reclamation of coal‐mine spoil banks. The aim of the study was to find out whether mycorrhizal inoculation improves growth of flax (Linum usitatissimum L.) and whether it can compensate for high doses of expensive organic amendment. Flax was planted in original spoil‐bank gray Miocene clay amended with organic matter used for spoil‐bank reclamation (mixture of composted urban waste and lignocellulose papermill waste). This amendment was applied in four descending doses equivalent to the application of 500, 200, 100, and 0 t ha–1. The plants received either a mixed inoculum of three AMF species (Glomus mosseae, G. claroideum, and G. intraradices) or were left uninoculated. Growth of flax was significantly increased by mycorrhizal inoculation in pure clay (by 60%) as well as in clay with all amendment doses (by 119% on average). Also, the addition of organic matter increased plant growth but, interestingly, the biomass production was comparable regardless the dose of amendment. Our results suggest that similar yields are attainable with only one fifth of the usual fertilization dose, which can significantly decrease costs related to the reclamation of spoil banks. If mycorrhizal inoculation is applied together with the optimized fertilization, growth of flax planted in spoil‐bank clay can be further improved.  相似文献   

15.
A pot experiment was conducted to evaluate the influence of pre-inoculation of cucumber plants with each of the three arbuscular mycorrhizal (AM) fungi Glomus intraradices, Glomus mosseae, and Glomus versiforme on reproduction of the root knot nematode Meloidogyne incognita. All three AM fungi tested significantly reduced the root galling index, which is the percentage of total roots forming galls. Numbers of galls per root system were significantly reduced only in the G. intraradices + M. incognita treatment. The number of eggs per root system was significantly decreased by AM fungus inoculation, no significant difference among the three AM fungal isolates. AM inoculation substantially decreased the number of females, the number of eggs g−1 root and of the number of eggs per egg mass. The number of egg masses g−1 root was greatly reduced by inoculation with G. mosseae or G. versiforme. By considering plant growth, nutrient uptake, and the suppression of M. incognita together, G. mosseae and G. versiforme were more effective than G. intraradices.  相似文献   

16.
Abstract. A field experiment was undertaken to assess the effectiveness of a combined treatment, involving addition of Aspergillus niger -treated sugar beet (SB) residue in the presence of rock phosphate and mycorrhizal inoculation of seedlings with Pisolithus tinctorius . The aim was to improve the physical, chemical, biochemical and biological properties of a degraded semiarid Mediterranean soil. Short-term effects of such improvements on the establishment of Cistus albidus L. seedlings were evaluated. Eight months after planting, macronutrients (NPK), total carbohydrates, water-soluble C, water-soluble carbohydrates, microbial biomass C and enzyme activities (dehydrogenase, urease, protease, acid phosphatase and β-glucosidase) measured in the rhizosphere soil of C. albidus were increased greatly by addition of fermented SB residue. Soil structural stability improved only with the fermented SB addition (about 79% higher in the amended soils than in the non-amended soils). The mycorrhizal inoculation was the most effective treatment in improving the growth of C. albidus plants, but only slightly improved soil quality. Growth of inoculated plants was about 33% greater than plants grown in the amended soil and about 131% greater than control plants. The combined benefit of mycorrhizal inoculation of seedlings and addition of fermented SB residue to soil on plant growth was similar to that of the treatments applied individually.  相似文献   

17.
A pot experiment was conducted to evaluate the effect of indigenous arbuscular mycorrhizal fungi (AMF) and the synergy of indigenous AMF and sheep manure (SM) on potassium (K), calcium (Ca) and some micronutrient concentrations in cotton plant. Indigenous AMF were a mixture of Glomus viscosum, Glomus mosseae and Glomus intraradices initially isolated from a cotton field. Cotton was grown for 12 weeks and the elements of shoot were determined at three stages of plant growth. Inoculated cotton plants with AMF had higher concentrations of K, Ca, manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) than non-mycorrhizal plants. Shoot concentrations of these elements increased significantly when SM was added to mycorrhizal plants. Maximum plant micronutrient uptake was found in the treatment of AMF inoculation with SM. Mn, Fe, Cu and Zn uptake increased significantly by 457%, 282%, 272% and 295%, respectively, over control. Indigenous AMF combined with SM resulted in better plant growth and micronutrient uptake.  相似文献   

18.
A pot experiment was conducted to examine the effects of arbuscular mycorrhizal fungi, Glomus versiforme, G. mosseae, and G. intraradices on growth and nutrition of trifoliate orange (Poncirus trifoliata) seedlings under magnesium (Mg)-nontreated and Mg-treated conditions. Whether treated with Mg or not, G. versiforme inoculation significantly enhanced the growth and concentrations of Mg, phosphorus, calcium, potassium, zinc, and copper in shoots or roots, and activities of acid phosphatase, catalase, invertase, and urease in rhizosphere soils. Additionally, there were higher levels of chlorophyll, proline, soluble sugar and protein in leaves, root viability, superoxide dismutase, peroxidase and catalase in leaves and roots, but lower malondialdehyde content in leaves and roots of mycorrhizal seedlings than non-mycorrhizal ones. Data demonstrated that G. versiforme-inoculated citrus seedlings exhibited higher levels of soil enzymes, osmoregulation, and antioxidant matters, leading to improvement of growth and nutrition of seedlings in low Mg soil.  相似文献   

19.
The spatial and temporal nature of the precise interactions between soil fungi and roots and their subsequent role in developing soil structure is still a subject where our understanding is limited. This research examines the relationship between three species of arbuscular mycorrhizal fungus (AMF) and soil structural characteristics. Plantago lanceolata was inoculated with one of: Glomus geosporum, Glomus mosseae or Glomus intraradices, and every combination of the fungal species. Infectivity was similar for each individual species, but G. mosseae and G. intraradices together resulted in the lowest per cent root length colonised. Despite the lower percentage colonisation, this combination induced the greatest mycorrhizal growth response. Aggregate stability and aggregate size distribution were unaffected by AMF but were increased by the presence of roots. Microbial biomass-C was also enhanced by roots. Pore size, pore size distribution and nearest neighbour distance were all reduced by G. mosseae and increased by G. intraradices. All AMF inocula containing G. intraradices resulted in greater distances between pores within the experimental soils. Porosity (%) was increased by G. mosseae suggesting that more, smaller pores with less distance between them enhanced overall porosity.  相似文献   

20.
The effect of three arbuscular mycorrhizal (AM) fungi on phosphorus (P) nutrient activation and acquisition by maize from spatially heterogeneous sand was investigated using dual-mesh packages enriched with different P concentrations and compared with non-mycorrhizal cotrols. As would be expected the AM fungi significantly enhanced leaf photosynthetic rate and the biomass and P concentrations in shoots and roots. All three fungi (Glomus intraradices, Glomus mosseae and Glomus etunicatum) displayed the capacity to dissolve inorganic P and promoted P nutrient availability in the packages (P patches). G. etunicatum showed the largest effect comparing with Glomus intraradices and Glomus mosseae, particularly in packages with high concentrations of P. Possible mechanisms involved include the acidification of the P patches by the AM fungi, promotion of the dissolution of the P, and more marked effects of the three fungal isolates with increasing enrichment of P in the patches. Inoculation with G. etunicatum resulted in greater acidification compared to the other two fungi. We conclude that AM fungi can promote P availability by acidifying the soil and consequently exploiting the P in nutrient patches and by facilitating the growth and development of the host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号