首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Considering the importance of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in the decrease in soybean yield, this study investigated the potential of using phosphite combined with l -α-free amino acids (referred to as induced resistance [IR] stimulus hereafter) to boost defence responses of soybean plants against P. pachyrhizi infection. Plants were sprayed with water (control), acibenzolar-S-methyl (ASM) or IR stimulus and noninoculated or inoculated with P. pachyrhizi. Urediniospore germination was not affected by the IR stimulus in vitro. Reduced ASR severity, lower malondialdehyde concentration and less colonization of leaf tissues by P. pachyrhizi (lower TEF-1α expression from 1 to 15 days after inoculation [dai]) occurred for IR stimulus-sprayed plants. The pattern of gene expression for IR stimulus-sprayed and infected plants was strikingly similar but sometimes more remarkable than that in ASM-sprayed and infected plants. Higher production of phenolics and lignin along with stronger up-regulation of PAL1.3 (5 and 10 dai), PAL2.2 (3 dai), PAL3.1 (1, 3 and 5 dai), ICS1 (5 dai), CHIA1 (1, 5 and 10 dai), CHI1B1 (5 dai), PR-1A (5 and 10 dai), NR1-2 (5 and 10 dai) and INR-2 (5 and 10 dai) for IR stimulus-sprayed plants increased their resistance against ASR. In addition, IR stimulus-sprayed and infected plants showed less impairment of the photosynthetic apparatus and maintained high concentrations of chlorophyll a + b and carotenoids. These findings highlight the potential of using this IR stimulus for developing a well-tuned and effective defensive strategy in soybean plants against P. pachyrhizi infection.  相似文献   

2.
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a major threat to soybean production in Bangladesh. Understanding the yearly changes and the current status of pathogenic structures is essential for developing appropriate breeding strategies for obtaining ASR-resistant soybean lines. Thirty-four P. pachyrhizi samples were collected from ASR hotspot areas (Chandpur, Lakshmipur, Noakhali, Barisal and Bhola districts) of Bangladesh in 2018 and 2019 and evaluated for pathogenicity on 12 soybean differential lines. The tested samples showed similar and dissimilar pathogenicity patterns on the differentials, yielding 21 distinct pathotypes. The cluster analysis, principal coordinate analysis and principal component analysis of the disease phenotypes of 47 samples collected in 2016, 2018 and 2019 indicated a higher pathogenic diversity and virulence variation in the P. pachyrhizi samples of 2018 and 2019 compared to that of 2016. The pathogenicity profiles of the Bangladeshi P. pachyrhizi samples appeared distinct from those of Argentinian and Brazilian samples, but showed slight similarities with Japanese, Mexican and Paraguayan samples. Furthermore, none of the resistance genes for P. pachyrhizi (Rpp genes) was solely effective against all the tested samples from 2018 and 2019, while samples (BdRP-48, BdRP-56 and BdRP-58) virulent to all Rpp1–Rpp6 genes were detected. The Rpp-pyramided line No6–12–1, carrying Rpp2, Rpp4 and Rpp5, was capable of conferring robust resistance to these virulent samples. Altogether, these results indicate an increase in the virulence of the current ASR pathogen in Bangladesh, which can be resolved by pyramiding different resistance genes in soybean cultivars.  相似文献   

3.
Phakopsora pachyrhizi is a biotrophic fungus that causes rust on soybean, leading to devastating yield losses. Development of resistant cultivars for deployment in different geographic regions requires a comprehensive understanding of the prevalent P. pachyrhizi pathotypes. To determine the pathotypes existing in four East African countries, 65 isolates were tested on 11 soybean host differentials. In addition, the virulence spectrum of isolates collected from the same region over multiple years was compared. The majority of the isolates (54%) belonged to pathotype 1000, which was found in all countries. The pathotypes with the most complex virulence spectrum, which comprised isolates from Kenya and Malawi, were virulent on four differentials. All pathotypes were virulent on soybean genotypes carrying the Rpp1 resistance gene to P. pachyrhizi, but they were avirulent on cultivars carrying the Rpp1b, Rpp2, or Rpp3 gene, as well as on cultivar No6-12-1 that carries Rpp2, Rpp4, and Rpp5. Two of the pathotypes were virulent on cultivar UG 5 that carries Rpp1 and Rpp3 and on Hyuuga that carries Rpp3 and Rpp5. The isolates collected from different countries differed in their virulence spectrum across the years. Shannon's index (H) and Simpson's index (S) of diversity indicated that the isolates from Malawi were more diverse (H = 1.55, S = 0.90) while those from Uganda had lower diversity (H = 0.78, S = 0.46 ). The Rpp genes that were found to provide resistance to all pathotypes of P. pachyrhizi can be employed for soybean breeding aimed at durable rust resistance.  相似文献   

