首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Philippines, bacterial wilt caused by Ralstonia solanacearum is one of the most important diseases affecting vegetables and banana. In this study, 89 strains of R. solanacearum isolated from various hosts were screened for their biovar, phylotype, pathogenicity, and genetic diversity. Foreign strains were included for comparison with these Philippine strains. Results of the biochemical and multiplex-PCR tests divided the Philippine strains into five biovars (1, 2, 3, 4, and N2) and three phylotypes (I, II, and IV). Three potato strains belonged to biovar N2/phylotype IV. Pathogenicity tests divided the strains into five pathogenicity types based on their virulence in tomato, potato, eggplant, sweet pepper, and tobacco. Strains classified as biovar N2 were weakly pathogenic to potato (pathogenicity type III) and almost all strains isolated from banana were not pathogenic to the test plants except potato (pathogenicity type V). The results of AFLP analysis divided the strains into four clusters. Cluster 1 was composed of strains isolated from solanaceous crops, ginger (Zingiber officinale), and Morus sp. from the Philippines and other Asian countries. Cluster 2 grouped the potato strains (biovar N2) from the Philippines and Japan and blood disease bacterium strains from Indonesia. Cluster 3 contained the local and foreign strains isolated from potato (biovar 2) and banana (biovar 1). Cluster 4 consisted only of the tomato strain from the USA.  相似文献   

2.
我国长江流域和南方地区花生青枯菌遗传多样性分析   总被引:1,自引:0,他引:1  
为明确不同青枯菌的遗传多样性和其在花生植株上的致病力差异,采用国际上新的青枯菌演化型分类模式,对从我国长江流域和南方地区9个花生种植区分离的95株花生青枯菌Ralstonia solanacearum菌株进行遗传多样性分析,基于内源葡聚糖酶基因egl对青枯菌进行系统发育研究,并对供试青枯菌的致病力进行测定。结果表明,所有95株菌株均属于青枯菌演化型I型,即亚洲分支类型。在序列变种分类上,所检测的9个花生种植区中有8个种植区的花生青枯菌菌株属于序列变种14,仅有1个种植区(广西壮族自治区贺州市)的花生青枯菌菌株属于序列变种48,表明我国长江流域和南方地区花生青枯菌群体遗传多样性水平较低。青枯菌致病力测定结果表明,来自赣州市的菌株GZ-1、贺州市的菌株HZ-2和宜昌市的菌株YC接种到花生植株14 d后,花生的病情指数分别为43.8、75.0和87.5,而来自其它6个花生种植区的菌株接种花生后,其病情指数均为100.0,表明菌株GZ-1和HZ-2的致病力较弱,而其它7个花生种植区代表性菌株的致病力均较强。  相似文献   

3.
The β‐proteobacterium Ralstonia solanacearum causes bacterial wilt of many plant species. Knowledge of phylotype and sequevar variability in populations of this microorganism is useful for implementing control measures, particularly host resistance. To this end, 301 isolates of R. solanacearum were collected from different geographic regions and hosts in Brazil. Their phylotype and sequevar characterization was used to determine the amount and distribution of phenetic and phylogenetic variability. Isolates were classified into phylotypes I (= 48), clade 1; and phylotype II, clades 2–5. Phylotype II was divided into subclusters IIA (= 112) and IIB (= 141). Phylotype II was widely distributed, whereas phylotype I isolates were found in Central, Northern, and Northeastern regions of Brazil. There were 108 haplotypes identified among endoglucanase (egl) gene sequences from 301 isolates and 32 haplotypes among DNA repair (mutS) gene regions from 176 isolates. The egl and mutS sequence analyses identified eight known (1, 4, 7, 18, 27, 28, 41 and 50) and four new (54, 55, 56 and 57) sequevars. Phylotype IIB showed high diversity in sequevars and host range. Multiplex PCR, using primers specific to the Moko ecotype, characterized banana and long pepper isolates as sequevar 4 and 4/NPB, respectively. This constitutes the first report of the emergent ecotype IIB/4NPB in a new host, long pepper. The majority of sequevars were associated with geographic regions. This high variability of R. solanacearum in Brazil suggests use of host resistance to control bacterial wilt should be mainly focused by region.  相似文献   

