首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
On plants at 59 sugarcane plantations in Central and East Java, Indonesia, we found virus-like symptoms such as streak mosaic. The virus was transmitted mechanically and was sett-borne. The nucleotide sequence of the coat protein gene had the highest identity with that of Sugarcane streak mosaic virus (SCSMV) isolate Pakistani. We tentatively designate this isolate as SCSMV-Idn (Indonesia).  相似文献   

2.
3.
引起甘蔗花叶病的病原分子生物学进展   总被引:2,自引:1,他引:1  
花叶病是最主要的甘蔗病毒病害之一,在全球种植甘蔗的国家或地区普遍发生,可导致甘蔗产量下降,糖分减少,给甘蔗生产带来严重的经济损失。引起甘蔗花叶病的病毒主要有甘蔗花叶病毒(Sugarcane mosaic virus,SCMV)、高粱花叶病毒(Sorghum mosaic virus,Sr MV)和甘蔗条纹花叶病毒(Sugarcane streak mosaic virus,SCSMV)。本文综述了这3种病毒的生物学特性、鉴定与检测、基因组结构与基因功能、遗传变异与分子进化等方面的研究进展,并讨论了对甘蔗花叶病的生态防控措施。  相似文献   

4.
 甘蔗花叶病广泛存在于我国甘蔗种植区,严重影响甘蔗产业的高质量发展。近年来甘蔗线条花叶病毒在蔗区肆虐,尽管针对其的血清学检测技术已经建立,但是快速、准确、高通量的检测方法亟待发掘。本研究制备了SCSMVCP的抗血清,特异性高,与引起甘蔗花叶病的另两种病原 (高粱花叶病毒和甘蔗花叶病毒) 间没有血清学交叉反应。基于该多克隆抗体,建立了直接抗原包被的ELISA、斑点杂交、Western blot和基于多抗的免疫试纸条检测技术。开发的免疫试纸条检测技术能快速、准确、高通量应用于田间病毒鉴定。本文提供了基于血清学的快速、准确、高通量,且便捷的甘蔗线条花叶病毒检测技术,有助于我国蔗区甘蔗花叶病的监测与防控。  相似文献   

5.
甘蔗是最重要的糖料作物,由于其栽培过程中采用种茎无性繁殖,病毒病发生逐年加重.已知侵染甘蔗的病毒种类有甘蔗花叶病毒(Sugarcane mosaic virus,SCMV)、高粱花叶病毒(Sorghummosaic virus,SrMV)、甘蔗线条花叶病毒(Sugarcane streakmosaic virus,SCSMV)、甘蔗黄叶病毒(Sugarcane yellow leaf virus,SCYLV)、甘蔗斐济病病毒(Sugarcane Fiji disease virus,SFDV)、甘蔗线.条病毒(Sugarcane streak virus,SSV)和甘蔗杆状病毒(Sugarcane bacilliform virus,SCBV).文中简要介绍上述几种病毒的基本特性及其所致病害的发生特点,对目前甘蔗病毒病防治技术进行了评述,提出了我国甘蔗病毒研究中需要关注的若干问题.  相似文献   

6.
甘蔗花叶病是中国蔗区危害最严重的病毒病,利用抗病品种是控制该病害最经济有效的方法。本研究以中国蔗区甘蔗花叶病的2种主要病原甘蔗线条花叶病毒分离物(SCSMV-JP1,Gen Bank登录号JF488064)和高粱花叶病毒分离物(Sr MV-HH,Gen Bank登录号DQ530434)为接种毒源,采用人工切茎接种和RT-PCR检测相结合方法,于2015年、2016年2次对中国近年选育的71个优良甘蔗新品种(系)进行了双抗SCSMV和Sr MV鉴定与评价。结果表明:71个优良甘蔗新品种(系)中,对SCSMV表现高抗到中抗的有24个,占33.8%,感病到高感的有47个,占66.2%;对Sr MV表现高抗到中抗的有27个,占38.03%,感病到高感的有44个,占61.97%。综合分析结果显示,福农30号、福农36号、闽糖01-77、桂糖02-467、柳城05-129、粤甘34号、粤甘40号、粤糖55号、粤糖96-86、粤糖00-318、赣蔗02-70、云蔗03-258、云蔗04-241、云蔗05-51、云蔗06-80等15个优良新品种(系)双抗SCSM V和Sr M V 2种病毒,占21.13%,其中粤甘34号、粤糖55号、云蔗03-258、云蔗05-51、云蔗06-80等5个优良新品种(系)对2种病毒均表现为高抗,占7.04%,。研究结果明确了71个甘蔗优良新品种(系)对甘蔗花叶病2种主要致病病原的抗性,筛选出双抗SCSMV和Sr MV的甘蔗优良新品种(系)15个,为生产用种选择和有效防控甘蔗花叶病提供了科学依据。  相似文献   