4.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most serious diseases of soybean. The soybean landraces PI 594767A, PI 587905 and PI 416764 previously showed high levels of resistance to a wide range of ASR fungus, while the genetic basis of the resistance has yet to be understood. In this study, the ASR resistance loci were mapped using three independent mapping populations, POP‐1, POP‐2 and POP‐3 derived from crosses BRS184 × PI 594767A, BRS184 ×  PI 587905 and BRS184 × PI 416764, respectively. In each population, the resistance to ASR segregated as a single gene, but the resistance was dominant in PI 594767A and PI 587905 and incompletely dominant in PI 416764. The resistance genes from both PI 594767A and PI 587905 were mapped on chromosome 18 corresponding to the same location as known resistance locus Rpp1. Quantitative trait locus (QTL) analysis performed on POP‐3 identified the putative ASR resistance locus in PI 416764 on the defined region of chromosome 6 where Rpp3 was located. The QTLs detected by the mapping explained about 67–72% of the phenotypic variation in POP‐3. Cluster analysis based on disease reactions to 64 ASR populations demonstrated the presence of at least two types of functional resistant Rpp1 alleles: strong and weak allele(s), e.g. soybean accession PI 594767A and PI 587905 carry the strong resistant Rpp1 allele(s). Introducing or pyramiding strong Rpp1 allele(s) in elite soybean cultivars is expected to be useful against the South American rust population.  相似文献   

5.
Soybean is one of the top five agricultural products in the United States and is highly susceptible to Phakopsora pachyrhizi, an exotic obligate biotrophic fungus. The little amount of genomic information about P. pachyrhizi limits understanding of the soybean–soybean rust pathogen interaction and the possibility of engineering resistance to this pathogen in soybean. Illumina mRNA‐Seq analysis revealed P. pachyrhizi genes expressed during a biotrophic interaction between P. pachyrhizi and soybean during fungal sporulation 10 days after inoculation. Approximately 2·4 million DNA sequences representing portions of potential P. pachyrhizi genes were assembled into 32 940 contigs that were used to search against expressed sequence tag (EST), protein and conserved domain databases. About 7500 contigs represent newly discovered P. pachyrhizi sequences. Of these, 527 shared similarity to genes encoding fungal proteins involved in different metabolic pathways such as galactose and glycogen metabolism, glycolysis, the citrate cycle, fatty acid metabolism, amino acid metabolism, proteolysis, protein synthesis, cell cycle division and mitosis, and cell wall biogenesis. Almost 7000 potential P. pachyrhizi genes are still of unknown function. Such information may be useful in the development of new methods of broadening resistance of soybean to P. pachyrhizi, including the silencing of important P. pachyrhizi genes, and also to understand the molecular basis of soybean–P. pachyrhizi interactions.  相似文献   

6.
Phakopsora meliosmae-myrianthae, the causal agent of Asian grapevine leaf rust, significantly reduces the photosynthetic efficiency of grapevine leaves in green symptomless tissues surrounding lesions. This study took a close look at grapevine leaf colonization kinetics by Pmeliosmae-myrianthae and compared it to Ppachyrhizi–soybean and Uromyces appendiculatus–bean colonization. It is already known from the literature that soybean rust, similar to grapevine rust, has a negative effect on leaf photosynthesis greater than would be expected based on visual lesions. However, in contrast to soybean and grapevine rusts, the effect of bean rust on leaf photosynthesis is proportional to the diseased leaf area. Colonization progress was monitored by fungal biomass assessed via histological staining and quantitative polymerase chain reaction (qPCR). Individual lesions of Pmeliosmae-myrianthae on grapevine, Ppachyrhizi on soybean and Uappendiculatus on common bean leaves were evaluated every 3–4 days, and the number of uredinia was counted. Staining showed that mycelial colonization did not extend beyond the lesion border. The number of Ppachyrhizi and Pmeliosmae-myrianthae uredinia within the lesions increased over time (on average 14-fold), whereas the number of Uappendiculatus uredinia remained the same. These findings were corroborated by qPCR, which revealed a greater increase in fungal biomass for Phakopsora spp. than for Uappendiculatus until 12 days post-inoculation. The high number of satellite uredinia within lesions might be directly related to the impact of this pathogen in photosynthetic efficiency on symptomless areas of diseased grapevine leaves. This study identified accelerated formation of satellite uredinia as an important feature of grapevine colonization by Pmeliosmae-myrianthae.  相似文献   