4.
In Colombia, Streptomyces scabiei (syn. S. scabies) is commonly believed to be the causal organism of scab disease in local potato crops. However, very little is known about this organism and about the diversity and pathogenicity of the Streptomyces species associated with potato crops in Colombia. This study, therefore, aimed to elucidate aspects regarding the diversity of these bacteria associated with potato crops in a particular region of Colombia and evaluate their pathogenicity. We obtained 33 isolates of Streptomyces from netted, superficial and deep-pitted potato scab lesions from two main potato-producing regions in Colombia. Of these, 17 were pathogenic based on in vitro and in planta assays. None of these isolates carried the txtA, txtB, or nec1 genes, commonly associated with pathogenicity in Streptomyces, and characteristic of the pathogenicity island (PAI). We also characterized all isolates based on phenotypic characteristics and analysed their phylogenetic relationships using the 16S rRNA, atpD, recA, rpoB, and trpB genes. The isolates were highly diverse, placed in nine clades with 15 different phenotypes. The 17 pathogenic isolates were placed into three clades, namely S. pratensis, S. xiamenensis, and unknown species. This study is a preliminary investigation towards understanding scab disease in Colombia through the study of both pathogenic and nonpathogenic species present in scab disease lesions in potatoes. Also, this is the first report of Streptomyces species associated with potato tubers in Colombia.  相似文献   

5.
Ralstonia solanacearum is a known bacterial pathogen of eucalypt and potato plants in Africa. A survey was undertaken to detect this pathogen in eucalypt plantations in South Africa, the Democratic Republic of Congo, and Uganda. Numerous bacterial strains were isolated from trees with symptoms typical of bacterial wilt, but only seven were positively identified as R. solanacearum. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique, based on the hrp (hypersensitive response and pathogenicity) gene region was used to determine and group the biovars of these R. solanacearum strains. The eucalypt isolates and one potato isolate formed a biovar 3 cluster, whereas the two other potato isolates formed a cluster that corresponded to biovar 2. Amplified fragment length polymorphism (AFLP) analysis confirmed these clusters. Therefore, PCR-RFLP can be used as a reliable diagnostic technique to enable researchers to rapidly identify the pathogen.  相似文献   

6.
香蕉细菌性枯萎病菌在中国的潜在适生区域   总被引:5,自引:1,他引:4  
青枯菌2号小种引起的香蕉细菌性枯萎病(moko disease)是香蕉生产上最具毁灭性的病害之一.为指导香蕉细菌性枯萎病的预防控制和制定相关的检疫政策,该研究根据EPPO公布的香蕉细菌性枯萎病在全球范围内的分布资料,分别采用GARP和MAXENT两种预测模型对其在中国的潜在适生区域进行分析预测.结果显示,GARP和MAXENT的预测结果基本一致,均表明香蕉细菌性枯萎病菌在中国的潜在适生区域集中分布于东南部的云南、广西、广东、海南、福建、台湾、江西、湖南、贵州、四川、重庆、浙江、湖北等13个省(市、自治区),其中高风险适生区域包括广东、广西、台湾、海南、福建和云南省.  相似文献   

7.
Since 2011, the outbreaks of brown rot caused by Ralstonia solanacearum race 3, biovar 2, phylotype IIB-1 (R3/B2/PIIB-1) have significantly compromised potato production in Serbia. During 6 years of monitoring (2013–2018) among 3,524 potato tuber samples, 344 were found positive for brown rot disease. R. solanacearum R3/B2/PIIB-1 was isolated from seven cultivars among 12 monitored, and in five localities among 17 monitored. Cultivar Lady Claire was found to have the highest disease frequency (31.98%). A total of 78 isolates were identified by R. solanacearum-specific primer pairs (PS-1/PS-2 and OLI-1/Y-2), as well as the following tests: restriction fragment length polymorphism analysis, biovar determination, immunofluorescence, biochemical analysis, and pathogenicity. The genetic composition of 36 selected isolates assessed using multilocus sequence analysis with seven genes (adk, gapA, gdhA, gyrB, ppsA, hrpB, and fliC) showed that all isolates originating from Serbian potato were homogeneous. By using the TCS algorithm of concatenated sequences to get insight into the phylogeography of isolates and other R. solanacearum strains deposited in the NCBI database, we showed that their origin is undetermined. Peroxidase (POD) activity was measured in brown rotted potato tubers. A positive correlation was found between POD activity and disease severity rated on the analysed tubers. In general, POD activity increased by 2–22 times in vascular necrotic tissues compared to non-necrotic ones, and depended on disease severity but not on cultivar. Native polyacrylamide gel electrophoresis analysis of POD profiles resulted in a total of 10 distinct POD isoforms, of which PODs 3–5 were highly intensified in response to R. solanacearum.  相似文献   

