首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The hormonal mediators of obesity-induced insulin resistance and compensatory hyperinsulinemia in dogs have not been identified. Plasma samples were obtained after a 24-h fast from 104 client-owned lean, overweight, and obese dogs. Plasma glucose and insulin concentrations were used to calculate insulin sensitivity and β-cell function with the use of the homeostasis model assessment (HOMAinsulin sensitivity and HOMAβ-cell function, respectively). Path analysis with multivariable linear regression was used to identify whether fasting plasma leptin, adiponectin, or glucagon-like peptide-1 concentrations were associated with adiposity, insulin sensitivity, and basal insulin secretion. None of the dogs were hyperglycemic. In the final path model, adiposity was positively associated with leptin (P < 0.01) and glucagon-like peptide-1 (P = 0.04) concentrations. No significant total effect of adiposity on adiponectin in dogs (P = 0.24) was observed. If there is a direct effect of leptin on adiponectin, then our results indicate that this is a positive relationship, which at least partly counters a negative direct relationship between adiposity and adiponectin. Fasting plasma leptin concentration was directly negatively associated with fasting insulin sensitivity (P = 0.01) and positively associated with β-cell function (P < 0.01), but no direct association was observed between adiponectin concentration and either insulin sensitivity or β-cell function (P = 0.42 and 0.11, respectively). We conclude that dogs compensate effectively for obesity-induced insulin resistance. Fasting plasma leptin concentrations appear to be associated with obesity-associated changes in insulin sensitivity and compensatory hyperinsulinemia in naturally occurring obese dogs. Adiponectin does not appear to be involved in the pathophysiology of obesity-associated changes in insulin sensitivity.  相似文献   

2.
Although one study showed lower adiponectin concentrations in obese dogs, other recent studies indicate that adiponectin might not be decreased in obese dogs, raising the possibility that the physiology of adiponectin is different in dogs than in humans. The aim of this study was to investigate possible causes of the discrepancy between the two largest studies to date that assessed the association between adiposity and adiponectin concentration in dogs, including the validity of the assay, laboratory error, and the effects of breed, sex, and neuter status on the relationship between adiposity and adiponectin concentrations. Adiponectin concentrations measured with a previously validated adiponectin ELISA were compared with those estimated by Western blotting analysis of reduced and denatured plasma samples. The possibility of laboratory error and the effect of EDTA anticoagulant and aprotinin were tested. Adiponectin concentration was measured by ELISA in 20 lean dogs (10 male and 10 female, 5 neutered in each sex). There was close correlation between adiponectin concentrations measured by ELISA and those estimated by Western blotting analysis (r = 0.90; P < 0.001). There was no substantial effect of EDTA, aprotinin, or laboratory error on the results. There was confounding by neuter status of the relationship between adiposity and adiponectin concentrations, but adiponectin concentrations were not significantly lower in male than in female lean dogs (females, 36 mg/L; males, 26 mg/L; P > 0.20) and were not significantly lower in intact than in neutered lean male dogs (intact, 28 mg/L; neutered, 23 mg/L; P = 0.49). We conclude that the adiponectin ELISA previously validated for use in dogs appears to be suitable for determination of canine adiponectin concentrations and that testosterone does not appear to have a strong effect on plasma adiponectin concentrations in dogs. Obesity might decrease adiponectin concentrations in intact but not in neutered dogs.  相似文献   

3.
Objective-To characterize adiponectin protein complexes in lean and obese horses. Animals-26 lean horses and 18 obese horses. Procedures-Body condition score (BCS) and serum insulin activity were measured for each horse. Denaturing and native western blot analyses were used to evaluate adiponectin complexes in serum. A human ELISA kit was validated and used to quantify high-molecular weight (HMW) complexes. Correlations between variables were made, and HMW values were compared between groups. Results-Adiponectin was present as a multimer consisting of HMW (> 720-kDa), low-molecular weight (180-kDa), and trimeric (90-kDa) complexes in serum. All complexes were qualitatively reduced in obese horses versus lean horses, but the percentage of complexes < 250 kDa was higher in obese versus lean horses. High-molecular weight adiponectin concentration measured via ELISA was negatively correlated with serum insulin activity and BCS and was lower in obese horses (mean ± SD, 3.6 ± 3.9 μg/mL), compared with lean horses (8.0 ± 4.6 μg/mL). Conclusions and Clinical Relevance-HMW adiponectin is measurable via ELISA, and concentration is negatively correlated with BCS and serum insulin activity in horses. A greater understanding of the role of adiponectin in equine metabolism will provide insight into the pathophysiology of metabolic disease conditions.  相似文献   