7.
Tan spot caused by Pyrenophora tritici‐repentis is a disease present in all wheat‐producing countries and silicon (Si) treatment of wheat plants has been shown to increase plant resistance to tan spot. In this study, the effect of phenylpropanoid metabolism on resistance to tan spot was evaluated and some phenolic compounds that accumulated in response to Ptritici‐repentis attack were identified. Furthermore, the effect of Si on phenylalanine ammonia‐lyase (PAL) activity and phenolic compound accumulation were determined in situ. Antifungal activity of differentially accumulated phenolic compounds was also evaluated in in vitro tests. Results showed that the increase in concentration of phenolic compounds was greatest at the onset of infection, and that some compounds showed fungitoxic effects including fungal tip swelling, granulation of germ tube and hyphae, and hyphal hyperbranching. Silicon‐induced reduction in both lesion size and tan spot disease progression were associated with activation of phenylpropanoid metabolism. PAL activity and accumulation of antifungal phenolic compounds were greater in pathogen‐inoculated plants supplied with Si. In these plants, fluorescence indicative of accumulation of phenolic compounds occurred early in epidermal cells and its intensity increased during the evaluation period, showing higher numbers of fluorescent cells around infected cells. Thus, the combined responses of cell fluorescence at sites of infection, increased PAL activity and accumulation of phenols indicate that Si strengthened wheat defence responses to infection by Ptritici‐repentis, reducing the severity of tan spot.  相似文献   

8.
Soybean rust, caused by the biotrophic fungus Phakopsora pachyrhizi, is the most important foliar disease of soybean (Glycine max) worldwide. Deployment of resistant soybean cultivars is the best option for managing this disease. Genes conferring resistance to P. pachyrhizi have been identified, but pathotypes of the rust fungus overcoming these resistance genes have also been found. To identify novel resistance genes, soybean genotypes from both local and international sources were screened at multiple locations in Tanzania and Uganda in 2016 and 2017. The results from this screening revealed that infection types, disease severities, and sporulation levels varied among the genotypes and locations. The majority of the genotypes had tan-coloured (TAN) lesions and developed moderate sporulation, implying susceptibility, while only seven of the 71 lines had reddish-brown (RB) lesions and showed low disease severities in all of the screening environments. We identified seven genotypes that were the most resistant to rust in the most locations over the two years. These genotypes will be useful for further studies and, ultimately, for rust management, as they show broad resistance to various pathotypes of the rust fungus.  相似文献   

9.
Damping-off of soybean is a common problem in some fields in southern Brazil. Frequently, Phytophthora sojae has been pointed out as the main causal agent. However, questions were raised as to whether other oomycetes could also be present. Hence, the objectives of this study were to isolate, identify, and determine the pathogenicity and aggressiveness of oomycetes isolated from soybean seedlings. Thirty-three isolates were obtained from 13 fields. Isolates were identified based on morphology and molecular methods. Nine species were recovered: Pythium conidiophorum (n = 14, 42.4%), Globisporangium rostratifingens (n = 7, 21.2%), G. irregulare (n = 2, 6.1%), G. spinosum (n = 1, 3.0%), G. ultimum var. sporangiiferum (n = 2, 6.1%), Pythium acanthicum (n = 2, 6.1%), P. deliense (n = 1, 3.0%), P. inflatum (n = 1, 3.0%), and P. torulosum (n = 3, 9.1%). Pathogenicity and aggressiveness were determined with two soybean cultivars (DM57i52 and NEO530) in a seed rot assay and a root rot assay. All isolates were pathogenic to soybean with variable levels of aggressiveness in both assays. The range of seed disease severity index varied from 7.5 to 100 for DM57i52 and from 23.1 to 100 for NEO530. The mean root disease severity index of the soybean cultivars ranged from 29.4 to 92.8. This is the first official report of G. irregulare, G. rostratifingens, G. spinosum, G. ultimum var. sporangiiferum, P. acanthicum, P. conidiophorum, P. deliense, P. inflatum, and P. torulosum causing damping-off of soybean in the state of Rio Grande do Sul in southern Brazil.  相似文献   