8.
The 16S rDNA, endoglucanase, and hrpB genes were partially sequenced for Asian strains of Ralstonia solanacearum spp. complex, including 31 strains of R. solanacearum and two strains each of the blood disease bacterium (BDB) and Pseudomonas syzygii. Additional sequences homologous to these DNA regions, deposited at DDBJ/EMBL/GenBank databases were included in the analysis. Various levels of polymorphisms were observed in each of these DNA regions. The highest polymorphism (approximately 25%) was found in the endoglucanase gene sequence. The hrpB sequence had about 22% poly-morphism. The phylogenetic analysis consistently divided the strains into four clusters, as distinctly shown on the phylogenetic trees of 16S rDNA, hrpB gene, and endo-glucanase gene sequences. Cluster 1 contained all strains from Asia, which belong to biovars 3, 4, 5, and N2. Cluster 2 comprised the Asian strains of R. solanacearum (as biovars N2 and 1) isolated from potato and clove, as well as BDB and P. syzygii. Cluster 3 contained race 3 biovar 2 strains from potato, race 2 biovar 1 strains from banana, and race 1 biovar 1 strains isolated from America, Asia, and other parts of the world. Cluster 4 was exclusively composed of African strains. The results of the study showed the distribution and diversity of the Asian strains, which are present in three of the four clusters. The similarity of Asian strains to those in the other regions was also observed.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AY464950 to AY465050  相似文献   

9.
Bacterial wilt is one of the important constraints in the cultivation of solanaceous vegetables in India. The disease is caused by Ralstonia solanacearum, a soil bacterium. We have collected 232 isolates of R. solanacearum infecting solanaceous vegetables (eggplant, tomato and chilli) and other crops from different parts of India. Pathogenicity of the isolates was tested on eggplant, tomato and chilli and the pathogen was confirmed by PCR. Multiplex PCR and biochemical tests indicated that all the isolates were phylotype I and biovar 3. Ninety-five representative isolates selected based on geographical region, host range and pathogenicity were subjected to further phylogenetic and diversity analysis. Sequence analysis of egl, pga and hrpB genes of 95 isolates and genetic diversity of 50 representative isolates was reported and discussed. Indian isolates within the Phylotype I did not group based on the host or geographical location, except clustering of isolates from the Andaman Islands. Indian isolates clustered into two sub groups based on egl and pga trees indicating the presence of two major population groups. Sub group 1 is the dominant group in the data set and consists of unknown/newer sequevars, and sub group 2 consist of mainly the isolates which are designated with sequevar numbers based on egl sequences. In the hrpB based tree, the sub group 2 is the dominant group in the data set and it is the same for the sub group 1 of the egl tree. Indian phylotpe I R. solanacearum strains are phenotypically diverse including the previously described sequevars 14, 17, 44, 47 and 48. Our studies indicated the existence of R. solanacearum isolates with unknown/newer sequevars; the diversity existing among the phylotype I isolates might be due to a continuous evolutionary process. To our knowledge this is the first detailed report on the diversity of phylotype I R. solanacearum strains infecting solanaceous vegetables and the existence of unknown/newer sequevars in India.  相似文献   

10.
11.
Bacterial wilt caused by race 1 strains of Ralstonia solanacearum is endemic on tomato produced in diverse agro-ecosystems in Taiwan. Using a new BIO-PCR protocol developed in this study, R. solanacearum was detected in soil, weed, and water samples collected from eight fields with different disease histories and cropping systems located in major tomato production areas. The sensitivity of the BIO-PCR was 1.9 CFU ml−1 and 17 CFU g−1 of soil for pure suspension and infested soil, respectively. The positive detection frequency of the BIO-PCR method was 66.6, 39.6, 23.1, and 31.8% for all tested samples of soil, weed rhizosphere soil, weed root, and water, respectively, and was higher than plating on MSM-1 medium. Detection of R. solanacearum from field soil indicated that spatial distribution of the pathogen in the field was not even regardless of the presence or absence of the disease and the different agro-ecosystems where the sampled fields were located, and the degree of unevenness was higher when tomato was absent from the field. Weed rhizosphere soils could be good sampling targets to monitor the pathogen in the field, because a higher positive detection proportion and population of R. solanacearum were found in the rhizosphere rather than the root of the collected weed samples. Symptomless weeds and contaminated irrigation, standing, or drainage waters were found to be important for the over-season survival and dissemination of R. solanacearum.  相似文献   