7.
The potato leafroll virus (PLRV) P0 protein (P0PL) is a suppressor of RNA silencing. In this study, we showed that P0 protein from an Argentinian isolate of PLRV (P0PL-Ar) has an additional activity not described for other PLRV or P0 proteins from poleroviruses. Besides reporting that P0PL-Ar displays both local and systemic silencing suppressor activity, we demonstrated, for the first time, that P0PL-Ar impedes accumulation of dsRNA-derived siRNAs. We also showed that P0PL-Ar interacts with Solanum tuberosum SKP1 orthologue (StSKP1) and triggers destabilization of ARGONAUTE 1 (AGO1) and that these actions are mediated by the F-box-like domain. A mutant in the GW/WG motif within the P0PL-Ar F-box-like motif lost the suppression activity, the interaction with StSKP1 and abolished AGO1 decay. Interestingly, a mutant in the L76/P77 residues within the P0PL-Ar F-box-like motif, which lost the suppression activity and the interaction with StSKP1, retained the capacity to enable AGO1 decay. Thus, unlike other P0 proteins of previously characterized poleroviruses, P0PL-Ar seems to have a dual activity, according to the findings of this study. This protein would act at both an upstream and a downstream step of the RNA silencing pathway: upstream of Dicer-like enzyme (DCL)-mediated primary siRNA production and downstream at the RNA-induced silencing complex (RISC) complex level. Our results contribute to the understanding of the different ways PLRV P0 proteins function as silencing suppressors.  相似文献   

8.
 马铃薯Y病毒属病毒编码的辅助成分-蛋白酶(helper component-proteinase,HC-Pro)是第一个被鉴定的RNA沉默抑制因子。本研究通过定点突变的方法获得了马铃薯A病毒(Potato virus A,PVA)HC-Pro的3个突变体, 利用农杆菌共浸润的方法分析了这些突变对HC-Pro抑制RNA沉默活性的影响。与野生型HC-Pro处理相比,Phe6、Asn11 缺失突变体的处理中绿色荧光减弱,而Ile250-Gly251-Asn252(IGN)基序中的Ile和Gly分别突变为Asp和Glu的处理中观察不到绿色荧光。该结果表明Phe6、Asn11 和IGN250  3个位点均参与调控HC-Pro的抑制RNA沉默活性。  相似文献   

9.
10.
ABSTRACT The effects on symptom expression of single amino acid mutations in the central region of the Plum pox virus (PPV) helper component-proteinase (HC-Pro) gene were analyzed in Nicotiana benthamiana using Potato virus X (PVX) recombinant viruses. PVX recombinant virus expressing the wild-type variant of PPV HC-Pro induced the expected enhancement of PVX pathogenicity, manifested as necrosis and plant death. Recombinant virus expressing a variant of PPV HC-Pro containing a single point mutation ( HCL(134)H) was unable to induce this synergistic phenotype. The RNA silencing suppressor activity of PPV HC-Pro was demonstrated in a transient silencing suppression assay. In contrast, the HCL(134)H mutant showed no such activity. These results indicate that a unique point mutation in PPV HC-Pro impaired its ability to suppress RNA silencing and abolished its capacity to induce synergism, and clearly shows for the first time the link between these two functions in potyvirus HC-Pro. Additionally, we compared the effects on virus accumulation in N. benthamiana plants infected with either the PVX recombinant constructs or with native viruses in double infection experiments. PVX (+) and (-) strand genomic RNA accumulated at similar levels in plants infected with PVX recombinants, leading to an increase in PVX pathology, compared with plants infected with PVX alone. This finding confirms that the enhancement of pathogenicity associated with synergistic interaction is not a consequence of more efficient PVX replication due to RNA silencing suppression by PPV HC-Pro.  相似文献   

11.
ABSTRACT The complete nucleotide sequence of wheat streak mosaic virus (WSMV) has been determined based on complementary DNA clones derived from the 9,384-nucleotide (nt) RNA of the virus. The genome of WSMV has a 130-nt 5' leader and 149-nt 3'-untranslated region and is polyadenylated at the 3' end. WSMV RNA encodes a single polyprotein of 3,035 amino acid residues and has a deduced genome organization typical for a member of the family Potyviridae (5'-P1/HC-Pro/P3/6K1/CI/6K2/VPg-NIa/NIb/CP-3'). Because WSMV shares with ryegrass mosaic virus (RGMV) the biological property of transmission by eriophyid mites, WSMV has been assigned to the genus Rymovirus, of which RGMV is the type species. Phylogenetic analyses were conducted with complete polyprotein or NIb protein sequences of 11 members of the family Potyviridae, including viruses of monocots or dicots and viruses transmitted by aphids, whiteflies, and mites. WSMV and the monocot-infecting, mite-transmitted brome streak mosaic virus (BrSMV) are sister taxa and share a most recent common ancestor with the whitefly-transmitted sweet potato mild mottle virus, the type species of the proposed genus "Ipomovirus." In contrast, RGMV shares a most recent common ancestor with aphid-transmitted species of the genus Potyvirus. These results indicate that WSMV and BrSMV should be classified within a new genus of the family Potyviridae and should not be considered species of the genus Rymovirus.  相似文献   