10.
Nickel (Ni) is a cofactor for urease, an enzyme that breaks down urea into ammonia and carbon dioxide. This study aimed to evaluate the physiological impact of Ni on urea, antioxidant metabolism and powdery mildew severity in soybean plants. Seven levels of Ni (0, 10, 20, 40, 60, 80 and 100 g ha?1) alone or combined with the fungicides fluxapyroxad and pyraclostrobin were applied to soybean plants. The total Ni concentration ranged from 3.8 to 38.0 mg kg?1 in leaves and 3.0 to 18.0 mg kg?1 in seeds. A strong correlation was observed between Ni concentration in the leaves and seeds, indicating translocation of Ni from leaves to seeds. Application of Ni above 60 g ha?1 increased lipid peroxidation in the leaf tissues, indicative of oxidative stress. Application of 40 g ha?1 Ni combined with 300 mL ha?1 of fungicide reduced powdery mildew severity by up to 99%. Superoxide dismutase, catalase, peroxidase and urease enzyme activity were greatest under these conditions. Urea concentration decreased in response to Ni application. Urease activity in soybean leaves showed a negative correlation with powdery mildew severity. The leaf Ni concentration showed a positive correlation with the urease and a negative correlation with powdery mildew severity. The results of this study suggest that urease is a key enzyme regulated by Ni and has a role in host defence against powdery mildew by stimulating antioxidant metabolism in soybean plants.  相似文献   

11.
The soybean cyst nematode (SCN) Heterodera glycines and the oomycete Phytophthora sojae are among the most damaging pathogens of soybean worldwide. Resistant cultivars are commonly used to manage these diseases. As it is known that the presence of SCN can facilitate the development of other pathogens, it is important to verify if there is a synergistic activity between SCN and P. sojae. The purpose of this study was to evaluate a possible interaction on susceptible and resistant soybean lines. The plants were inoculated with one or both organisms at different stages (5 or 10 days old). Two levels of SCN inoculum (2,000 and 10,000 eggs/plant) and different timing between SCN and P. sojae inoculation (2, 5, or 8 days) were compared. The results on 5-day-old plants showed that SCN did not influence P. sojae development. The resistant cultivar to P. sojae remained effective (0% mortality) and susceptible cultivars exhibited high mortality (100%) in the presence or absence of SCN. Experiments on 10-day-old plants showed that SCN resistance was not affected by the presence of P. sojae. SCN inoculum density and timing of P. sojae infection did not affect the virulence of these pathogens and the efficacy of resistance genes. However, the number of SCN cysts was decreased by more than 50% (p < .001) when P. sojae was coinfesting the susceptible cultivar. This suggests that P. sojae might indirectly influence SCN development by reducing the root mass. This study confirmed that resistant cultivars remain a valid option for the management of P. sojae and SCN.  相似文献   

12.
This study evaluated the impact of time between the application of cell suspensions or cell-free filtrates of Bacillus subtilis strains SB01 or SB24 on soybean plants under field conditions and inoculation with Sclerotinia sclerotiorum on their effectiveness for suppression of S. sclerotiorum. The results showed that the cell suspensions of two strains provided greater effectiveness than the cell-free filtrates, but the suppression effectiveness decreased as the time between application in the field and S. sclerotiorum inoculation increased. The B. subtilis cell suspensions applied on soybean leaves for up to 10 days under field conditions were able to provide a significant (P < 0.01) reduction in disease severity by approximately 20–90% at 5 days after the S. sclerotiorum inoculation. When rated 15 days after S. sclerotiorum inoculation, plants treated with bacterial cells for ≤6 days reduced Sclerotinia stem rot severity by 15–70%. Most effectiveness was provided by the cell suspensions present on soybean leaves for <3 days under field conditions, which significantly (P < 0.01) reduced disease severity by 40–70% over 15 days. In comparison, the cell-free filtrates remaining on leaves for <6 days significantly (P < 0.01) reduced disease severity during the first 5 days after the inoculation, while the best cell-free filtrate treatments were those with ≤1-day intervals, which significantly (P < 0.01) reduced disease severity by 10–40% during 15 days after the inoculation. The effectiveness of B. subtilis was reduced when it rained after application.  相似文献   

