首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
小麦抗/感白粉病近等基因系基因表达差异的研究   总被引:2,自引:0,他引:2  
采用cDNA-AFLP(cDNA-amplified fragment length polymorphism)技术,对小麦抗白粉病近等基因系Mardler/7*百农3217和百农3217材料的不同处理,于接菌后不同时间点的基因表达进行了表达分析。Mardler/7*百农3217及其感病轮回亲本百农3217在表达上存在差异;利用46对引物在抗/感近等基因系和感病轮回亲本DCINA处理发现283条差异带,对其中42条片段进行克隆测序,同源性分析发现包括信号转导相关的基因片段、与细胞壁的组成和结构相关的基因片段和与过敏性反应相关的基因片段。此研究结果发现其中的一些差异显示片段对小麦的抗白粉病机理的揭示具有重要作用。  相似文献   

2.
44份大豆微核心种质抗菌核病鉴定与评价   总被引:1,自引:0,他引:1  
大豆菌核病又称白腐病,是一种真菌性病害。主要由真菌 Sclerotinia sclerotiorum (Lib.) de Bary侵染,是世界范围的大豆病害,也是我国大豆主产区的主要病害。本研究利用不同地区和寄主来源的4个菌核病分离物对44份大豆微核心种质进行连续2年的田间接种鉴定,筛选抗/耐菌核病的大豆种质资源,为大豆抗菌核病育种提供优异抗性种质。结果表明,(1)不同大豆种质对菌核病的抗性不同,在44份微核心种质中,中抗种质6份(13.64%),中感种质27份(61.36%),感病种质9份(20.45%),高感I种质2份(4.55%),其中合丰24、大天鹅蛋、倪丁花眉豆、牛毛黄、大黄豆和五月黄6个中抗种质可作为抗性亲本用于大豆抗菌核病育种。(2)不同地区和寄主来源的4个菌核病分离物致病性不同,分离物黑西5(黑龙江省,大豆),病情指数49.32,病斑长度达到5.93 mm,致病性最强;黑饶24(黑龙江省,大豆)与Qin 24(青海省,油菜)致病性次之;Hef 50(安徽省,油菜),病情指数为39.02,病斑长度为3.65 mm,致病性最弱。用黑西5鉴定和筛选抗菌核病大豆种质最为有效。  相似文献   

3.
香蕉过氧化物酶基因表达和酶活性与香蕉抗枯萎病的关系   总被引:1,自引:1,他引:0  
为了获得能反应香蕉遭受枯萎病侵染的标记基因。通过随机克隆测序的方法从香蕉根系cDNA文库中获得一个过氧化物酶基因,命名为MaPOD1(GenBank登录号为KC478598)。扩增获得的cDNA序列与质粒序列一致,表明该基因是香蕉POD基因编码框全长cDNA,包含一个948 bp的最大开放阅读框,编码一个长328个氨基酸的蛋白质。蛋白质序列同源比对发现其含有过氧化物酶活性位点和亚铁血红素配体位点结构。实时荧光定量PCR分析表明该基因在香蕉根和假茎中表达量较高;在球茎中的表达量最低。在耐病和感病品种中,MaPOD1均上调表达,但在耐病品种中MaPOD1在所有时间点相对于对照增加的倍数均高于感病品种,表明在该基因在香蕉的抗病性中起着重要作用。该基因的表达与酶活变化趋势相同,基因表达滞后于酶活变化。MaPOD1可以作为一个新的响应枯萎病侵染的标记基因。  相似文献   

4.
郑196是从黄淮海大豆产区选育的优良大豆品种。该品种在SCN2病圃中鼓粒情况良好;2017年,郑196在黄淮海9个试点的产量与在SCN2病圃中产量相比较,差异不显著,说明该品种具有耐SCN病的特性;利用荧光定量PCR,进一步分析来自Rhg1/Rhg4位点的4个SCN-抗性基因(Glyma18g02580, Glyma18g02590, Glyma18g02610, SHMT)在郑196及其他不同抗性水平大豆中的表达,结果表明:在受到SCN2侵染的0~25 d,4个SCN-抗性基因在抗病材料中的表达量均持续提升;在受到SCN2侵染的10 d/15 d,这4个SCN-抗性基因在郑196及感病材料中表达量达到最高点,之后表达量下降,该结果表明,郑196的耐SCN病机理不同于SCN抗性基因在抗病材料中的抗病机理,其耐病性不是由SCN抗性基因单独调控的,有可能存在其特有的耐病通路或是由抗性基因与耐病基因共同调控其耐病机制。本研究可对抗SCN种质资源创新和抵御SCN策略提供参考依据。  相似文献   