4.
Dogs do not appear to progress from obesity-induced insulin resistance to type 2 diabetes mellitus. Both postprandial hyperglycemia and postprandial hypertriglyceridemia have been proposed to cause or maintain beta cell failure and progression to type 2 diabetes mellitus in other species. Postprandial glucose, triglyceride, and insulin concentrations have not been compared in lean and obese dogs. We measured serum glucose, triglyceride, and insulin concentrations in nine naturally occurring obese and nine age- and gender-matched lean dogs. After a 24-h fast, dogs were fed half their calculated daily energy requirement of a standardized diet that provided 37% and 40% of metabolizable energy as carbohydrate and fat, respectively. Fasting and postprandial glucose and triglyceride concentrations were greater in the obese dogs (P < 0.001), although the mean insulin concentration for this group was five times greater than that of the lean group (P < 0.001). Most of the 0.6 mM (11 mg/dL) difference in mean postprandial glucose concentrations between lean and obese dogs was attributable to a subset of persistently hyperglycemic obese dogs with mean postprandial glucose concentrations 1.0 mM (18 mg/dL) greater than that in lean dogs. Persistently hyperglycemic obese dogs had lower triglyceride (P = 0.02 to 0.04) and insulin (P < 0.02) concentrations than other obese dogs. None of the dogs developed clinical signs of diabetes mellitus during follow-up for a median of 2.6 yr. We conclude that pancreatic beta cells in dogs are either not sensitive to toxicity because of mild hyperglycemia or lack another component of the pathophysiology of beta cell failure in type 2 diabetes mellitus.  相似文献   

5.
High insulin concentrations are a common clinical feature of equine metabolic syndrome (EMS) and insulin dysregulation. Hyperinsulinemia can induce laminitis, so reduction of insulin concentrations in response to an oral challenge should decrease risk. In human studies, diets containing a polyphenol (resveratrol) led to improvements in insulin sensitivity. In rodents, the addition of leucine to a resveratrol supplement caused a decrease in the amount of resveratrol needed to achieve a clinical effect. We hypothesize a supplementation with a low dose of a synergistic polyphenol and amino acid blend including leucine (SPB+L) would improve metabolic health in EMS/insulin dysregulated horses. Fifteen EMS/ID horses received a high or low dose of SPB+ L daily for 6 weeks. Insulin during an oral sugar test (OST), body condition score, weight, baseline high-molecular-weight (HMW) adiponectin, triglycerides, nonesterified fatty acids, and tumor necrosis factor alpha were assessed before supplementation (PRE) and after supplementation (POST) via paired Student’s t-tests and a repeated-measures mixed-model analysis of variance (significant at P < .05). There were no differences between doses. Horses in the POST group weighed significantly less, had significantly higher baseline HMW adiponectin concentrations, and had significantly lower insulin concentrations at 60- and 75-minute time points (P < .05). Insulin concentrations of the horsesin the POST group, but not in the PRE group, were lower and similar to results from the study conducted three years before the present study (PRIOR) for 0- and 60-minute time points (P < .002). An increased HMW adiponectin level supports increasing insulin sensitivity after supplementation. These results suggest that SPB + L supplementation at either dose leads to improvements in the clinical manifestations of EMS/insulin dysregulation, potentially reducing laminitis risk.  相似文献   