13.
Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, is one of the most devastating diseases affecting maize yield worldwide. A foliar spray of nickel (Ni) to potentiate maize resistance against NCLB was investigated by examining alterations in the photosynthetic apparatus (leaf gas exchange and chlorophyll [Chl] a fluorescence parameters), production of ethylene and reactive oxygen species as well as activities of defence and antioxidant enzymes. Mycelial growth of E. turcicum was inhibited by Ni in vitro. Inoculated plants sprayed with Ni exhibited higher foliar Ni concentration, reduced NCLB symptoms, and lower concentrations of malondialdehyde and hydrogen peroxide. In inoculated leaves of plants not sprayed with Ni, concentrations of Chl a, Chl b, and carotenoids were lower and the photosynthetic apparatus was impaired at the biochemical level due to high NCLB severity. The activities of antioxidant enzymes were not affected by Ni, except an increase in glutathione reductase activity for noninoculated plants sprayed with Ni. High lipoxygenase and polyphenoloxidase activities, lower ethylene production, as well as elevated production of phenolics and lignin helped decrease NCLB severity in the leaves of Ni-sprayed plants.  相似文献   

14.
Potato early dying (PED) is a disease complex primarily caused by the fungus Verticillium dahliae. Pectolytic bacteria in the genus Pectobacterium can also cause PED symptoms as well as aerial stem rot (ASR) of potato. Both pathogens can be present in potato production settings, but it is not entirely clear if additive or synergistic interactions occur during co‐infection of potato. The objective of this study was to determine if co‐infection by V. dahliae and Pectobacterium results in greater PED or ASR severity using a greenhouse assay and quantitative real‐time PCR to quantify pathogen levels in planta. PED symptoms caused by Pectobacterium carotovorum subsp. carotovorum isolate Ec101 or V. dahliae isolate 653 alone included wilt, chlorosis and senescence and were nearly indistinguishable. Pectobacterium wasabiae isolate PwO405 caused ASR symptoms including water‐soaked lesions and necrosis. Greater Pectobacterium levels were detected in plants inoculated with PwO405 compared to Ec101, suggesting that ASR can result in high Pectobacterium populations in potato stems. Significant additive or synergistic effects were not observed following co‐inoculation with these strains of Vdahliae and Pectobacterium. However, infection coefficients of V. dahliae and Ec101 were higher and premature senescence was greater in plants co‐inoculated with both pathogens compared to either pathogen alone in both trials, and Vdahliae levels were greater in basal stems of plants co‐inoculated with either Pectobacterium isolate. Overall, these results indicate that although co‐infection by Pectobacterium and V. dahliae does not always result in significant additive or synergistic interactions in potato, co‐infection can increase PED severity.  相似文献   

15.
Transgenic tobacco plants expressing a phenylalanine ammonia-lyase cDNA (ShPAL), isolated from Stylosanthes humilis, under the control of the 35S promoter of the cauliflower mosaic virus were produced to test the effect of high level PAL expression on disease resistance. The transgenic plants showed up to eight-fold PAL activity and were slowed in growth and flowering relative to non-transgenic controls which have segregated out the transgene. The expression of the ShPAL transgene and elevated PAL levels were correlated and stably inherited. In T1 and T2 tobacco plants with increased PAL activity, lesion expansion was significantly reduced by up to 55% on stems inoculated with the Oomycete pathogen Phytophthora parasitica pv. nicotianae. Lesion area was significantly reduced by up to 50% on leaves inoculated with the fungal pathogen Cercospora nicotianae. This study provides further evidence that PAL has a role in plant defence.  相似文献   