5.
核盘菌诱导下甘蓝型油菜防御相关基因表达差异分析   总被引:1,自引:0,他引:1  
马田田  彭琦  陈松  张洁夫 《作物学报》2014,40(3):416-423
菌核病是油菜主要病害, 至今尚未在油菜及相关植物中找到抗性基因。本研究利用qRT-PCR法比较了抗病品种宁RS-1和感病品种APL01在接种核盘菌后0~48 h内11个防御相关基因的表达差异, 以揭示抗病品种宁RS-1的抗病机制。结果表明, 4个基因(PGIP、Cu/ZnSOD、OXO和GLP)在核盘菌诱导前后抗、感品种内表达量均较高, 且抗病品种的表达量显著高于感病品种, 尤其是PGIP基因, 抗病品种宁RS-1在24 h的表达量为诱导前的170.4倍, 而感病品种仅为诱导前的3.5倍, 该时期抗病品种PGIP的表达量为感病品种的1299.4倍;2个基因(LOX2和PDF1.2)在诱导前后抗、感品种内的表达量均较低, 但抗、感品种间表达量差异显著;5个基因(FeSOD、PAL、EDS1、PR1和EIN3)诱导前后抗、感品种内的表达量均较低, 且抗、感品种间的表达量差异不显著。推测抗病品种宁RS-1对菌核病的抗性可能是由于PGIP的上调表达, 抑制了核盘菌PG蛋白对侵染部位油菜组织细胞壁的降解, 从而抑制了油菜菌核病的发生与蔓延。  相似文献   

6.
甜菜nia基因的克隆及不同氮素形态诱导的差异表达   总被引:2,自引:0,他引:2  
丁广洲  侯静  陈丽  马凤鸣  陈连江 《作物学报》2011,37(11):1949-1955
利用同源序列克隆方法从二倍体甜菜品种Ty7中获得氮素诱导nia基因片段,通过RACE技术克隆nia基因全长序列,该基因ORF长度2 718 bp,编码905个氨基酸,并已在GenBank上登录(EU163265),基因组中nia以低拷贝数存在。nia编码蛋白的等电点为6.12,推测分子量为102 kD,以NADH为电子供体。为揭示不同氮素形态和处理对甜菜nia基因表达的影响,采用半定量PCR方法检测不同氮素形态诱导nia基因mRNA的表达,同时测定酶活力。结果表明,当铵态氮诱导nia基因时,低浓度的铵离子能促进基因的表达,过高浓度的铵离子抑制基因的表达。当硝态氮诱导nia基因时,随处理浓度的增加,nia的表达加强,呈正相关关系。用30 mmol L–1硝态氮诱导4 h后,nia基因表达达最高值,约在6 h后,表达明显下降。  相似文献   

7.
白菜型油菜WRKY基因片段的克隆与表达分析   总被引:1,自引:1,他引:0  
WRKY转录因子能广泛地参与植物的生物与非生物胁迫反应。为了研究WRKY转录因子在ABA诱导下的表达调控,首先利用同源克隆法在白菜型油菜中克隆WRKY基因和Actin基因片段, 用BLAST和DNAMAN软件对核酸及氨基酸序列进行分析;通过荧光定量PCR技术检测白菜型油菜WRKY基因在ABA处理条件下的相对表达趋势;然后利用相对定量PCR技术(real-time relative quantification PCR,以下简称RT-qPCR)检测WRKY基因在ABA(100 μM)诱导不同时段的差异表达。在白菜型油菜中克隆到一段中克隆到一段长度为680 bp的WRKY基因片段和一段长度为933 bp的β-actin基因片段。RT-qPCR实验结果表明,BcWRKY能被ABA诱导表达,且在诱导1 h后表达量最高。本实验文成功地克隆了白菜型油菜的WRKY转录因子基因和Actin基因片段,并证明了白菜型油菜WRKY基因的表达受ABA的影响。  相似文献   