6.
Clark, M. H., Hoenig, M., Ferguson, D. C., Dirikolu, L. Pharmacokinetics of pioglitazone in lean and obese cats. J. vet. Pharmacol. Therap.  35 , 428–436. Pioglitazone is a thiazolidinedione insulin sensitizer that has shown efficacy in Type 2 diabetes and nonalcoholic fatty liver disease in humans. It may be useful for treatment of similar conditions in cats. The purpose of this study was to investigate the pharmacokinetics of pioglitazone in lean and obese cats, to provide a foundation for assessment of its effects on insulin sensitivity and lipid metabolism. Pioglitazone was administered intravenously (median 0.2 mg/kg) or orally (3 mg/kg) to 6 healthy lean (3.96 ± 0.56 kg) and 6 obese (6.43 ± 0.48 kg) cats, in a two by two Latin Square design with a 4‐week washout period. Blood samples were collected over 24 h, and pioglitazone concentrations were measured via a validated high‐performance liquid chromatography assay. Pharmacokinetic parameters were determined using two‐compartmental analysis for IV data and noncompartmental analysis for oral data. After oral administration, mean bioavailability was 55%, t1/2 was 3.5 h, Tmax was 3.6 h, Cmax was 2131 ng/mL, and AUC0–∞ was 15 556 ng/mL·h. There were no statistically significant differences in pharmacokinetic parameters between lean and obese cats following either oral or intravenous administration. Systemic exposure to pioglitazone in cats after a 3 mg/kg oral dose approximates that observed in humans with therapeutic doses.  相似文献   

7.
ObjectiveTo determine if body condition score (BCS) influences the sedative effect of intramuscular (IM) premedication or the dose of intravenous (IV) propofol required to achieve endotracheal intubation in dogs.Study designProspective clinical study.AnimalsForty–six client–owned dogs undergoing general anaesthesia.MethodsDogs were allocated to groups according to their BCS (BCS, 1 [emaciated] to 9 [obese]): Normal–weight Group (NG, n = 25) if BCS 4–5 or Over–weight Group (OG, n = 21) if BCS over 6. Dogs were scored for sedation prior to IM injection of medetomidine (5 μg kg?1) and butorphanol (0.2 mg kg?1) and twenty minutes later anaesthesia was induced by a slow infusion of propofol at 1.5 mg kg?1 minute?1 until endotracheal intubation could be achieved. The total dose of propofol administered was recorded. Data were tested for normality then analyzed using Student t–tests, Mann–Whitney U tests, chi–square tests or linear regression as appropriate.ResultsMean ( ± SD) propofol requirement in NG was 2.24 ± 0.53 mg kg?1 and in OG was 1.83 ± 0.36 mg kg?1. The difference between the groups was statistically significant (p = 0.005). The degree of sedation was not different between the groups (p = 0.7). Post–induction apnoea occurred in 11 of 25 animals in the NG and three of 21 in OG (p = 0.052).ConclusionsOverweight dogs required a lower IV propofol dose per kg of total body mass to allow tracheal intubation than did normal body condition score animals suggesting that IV anaesthetic doses should be calculated according to lean body mass. The lower dose per kg of total body mass may have resulted in less post–induction apnoea in overweight/obese dogs. The effect of IM premedication was not significantly affected by the BCS.Clinical relevanceInduction of general anaesthesia with propofol in overweight dogs may be expected at lower doses than normal–weight animals.  相似文献   

8.
9.
The prevalence of obesity is increasing in dogs as well as in humans. C-reactive protein (CRP) is an important tool for the detection of inflammation and/or early tissue damage and is linked to obesity in humans. The objective of the present study was to determine if serum CRP levels are altered in obese dogs. Fifteen lean (control group) and 16 overweight (obese group) dogs were examined. Blood samples were collected under fasted conditions for serum determination of CRP, glucose, insulin, cholesterol, triglyceride, and fructosamine. Results indicated that obese dogs were insulin resistant because serum insulin and insulin/glucose ratios were higher than in lean dogs (P < or = 0.05). Serum CRP concentrations were lower in obese dogs than in controls (P < or = 0.001). C-reactive protein was negatively correlated with insulin/glucose ratio (R = -0.42) and cholesterol (R = -0.39; P < or = 0.05). Furthermore, levels of cholesterol, triglycerides, and fructosamine were increased in the obese group compared with the control group. Based on these results, it can be postulated that CRP production is inhibited by obesity and insulin resistance in dogs.  相似文献   