12.
Bacterial wilt caused by Ralstonia solanacearum is a destructive disease for many crops. The aim of this study was to investigate the phylogenetic relationships and genetic structure of an R. solanacearum population from diverse origins in Taiwan. All 58 tested isolates belonged to phylotype I, except the two biovar 2 isolates from potato. These belonged to phylotype IIB sequevar 1 and were identical to known potato brown rot strains, which were probably introduced. Phylotype I isolates were grouped into 10 sequevars. Sequevar 15 was predominant (34 out of 56 isolates). Its distribution covered the whole island and it was largely associated with solanaceous crops such as tomato, and with tomato field soil. A total of 14 haplotypes were identified based on a partial endoglucanase gene sequence. Parsimony network analysis revealed that haplotype A was the oldest haplotype in the local population. It encompassed all but one of the sequevar 15 isolates. Large variation in virulence on tomato was observed among the 58 isolates, and seven pathotypes were identified. Significant genetic differentiation was detected among pathotypes. Moreover, genetic differentiation was detected between biovar 3 and biovar 4 subgroups and between the strains associated with solanaceous and non‐solanaceous species, but none was detected between strains from different geographic origins. The results suggest that the phylotype I population in Taiwan is homogeneous, while mutation and local adaptation to specific ecological niches keep shaping the population.  相似文献   

13.
It is claimed that, with the exception of Musa balbisiana, all banana varieties are susceptible to bacterial wilt caused by Xanthomonas campestris pv. musacearum (Xcm). Despite being resistant to Xcm infection, M. balbisiana is not preferred for breeding because it belongs to the BB genome subgroup, while most edible bananas are of the A genome. To identify potential sources of resistance to Xcm, 72 banana accessions representing the Musa genetic diversity were evaluated in an outdoor confined potted trial. The midribs of the youngest leaf of 3-month-old banana plants were inoculated with 108 CFU mL−1 of Xcm isolate USY13P, and symptom development assessed weekly for 4 months. Results confirmed that M. balbisiana genotypes are indeed resistant to Xcm. Varieties within the Musa acuminata subsp. zebrina (AA) set were further identified as potentially useful sources of Xcm resistance. These findings reveal the potential to develop banana and plantain varieties with tolerance to Xcm.  相似文献   

14.
Bacterial wilt caused by Ralstonia solanacearum is a serious disease of peanut (Arachis hypogaea) in China. However, the molecular basis of peanut resistance to R. solanacearum is poorly understood. Arachis duranensis, a wild diploid species of the genus Arachis, has been proven to be resistant to bacterial wilt, and thus holds valuable potential for understanding the mechanism of resistance to bacterial wilt and genetic improvement of peanut disease resistance. Here, suppression subtractive hybridization (SSH) and macroarray hybridization were employed to detect differentially expressed genes (DEGs) in the roots of A. duranensis after Rsolanacearum inoculation. A total of 317 unique genes were obtained, 265 of which had homologues and functional annotations. KEGG analysis revealed that a large proportion of these unigenes are mainly involved in the biosynthesis of phytoalexins, particularly in the biosynthetic pathways of terpenoids and flavonoids. Subsequent real‐time polymerase chain reaction (PCR) analysis showed that the terpenoid and flavonoid synthesis‐related genes showed higher expression levels in a resistant genotype of A. duranensis than in a susceptible genotype, indicating that the terpenoids and flavonoids probably played a fundamental role in the resistance of Aduranensis to R. solanacearum. This study provides an overview of the gene expression profile in the roots of wild Arachis species in response to R. solanacearum infection. Moreover, the related candidate genes are also valuable for the further study of the molecular mechanisms of resistance to R. solanacearum.  相似文献   

15.
为探究不同渗透压和pH环境对烟草青枯病菌Ralstonia solanacearum致病力的影响,用Biolog PM 9~10代谢板中96种渗透压和96种pH环境培养烟草青枯病菌,并采用穿刺法接种于烟草离体叶片,测定不同环境下烟草青枯病菌对烟草的致病情况。结果表明,烟草青枯病菌可致病的渗透压范围包括1%~2%氯化钠、2%~3%硫酸钠、5%~20%乙二醇、1%甲酸钠、2%尿素、1%乳酸钠、20~100 mmol/L磷酸钠、10~100 mmol/L硫酸铵、10~100 mmol/L硝酸钠及10~20 mmol/L亚硝酸钠。可致病pH范围为5.0~8.0;当pH 4.5时,烟草青枯病菌在分别与L-正缬氨酸和5-羟色氨酸共培养时均可致病,与其余33种氨基酸共培养时则均不能致病;当pH 9.5时,烟草青枯病菌在与所有35种供试氨基酸共培养时均不能致病;烟草青枯病菌在葡萄糖苷、辛酸盐、半乳糖苷等10种化合物培养下均可致病。表明渗透压和pH环境会严重影响烟草青枯病菌的生长和致病力。  相似文献   