8.
为探明大豆中HKT蛋白基因的耐盐作用机理,从耐盐大豆材料中克隆到GmHKT6;2基因完整的cDNA序列,GmHKT6;2基因的开放阅读框(ORF)全长1 644 bp,编码547个氨基酸。序列比对与进化树分析表明:GmHKT6;2是大豆中的一个新HKT蛋白基因;GmHKT6;2基因在大豆的根、茎及叶中均能表达,150 mmol/L NaCl处理后,该基因在大豆根、茎及叶中的表达被强烈诱导并高效表达。结构域分析结果表明:大豆GmHKT6;2基因拥有10个可能的跨膜结构域(TMD)和阳离子转运蛋白保守结构域,推测其是通过调节相关阳离子的转运来调控大豆的耐盐性。  相似文献   

9.
几丁质酶能够通过破坏昆虫组织中的几丁质起到抗虫作用。为获得高表达的植物几丁质酶基因载体,通过同源克隆的手段,从粘质沙雷氏菌中分离到了chiB基因,长度为992 bp,构建了pET28表达载体,并用IPTG诱导了该基因的表达。经分析发现该基因表达产物属于糖基水解酶(glycosyl hydrolases)18家族,并利用pCAMBIA2300构建了植物表达质粒pCAM-35S-chiB。  相似文献   

10.
对甘蔗受黑穗病菌侵染后差异表达基因的分离与鉴定   总被引:2,自引:0,他引:2  
采用12个3''锚锭引物和8个5''随机引物构建引物组合, 运用DDRT-PCR差异显示方法, 分析NCo376和F134两品种接种黑穗病菌前后的基因表达差异。经克隆、测序和半定量RT-PCR验证, 获得7条真实差异表达片段, 这些片段分别同GenBank中编码细胞色素C氧化酶基因、核糖体蛋白基因、NAD-依赖型苹果酸脱氢酶基因、氨基转移酶基因、乙烯响应相关结合蛋白基因、RNA聚合酶特异转录起始因子和反转录转座子的序列的同源性达28%~99%。半定量RT-PCR分析表明, 细胞色素C氧化酶基因的表达受甘蔗黑穗病菌和水杨酸的调控, 不依赖于过氧化氢的作用机制, 在甘蔗根、茎、叶中表达的抗病基因组成型表达, 但表达水平较低。推测甘蔗受黑穗病菌侵染后, 可能通过细胞色素C氧化酶基因的诱导, 促使植保素合成增多, 以此抵抗或抑制病原菌的胁迫。该结果丰富了甘蔗与黑穗病菌互作的分子机制研究, 为甘蔗抗黑穗病分子育种奠定了基础。  相似文献   

11.
采用cDNA-AFLP差异显示技术对大豆细胞质雄性不育系NJCMS2A与其保持系NJCMS2B间基因差异表达进行研究,结果从NJCMS2A花蕾中分离到一个差异表达片段,对该差异片段进行克隆、测序和序列比对分析,Blast检索结果显示它与大豆基因组中Gm13上g29510.1 cDNA片段的同源性达98.7%,与大豆中一个MADS-box基因的同源性达98%,氨基酸序列比对结果表明它与大豆中一个MADS-box蛋白有96%的同源性,与豌豆中MADS-box M7蛋白有83%的同源性,与苦瓜中MADS-box2蛋白有88%的同源性,与海岛棉典型的MADS-box基因编码的AGAMOUS蛋白保守区有83%的同源性,进一步对其氨基酸序列进行结构和功能预测显示该差异片段具有MADS-box转录因子的典型结构域K-box,证明其编码蛋白为一MADS-box转录因子,半定量RT-PCR分析结果显示其在NJCMS2A花蕾中表达量很高,而在NJCMS2B花蕾中表达量很低,推测该差异片段可能与大豆细胞质雄性不育有关。  相似文献   