12.
 马铃薯Y病毒(potato virus Y,PVY)是侵染烟草的最重要病毒之一。不同PVY株系侵染烟草可引起不同症状,有些PVY株系可引起烟草叶脉坏死,严重影响烟草的产量和品质。PVY A12分离物属于NTN-NW株系,但侵染珊西烟(Nicotiana tabacum cv. Xanthi)不能引起叶脉坏死。分析发现,PVY分离物A12 HC-Pro第182和245位的氨基酸均为精氨酸(R),而能引起叶脉坏死的其他NTN-NW分离物HC-Pro的这2个位点均为赖氨酸(K)。PVY坏死株系N605的HC-Pro第182位和245位氨基酸也均为K。本研究通过定点突变,将N605侵染性克隆PVYN605-GFP HC-Pro第245位残基K突变为R,突变体仍然能够引起叶脉坏死,而将其HC-Pro第182位残基K突变为R,突变体不能引起叶脉坏死。Western blot检测发现,2个突变体与野生型病毒CP蛋白在珊西烟中的表达水平没有明显差异。沉默抑制实验结果显示,2个突变体和野生型的HC-Pro抑制RNA沉默能力没有发生变化。初步确定PVYN605-GFP HC-Pro第182残基K是引起叶脉坏死的关键氨基酸,推测PVY A12分离物不能引起烟草叶脉坏死的原因是其HC-Pro第182残基R引起的。  相似文献   

13.
14.
15.
16.
17.
18.
Soilborne wheat mosaic disease (SBWMD), originally attributed to infections by Soilborne wheat mosaic virus (SBWMV) and Wheat spindle streak mosaic virus (WSSMV), is one of the most frequent virus diseases and causes economic losses in wheat in southern Brazil. This study aimed to characterize molecularly the viral species associated with wheat plants showing mosaic symptoms in Brazil. Wheat leaves and stems displaying mosaic symptoms were collected from different wheat cultivars in Passo Fundo municipality, Rio Grande do Sul State, southern Brazil. Double-stranded RNA was extracted and submitted to cDNA library synthesis and next-generation sequencing. No sequences of SBWMV and WSSMV were detected but the complete genome sequence of a putative new member of the family Benyviridae was determined, for which the name wheat stripe mosaic virus (WhSMV) is proposed. WhSMV has a bipartite genome with RNA 1 and RNA 2 organization similar to that of viruses belonging to Benyviridae. WhSMV RNA 1 has a single open reading frame (ORF) encoding a polyprotein with putative viral replicase function. WhSMV RNA 2 has six ORFs encoding the coat protein, the major protein (read-through), triple gene block movement proteins (TGB 1, 2 and 3) and ORF 6 (hypothetical protein). In addition to the genomic organization and nucleotide and amino acid sequence identities, phylogenetic analyses also corroborated that WhSMV is a virus species of the Benyviridae. However, isolates of WhSMV formed a clade distinct from members of the genus Benyvirus. It was also demonstrated that the plasmodiophorid Polymyxa graminis is associated with wheat roots showing SBWMD symptoms and infected by WhSMV.  相似文献   

19.
20.
Nicotiana benthamiana was transformed with a green fluorescent protein (GFP) gene driven by cauliflower mosaic virus 35S promoter. A GFP-silenced line and a nonsilenced line were selected after ultraviolet irradiation. GFP short-interfering RNAs (siRNAs) were detected in the silenced line but not in the nonsilenced line. T1 progeny of the silenced line varied in GFP suppression patterns and were grouped into three types (I, II, III) based on the GFP suppression pattern. With Northern blot analysis, different levels of GFP mRNA accumulated, from a very low level in type I and II to an intermediate level in type III, in contrast to a much higher level in the nonsilenced line. Plants were also inoculated with Potato virus X engineered to contain the GFP sequence to evaluate the levels of virus resistance. None to a few GFP spots were observed on inoculated leaves in types I and II, whereas numerous spots and systemic infection appeared in type III. These results showed that virus resistance was inversely correlated with the levels of mRNA, suggesting that the strength of RNA silencing determines the extent of virus resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号