10.
Feline obesity generally results in aberrations to plasma metabolite levels, such as lipid concentrations and lipoprotein composition. This study sought to investigate the resultant effect of obesity on cholesterol lipoprotein composition and circulating adiponectin concentrations in cats. Plasma glucose, lipids (triglyceride, cholesterol and free fatty acid), insulin and adiponectin concentrations, and cholesterol lipoprotein composition were measured and compared between body condition score (BCS) determined normal healthy control and obese cats. Although the obese group demonstrated higher levels of plasma cholesterol, glucose, and triglycerides, as compared to healthy controls, the difference was insignificant thus indicating that the BCS determined obese cats may have been overweight and not morbidly obese. Plasma insulin levels were significantly higher (25–30%) versus healthy control animals thereby possibly hinting at the ensuing emergence of obesity induced insulin resistance. However, the BCS determined obese cat demonstrated a significant reduction (p < 0.05) in plasma adiponectin concentration and a significant increase (p < 0.05) in LDL-cholesterol % as compared to age matched healthy control animals. This would indicate that changes in plasma adiponectin concentration and cholesterol lipoprotein composition may be good early indicators of obesity in cats.  相似文献   

11.
Diabetes is often associated with pituitary-dependent hyperadrenocorticism (PDH). Hypercortisolism causes insulin resistance and affects β-cell function. The purpose of this study was to test if daily administration of a long-acting insulin analogue during the first month of anti-PDH treatment can prevent progress to diabetes in these animals. Twenty-six PDH dogs were divided into three groups: one group with glycaemia <5.83 mmol/L and two groups with glycaemia >5.83 mmol/L and <9.35 mmol/L, one of which received insulin detemir during 4 months. Dogs with glycaemia <5.83 mmol/L and those with glycaemia >5.83 mmol/L which received insulin did not develop diabetes. In the non-insulin group, 6/7 dogs developed diabetes after the third month. There is a 13-fold higher risk of diabetes in dogs with glycaemia >5.83 mmol/L and no insulin treatment. Administering insulin detemir to dogs with PDH and glycaemia >5.83 mmol/L could prevent progression to diabetes.  相似文献   

12.
Obesity influences the development, progression and prognosis of human breast cancer and canine mammary cancer (MC) but the precise underlying mechanism is not well-documented in the fields of either human or veterinary oncology. In the present study, the expression of major adipocytokines, including leptin, adiponectin, and leptin receptor (ObR) in benign (n = 28) and malignant (n = 70) canine mammary tumors was investigated by immunohistochemistry and on the basis of the subject's body condition score (BCS). To evaluate the relationship between obesity and chronic inflammation of the mammary gland, macrophages infiltrating within and around tumoral areas were counted.The mean age of MC development was lower in overweight or obese dogs (9.0 ± 1.8 years) than in lean dogs or optimal bodyweight (10.2 ± 2.9 years), and the evidence of lymphatic invasion of carcinoma cells was found more frequently in overweight or obese group than in lean or optimal groups. Decreased adiponectin expression and increased macrophage numbers in overweight or obese subjects were significantly correlated with factors related to a poor prognosis, such as high histological grade and lymphatic invasion. Leptin expression was correlated with progesterone receptor status, and ObR expression was correlated with estrogen receptor status of MCs, regardless of BCS. Macrophage infiltration within and around the tumor may play an important role in tumor progression and metastasis in obese female dogs and may represent a prognostic factor for canine MCs.  相似文献   

13.
In horses, hyperinsulinemia and insulin resistance (insulin dysregulation) are associated with the development of laminitis. Although obesity is associated with insulin dysregulation, the mechanism of obesity-associated insulin dysregulation remains to be established. We hypothesized that oxidative stress in skeletal muscle is associated with obesity-associated hyperinsulinemia in horses. Thirty-five light breed horses with body condition scores (BCS) of 3/9 to 9/9 were studied, including 7 obese, normoinsulinemic (BCS ≥ 7, resting serum insulin < 30 μIU/mL) and 6 obese, hyperinsulinemic (resting serum insulin ≥ 30 μIU/mL) horses. Markers of oxidative stress (oxidative damage, mitochondrial function, and antioxidant capacity) were evaluated in skeletal muscle biopsies. A Spearman’s rank correlation coefficient was used to determine relationships between markers of oxidative stress and BCS. Furthermore, to assess the role of oxidative stress in obesity-related hyperinsulinemia, markers of antioxidant capacity and oxidative damage were compared among lean, normoinsulinemic (L-NI); obese, normoinsulinemic (O-NI); and obese, hyperinsulinemic (O-HI) horses. Increasing BCS was associated with an increase in gene expression of a mitochondrial protein responsible for mitochondrial biogenesis (estrogen-related receptor alpha, ERRα) and with increased antioxidant enzyme total superoxide dismutase (TotSOD) activity. When groups (L-NI, O-NI, and O-HI) were compared, TotSOD activity was increased and protein carbonyls, a marker of oxidative damage, decreased in the O-HI compared to the L-NI horses. These findings suggest that a protective antioxidant response occurred in the muscle of obese animals and that obesity-associated oxidative damage in skeletal muscle is not central to the pathogenesis of equine hyperinsulinemia.  相似文献   