12.
磷酸烯醇式丙酮酸羧化酶(PEPCase)是控制植物籽粒中蛋白质/油脂含量比例的关键酶.本研究利用RT-PCR技术,克隆PEPCase基因的片段,并将克隆的PEPCase基因片段反向连接替代植物表达载体PBI121的GUS基因.从花生栽培品种荔蒲大花生基因组中克隆获得编码PEPCase的基因片段(886 bp),其核苷酸序列与已报道的花生(EU391629)、棉花(AY008939)、大豆(D10717)、拟南芥(AY210895)、豌豆(D64037)PEPCase基因对应部分的同源性分别为99.77%,84.37%,81.54%,81.25%,78.71%,说明我们得到PEPCase基因片段较准确.构建的反义表达载体中PEPCase基因由35S启动子所控制,将构建的反义表达载体命名为pBGPEP.为通过反义抑制技术提高花生含油量提供了基因及表达载体.  相似文献   

13.
类钙调蛋白(CaM-likeprotein,CML)在植物抵抗逆境中发挥了重要的作用,因此研究CML基因是植物抗逆分子育种的一个重要分子基础。本实验室在前期工作中筛选得到1个片段大小为264 bp的大豆CML基因,对该基因序列设计特异性引物,利用PCR技术对该基因进行扩增,并获得大小为264 bp的片段,利用无缝克隆技术连接到pMD18T载体上,获得克隆载体。通过对该基因的核苷酸序列分析,在NCBI上发现该基因序列与大豆Calcium-binding protein(CML38-like)基因序列相似度为98.53%。目前对CML38-like基因的功能还未见报道,本研究根据克隆测序得到的基因序列构建系统进化树并分析,随后对该基因的蛋白质二级结构和蛋白质三级结构进行预测,发现该基因可能对大豆抗旱有着一定的影响。最后通过克隆载体构建CML38-like基因的过表达载体以及RNA干扰表达载体。本研究为鉴定大豆CML38-like基因的功能和了解该基因对大豆的非生物胁迫反应的影响提供了理论依据。  相似文献   

14.
为了研究GO基因在植物中的功能,获得转基因植株,用限制性内切酶将乙醇酸氧化酶(GO)基因从克隆载体pBSSP5上切下,连接到植物双元表达载体pBin117的CaMV 35S启动子和NOS 终止子之间,成功构建了GO基因植物表达载体pBinGO.在此基础上以嘎拉苹果叶片为受体,通过根癌农杆菌介导法将GO基因导入苹果,获得了2个抗性芽,PCR检测初步表明GO基因已整合到嘎拉苹果基因组中.  相似文献   

15.
根据烟草叶绿体高频同源重组片段的已知序列(GenBank Z00044.1)设计引物,用PCR的方法克隆到1个3.663 kb的番茄叶绿体DNA片段(psbD/trnG),命名为ctDNA。该片段与GenBank中烟草的相应片段有96.7%同源性, 与本文所用的烟草的相应片段有95.8%同源性。以其为外源多顺反子定点整合介导的同源重组片段,与来自烟草叶绿体的强启动子Prrn和终止子psbA3’,以及甘露聚糖酶基因man、绿荧光蛋白基因gfp、氨基糖苷3’-腺苷酰基转移酶基因aadA构建番茄质体多顺反子定点整合表达载体pLM2(-psbD-Prrn-RBS-man-RBS-gfp-RBS-aadA-psbA3’-trnG-)。将该载体用基因枪轰击烟草叶片,用添加了壮观霉素的选择分化培养基筛选,获得质体转基因烟草3株。用PCR、激光扫描、Western Blot、RFLP等方法检测都证实man、gfp、aadA基因已整合到烟草质体基因组中,且均得到表达。用番茄质体多顺反子定点整合表达载体成功实现在烟草质体中的表达。  相似文献   