16.
Burrowing nematodes (Radopholus similis) are among the most serious nematode pests affecting banana and plantain (Musa spp.). In Uganda, bananas, which are known locally as “matooke”, are the main staple. Radopholus similis populations collected in four banana-growing locations (Namulonge, Mbarara, Ikulwe and Mukono) were cultured monoxenically on carrot discs, and we compared the variability in reproductive fitness and virulence (as a function of time and inoculum level) of different populations of R. similis from Uganda. Their level of pathogenicity was determined by assessing the nematode reproductive ratio; that is, final population divided by the initial population. These in vitro experiments showed that the R. similis population from Mbarara had the highest reproduction ratio, while the population from Mukono had the lowest reproduction ratio. This assessment along with pathogenicity experiments on host Musa plants provides a means for defining pathogenicity groups among R. similis populations.  相似文献   

17.
Streak disease of banana and plantain caused by banana streak virus (BSV) was first reported in the Ivory Coast in 1974 and occurs in at least 16 countries in Africa. Based on genomic characteristics, BSV has been shown to be a member of genus Badnavirus. Efficient and reliable diagnostic methods for BSV have recently become widely available. This paper summarizes the current knowledge on its causal agent, geographical distribution, symptomatology, transmission, host range, available diagnostic techniques and management options for the disease in Africa. Further research needs are identified in light of the widespread occurrence of BSV in most plantain/banana germplasms and the difficulties in obtaining BSV-free plantlets through tissue culture.  相似文献   

18.
A sensitive and specific assay, based on a Nested-PCR-RFLP protocol, was developed for the detection of biovars of Ralstonia solanacearum, the causal agent of bacterial wilt. Oligonucleotide primer pairs were selected within the hrp gene region. Specific amplification of the hrp fragments was obtained for all R. solanacearum strains and also for two closely related species, Pseudomonas syzygii and the blood disease bacterium. No amplification was observed for a wide range of other bacterial species, including R. pickettii and Burkholderia cepacia. Digestion with HindII provided four distinct restriction profiles specific to biovars or groups of biovars of R. solanacearum: one for biovar 1 strains originating from the Southern part of Africa, one for American biovar 1 and biovars 2 and N2 strains, one for biovars 3 and 4 strains, and one for biovar 5 strains. When applied to either pure culture or infected plant tissues, Nested-PCR allowed detection as low as 103cfu ml–1, which corresponds to 1cfu per reaction. Amplification was partially or completely inhibited by compounds contained in plant extracts (potato plant and potato tuber, tomato, tobacco, eggplant, pepper and Pelargonium asperum). A combined PVPP/BSA treatment prior to amplification permitted reliable Nested-PCR detection of R. solanacearum strains in plant samples. Nested-PCR-RFLP, assessed with isolates from Reunion Island but also applicable to any R. solanacearum strain, provides a wide range of possible uses for identification, detection and epidemiological investigations.  相似文献   

19.
The emergence of a new genotype and pathogenic variant of Ralstonia solanacearum in Martinique is described. Bacterial wilt of solanaceous crops caused by phylotype‐I and ‐II strains (‘historical strains’), was reported in Martinique in the 1960s. From 1999, Anthurium and cucurbit production was strongly affected by strains described as a new pathogenic variant genotyped phylotype IIB/sequevar4NPB (phIIB/4NPB). The following questions concerning these strains were investigated: (i) were they introduced or endemic, (ii) was their distribution widespread in Martinique, and (iii) which factors could explain this emergence? This study examined 221 isolates collected from 1989 to 2003 after several surveys. The main survey (2002–03) included 115 vegetable and ornamental crop farms. From 1999 to 2001, these phIIB/4NPB strains were initially described as the ‘Anthurium‐cucurbit’ strain. In 2003, they made up one‐third of the isolates recovered from solanaceous hosts, particularly tomato. This pathogenic variant of R. solanacearum was consistently recovered from wild species and several weeds throughout Martinique, suggesting that these strains were well established in Martinique. Data reported are consistent with the emergence of a new population of R. solanacearum in Martinique, which has spread rapidly across the entire island and may overtake the previously established population, particularly on tomatoes. Evidence is presented which suggests that the emergence of these new strains is more frequent on vegetable crops when cucurbitaceous and musaceous plants are grown in succession.  相似文献   

20.
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc‐SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号