14.
Serum concentrations of adiponectin were compared between sex-matched hypothyroid (n = 18) and euthyroid (n = 18) client-owned dogs with comparable ages and body condition scores (BCS). Concentrations of adiponectin (mean; 95% confidence interval) were significantly (P < 0.01) higher in hypothyroid (17.2 µg/mL; 12.1–20.5 µg/mL) than healthy (8.0 µg/mL; 5.6–11.4 µg/mL) dogs following adjustment for potential confounders (BCS, age and sex). Serum concentrations of adiponectin were significantly negatively associated with concentrations of total thyroxine (P <0.05) and positively correlated with concentrations of cholesterol (r = 0.6, P <0.01) in hypothyroid dogs. In conclusion, this study demonstrated increased serum concentrations of adiponectin in dogs with hypothyroidism. Suggestive of the presence of resistance to adiponectin that could have contributed to development of hyperlipidemia and insulin resistance in these dogs or alternatively, could be a consequence of these metabolic alterations.  相似文献   

15.
The immune responses in control dogs [1 to 4 years of age, body condition score (BCS): 4 to 5 out of 9] were compared to those of aging dogs (based on breed and body size) either categorized as lean (BCS: 4 to 5 out of 9) or obese (BCS: 8 to 9 out of 9). Of interest were the serum titers to the following common agents found in vaccines, canine parainfluenza virus (CPIV), canine parvovirus (CPV), canine distemper virus (CDV), canine respiratory coronavirus (CRCoV), and Bordetella bronchiseptica. There were no statistical differences in the antibodies to CPIV, B. bronchispetica, and CRCoV, among the age/weight categories, nor among the age/weight categories and the time, in days, between the date of sample collection and the date of the last recorded vaccination for CPIV, B. bronchiseptica, CPV, and CDV. For CPV, the control dogs had significantly (P < 0.002) higher serum neutralization (SN) titers than the lean geriatric dogs and the obese geriatric dogs. For CDV SN titers, the only statistically significant (P = 0.01) difference was that the control dogs had higher SN titers than the lean geriatric dogs.  相似文献   

16.
Feline obesity generally results in aberrations to plasma metabolite levels, such as lipid concentrations and lipoprotein composition. This study sought to investigate the resultant effect of obesity on cholesterol lipoprotein composition and circulating adiponectin concentrations in cats. Plasma glucose, lipids (triglyceride, cholesterol and free fatty acid), insulin and adiponectin concentrations, and cholesterol lipoprotein composition were measured and compared between body condition score (BCS) determined normal healthy control and obese cats. Although the obese group demonstrated higher levels of plasma cholesterol, glucose, and triglycerides, as compared to healthy controls, the difference was insignificant thus indicating that the BCS determined obese cats may have been overweight and not morbidly obese. Plasma insulin levels were significantly higher (25–30%) versus healthy control animals thereby possibly hinting at the ensuing emergence of obesity induced insulin resistance. However, the BCS determined obese cat demonstrated a significant reduction (p < 0.05) in plasma adiponectin concentration and a significant increase (p < 0.05) in LDL-cholesterol % as compared to age matched healthy control animals. This would indicate that changes in plasma adiponectin concentration and cholesterol lipoprotein composition may be good early indicators of obesity in cats.  相似文献   

17.

Background

Serotonin (5‐hydroxytryptamine, 5HT) is involved in hypothalamic regulation of energy consumption. Also, the gut microbiome can influence neuronal signaling to the brain through vagal afferent neurons. Therefore, serotonin concentrations in the central nervous system and the composition of the microbiota can be related to obesity.

Objective

To examine adipokine, and, serotonin concentrations, and the gut microbiota in lean dogs and dogs with experimentally induced obesity.

Animals

Fourteen healthy Beagle dogs were used in this study.