16.
百合花青素苷合成酶基因片段的克隆及表达分析   总被引:2,自引:1,他引:1  
为了克隆百合花青素苷合成酶基因(anthocyanidin synthase, ANS),通过已报道的其他物种的ANS基因保守序列设计简并引物,采用同源克隆的方法成功克隆得到了百合ANS基因片段,该片段长701 bp,编码233个氨基酸残基。根据蛋白比对结果,百合ANS基因编码的氨基酸序列与郁金香、荷兰鸢尾、甜樱桃的一致性分别为86%、81%、77%。采用半定量RT-PCR法分析表明,该基因在百合花瓣中的表达水平最高,叶和茎次之,鳞茎中不表达。本研究从百合中分离得到了ANS基因片段,为后续获得基因全长打下了基础。  相似文献   

17.
为了研究GA20氧化酶基因在苹果矮化砧木中的分子特征和表达特征,利用RT-PCR方法从苹果矮化砧木2号和36号c DNA中克隆了GA20氧化酶基因(GA20ox1),并对该基因及其编码氨基酸序列以及在不同时期砧木及嫁接品种中的表达分别进行了分析。结果表明,GA20ox1基因c DNA编码序列长1 179 bp,推导编码393个氨基酸(包括终止密码子),预测蛋白相对分子质量44.3 k Da,理论等电点5.89,编码的蛋白质包含GA20ox1基因家族所具有的特征保守结构域,系统进化分析表明该蛋白序列与苹果SH40的同源性达到96.9%。实时荧光定量PCR分析显示:36号砧木在6月份GA20ox1基因表达强度显著低于八棱海棠对照,而7-8月份的均显著高于对照,其上嫁接的品种7月份表达强度显著低于对照。在7-8月份2号砧木及嫁接品种GA20ox1基因的表达强度均显著低于对照。  相似文献   

18.
为了获得小麦wx-B1a基因的特异RNAi表达载体,以小麦品种‘京花1号’开花12天的籽粒为材料,用天根公司植物总RNA提取试剂盒提取总RNA,以wx-B1a基因(GenBank NO:AB019623)的cDNA序列设计一对特异性引物,利用RT-PCR克隆了wx-B1a基因部分cDNA片段。Blastn结果显示,它与GenBank上报道的Triticum aestivum wx-1 gene(GenBank NO:EU719611.1)同源。通过酶切连接将此片段分别置于拟南芥FAD2的Intron1(GenBank NO:AJ271841)的上、下游,然后将此发夹结构置于小麦HMW-GS 1Dx5启动子的下游,从而构建了小麦wx-B1a基因的特异RNAi表达载体pBAC47p-wx-B1aIR。从而为下一步转化高产强筋小麦品种培育优质面条专用小麦奠定基础。  相似文献   

19.
花叶病毒(soybean mosaic virus, SMV)病是大豆主要病害之一,生产上常采用种植抗性品种方法来防治。本研究以RNA干扰花叶病毒衣壳蛋白(coat protein, CP)基因为表达载体,Bar基因作为筛选标记基因,成熟子叶节为外植体,采用农杆菌介导法获得了22株T0代转基因大豆生根苗,经草丁膦涂抹、Bar试纸条和PCR法鉴定,获得RNAi CP转基因植株18株;对转基因植株T1代的遗传分析表明,外源基因能够稳定遗传到下一代且符合孟德尔遗传规律;T1代Southern杂交表明,导入的干扰片段为单拷贝;花叶病毒摩擦接种表明RNAi CP转基因大豆植株具有抗花叶病毒特性;摩擦接种后3周,DAS-ELISA检测进一步表明,RNAi CP转基因植株花叶病毒检出率仅为7.69%,而非转基因植株为100%。这表明RNAi花叶病毒CP基因可用于抗大豆花叶病毒的研究。  相似文献   

20.
皮金鹏 《中国农学通报》2012,28(18):189-193
以感病烟草品种为材料,提取总RNA,根据已报道的eIF4E基因cDNA的序列,在保守区域和差异区域分别设计特异性引物,采用RT-PCR克隆出eIF4E基因的目的片段。以中间载体pKANNIBAL和表达载体pART27为基础,构建成以CaMV35S启动子为驱动的含有“正向eIF4E目的片段-pdk intron-反向eIF4E目的片段”的RNAi烟草表达载体,构建的RNAi载体将抑制eIF4E基因表达,为了解其基因功能和烟草抗病毒育种打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号