16.
Phakopsora pachyrhizi, the cause of soybean rust, is an economically important pathogen of soybean in South America. Understanding the pathogenicity of indigenous fungal populations is useful for identifying resistant plant genotypes and targeting effective cultivars against certain populations. Fifty-nine rust populations from Argentina, Brazil, and Paraguay were evaluated for pathogenicity in three cropping seasons, 2007/2008–2009/2010, using 16 soybean differentials. Only two pairs of P. pachyrhizi populations displayed identical pathogenicity profiles, indicating substantial pathogenic variation in the rust populations. Comparative analysis of 59 South American and five Japanese samples revealed that pathogenic differences were not only detected within South America but also distinct between the P. pachyrhizi populations from South America and Japan. In addition, seasonal changes in rust pathogenicity were detected during the sampling period. The differentials containing resistance genes (Rpp: resistance to P. p achyrhizi) Rpp1, Rpp2, Rpp3, and Rpp4, except for Plant Introduction (PI) 587880A, displayed a resistant reaction to only 1.8–14, 24–28, 22, and 36 % of South American P. pachyrhizi populations, respectively. In contrast, PI 587880A (Rpp1), Shiranui (Rpp5), and 3 Rpp-unknown differentials (PI 587855, PI 587905, and PI 594767A) showed a resistant reaction to 78–96 % of all populations. This study demonstrated that P. pachyrhizi populations from South America vary geographically and temporally in pathogenicity and that the known Rpp genes other than Rpp1 in PI 587880A and Rpp5 have been less effective against recent pathogen populations in the countries studied.  相似文献   

17.
18.
Using models from atmospheric chemistry and physics, this study examined the wet deposition of single uredospores of soybean rust caused by Phakopsora pachyrhizi associated with rainfall and its importance compared with dry deposition. First, a measurement of the terminal velocity of freshly collected P. pachyrhizi uredospores was conducted in Nanning, China. The observed terminal velocities associated with different sizes of the uredospore clumps were fitted by negative exponential models. The average terminal velocity of single uredospores (0.0187 m s−1) determined by the fitted models was used to estimate the dry deposition. The wet deposition of single uredospores associated with different rainfall rates was determined numerically using coupled models, in which raindrop capture efficiency of uredospores was based on Slinn’s semi-empirical model. The results showed that at a rainfall rate of 0.5 mm h−1, wet deposition can remove 50% of the single uredospores in the air within 1 h. If the rainfall rate is 5 mm h−1, 10 min is sufficient to remove 50% of the uredospores. The dry deposition of the single uredospores was estimated with simplified scenarios: i.e., assuming the uredospore cloud was continuously from 1,000 to 2,000 m in height above a field with a uniform concentration. In the first 16 h, almost no uredospores reached the ground, while the wet deposition caused by 2 mm h−1 rainfall within 30 min was even much greater than dry deposition of 24 h duration. The comparisons indicated that the wet deposition of soybean rust uredospores was much more efficient than the dry deposition.  相似文献   

19.
20.
Arbuscular mycorrhiza (AM) colonization led to a decrease in the severity of fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici in tomato plants. The involvement of two plant defense hormones, namely methyl jasmonate (MeJA) and salicylic acid (SA), in the expression of mycorrhiza induced resistance (MIR) against this vascular pathogen was studied in the AM colonized and non-colonized (controls) plants. Activity of lipoxygenase (LOX), which plays a role in jasmonic acid (JA) biosynthesis, as well as levels of methyl jasmonate (MeJA) increased in AM colonized plants as compared to controls, but did not show any further changes in response to F. oxysporum inoculation. On the other hand, activity of phenylalanine ammonia lyase (PAL), which is an enzyme from salicylic acid (SA) biosynthetic pathway, as well as SA levels, increased in both controls and AM colonized plants in response to application of F. oxysporum spores. Hence the JA and not the SA signalling pathway appeared to play a role in the expression of MIR against this vascular pathogen. The resistance observed in AM colonized plants was completely compromised when plants were treated with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM). This confirmed that the AM-induced increase in JA levels was involved in the expression of resistance toward F. oxysporum. The SA response gene pathogenesis-related 1 (PR1) showed an increased expression in response to F. oxysporum infection in SHAM treated AM colonized plants as compared to plants that were not treated with this JA inhibitor. This suggested the possibility that JA inhibited SA responses, at least in the roots. AM colonization therefore appeared to prime plants for improved tolerance against the vascular pathogen F. oxysporum, which was mediated through the JA signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号