Methods

Seven Beagle dogs in the obese group were fed commercial food ad libitum, over a period of 6 months to increase their weight and seven Beagle dogs in lean group were fed a restricted amount of the same diet to maintain optimal body condition over a period of 6 months. Peripheral leptin, adiponectin, 5HT, and cerebrospinal fluid (CSF‐5HT) levels were measured by ELISA. Fecal samples were collected in lean and obese groups 6 months after obesity was induced. Targeted pyrosequencing of the 16S rRNA gene was performed using a Genome Sequencer FLX plus system.

Results

Leptin concentrations were higher in the obese group (1.98 ± 1.00) compared to those of the lean group (1.12 ± 0.07, P = .025). Adiponectin and 5‐hydroytryptamine of cerebrospinal fluid (CSF‐5HT) concentrations were higher in the lean group (27.1 ± 7.28) than in the obese group (14.4 ± 5.40, P = .018). Analysis of the microbiome revealed that the diversity of the microbial community was lower in the obese group. Microbes from the phylum Firmicutes (85%) were predominant group in the gut microbiota of lean dogs. However, bacteria from the phylum Proteobacteria (76%) were the predominant group in the gut microbiota of dogs in the obese group.

Conclusions and Clinical Importance

Decreased 5HT levels in obese group might increase the risk of obesity because of increased appetite. Microflora enriched with gram‐negative might be related with chronic inflammation status in obese dogs.  相似文献   

18.
The aim of this study was to validate 2 commercially available enzyme-linked immunosorbent assays (ELISAs) for adiponectin in dogs, 1 canine-specific and 1 originally designed for measurements in humans. Intra-assay and interassay precision was evaluated by multiple measurements in canine serum samples, and assay accuracy was indirectly determined by linearity under dilution. Interference caused by hemolysis and lipemia was also studied. Both assays were subsequently used for measuring adiponectin concentrations in clinically healthy dogs and those with different grades of obesity. The intra-assay and inter-assay precision was less than 7.5% and 13.5% in serum samples with low and high adiponectin concentrations, respectively. Lipemia and hemolysis did not affect the results of any of the assays. Both assays were able to differentiate lean dogs from those that were overweight or obese on the basis of the measured adiponectin concentrations. From these results it can be concluded that canine adiponectin concentrations can be measured reliably by means of the 2 ELISAs evaluated in this study.  相似文献   

19.
The pharmacokinetic profile and bioavailability of a long-acting formulation of cephalexin after intramuscular administration to cats was investigated. Single intravenous (cephalexin lysine salt) and intramuscular (20% cephalexin monohydrate suspension) were administered to five cats at a dose rate of 10 mg/kg. Serum disposition curves were analyzed by noncompartmental approaches. After intravenous administration, volume of distribution (Vz), total body clearance (Clt), elimination constant (λz), elimination half-life (t½λ) and mean residence time (MRT) were: 0.33 ± 0.03 L/kg; 0.14 ± 0.02 L/h kg, 0.42 ± 0.05 h−1, 1.68 ± 0.20 h and 2.11 ± 0.25 h, respectively. Peak serum concentration (Cmax), time to peak serum concentration (Tmax) and bioavailability after intramuscular administration were 15.67 ± 1.95 μg/mL, 2.00 ± 0.61 h and 83.33 ± 8.74%, respectively.  相似文献   

20.
The incretin glucagon-like peptide 1 (GLP-1) enhances insulin secretion. The aim of this study was to assess GLP-1, glucose and insulin concentrations, Homeostatic Model Assessment (HOMAinsulin sensitivity and HOMAβ-cell function) in dogs with pituitary-dependent hyperadrenocorticism (PDH), and compare these values with those in normal and obese dogs. The Oral Glucose Tolerance Test was performed and the glucose, GLP-1 and insulin concentrations were evaluated at baseline, and after 15, 30, 60 and 120 minutes. Both basal concentration and those corresponding to the subsequent times, for glucose, GLP-1 and insulin, were statistically elevated in PDH dogs compared to the other groups. Insulin followed a similar behaviour together with variations of GLP-1. HOMAinsulin sensitivity was statistically decreased and HOMAβ-cell function increased in dogs with PDH. The higher concentrations of GLP-1 in PDH could play an important role in the impairment of pancreatic β-cells thus predisposing to diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号