首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 644 毫秒
1.
<正>日本研究人员成功诱导小鼠胚胎干细胞,有选择性地分化成小脑神经细胞,且实现了较高的分化效率。公报说,小脑皮质中层内的浦肯雅细胞是掌管精确运动和学习的主要神经细胞,在医学方面具有相当重要的作用,以往诱导胚胎干细胞有选择性地分化成浦肯雅细胞的方法效率低下,只有约0.5%的胚胎干细胞最终能分化成浦肯雅细胞。  相似文献   

2.
干细胞及其在人类医学上的应用前景   总被引:1,自引:0,他引:1  
干细胞是指从胚胎、胎儿或成年个体各种组织中分离出来的多能性细胞 ,具有体外保持未分化状态的无限增殖能力 ,在不同条件下可诱导分化为不同的细胞类型、组织甚至器官。胚胎癌细胞、胚胎干细胞、胚胎生殖细胞和成年组织干细胞是目前研究的几类主要干细胞 ,它们除作为发育生物学研究的细胞模型外 ,在人类医学领域也具有潜在的应用价值  相似文献   

3.
干细胞(stem cell,SC)是具有自我更新能力和分化潜能,能够高度分化的功能细胞。干细胞按其生存阶段分为胚胎干细胞和成体干细胞。按分化潜能的大小,又可分为3种类型,即全能干细胞、多能干细胞和单能干细胞(又称专能干细胞)。角膜缘干细胞(limbal stemc ells,LSCs)既是成体干细胞又是单能干细胞,它的发现是近20年来眼科学最重要的进展之一。本文将就LSCs的有关概念、标志物、培养与鉴定以及临床应用等方面的最新研究进展做一综述。  相似文献   

4.
成体干细胞可塑性从发现到质疑在学术界有很大的争论,以及成体干细胞技术应用具有广阔前景并不断取得进步,使成体干细胞研究成为干细胞研究的热点.本文对成体干细胞的生物学特性、分化潜能及临床应用作一概括介绍.  相似文献   

5.
干细胞是一群具有自我更新和多向分化潜能的细胞群体,在特定的微环境下,可以分化成多种组织和器官,理论上一个干细胞可以发育成为完整的生物个体或组织器官.肿瘤干细胞理论在一定程度上解释了乳腺癌的形成,局部、远处转移及治疗抵抗等生物学行为.乳腺癌干细胞是当今科研领域的一个热点,有关乳腺癌干细胞理论及其在临床防治中的应用尚存在诸...  相似文献   

6.
近年来,具有巨大临床应用潜能的成体干细胞已经成为生命科学研究的热点之一。肌源性干细胞具有强大的自我更新和多项分化潜能,能分化为神经细胞、胰岛细胞、成骨细胞等不同胚层的细胞,并能参与多种组织的损伤修复过程,在脊髓损伤修复及治疗压力性尿失禁中发挥巨大作用,因此,在基因治疗和组织工程领域具有广泛应用前景。  相似文献   

7.
利用精原干细胞建立转基因动物的研究进展   总被引:2,自引:0,他引:2  
精原干细胞(spermatogonial stem cells,SSCs)是雄性哺乳动物体内的一种成体干细胞,在睾丸微环境中既具有自我更新潜能,又具有定向分化潜能,是自然状态下出生后,动物体内在整个生命期间进行自我更新并能将基因传递至子代的唯一成体干细胞。精原干细胞在建立转基因动物中具有重要的应用价值,现已成为转基因研究领域的热点之一。介绍了精原干细胞的来源、形成、类型及分化,同时对其在转基因动物研究中的应用做一综述。  相似文献   

8.
胚胎干细胞是来源于胚胎的、内细胞团的、具有多向分化潜能的细胞。随着胚胎干细胞,特别是分化机制研究的不断深入,胚胎干细胞分化为各种类型细胞的研究也取得了较大进展,从而为细胞移植、细胞治疗和组织工程等提供了一个新的途径。主要综述了小鼠和人胚胎干细胞向内、中、外三个胚层细胞类型分化的技术,以期为胚胎干细胞定向诱导分化的研究提供一些参考。  相似文献   

9.
在无菌条件下抽取成体小鼠骨髓,在含体积分数1%B27,20ng/mLEGF和10ng/mLbFGF的F12-DMEM(1∶1)培养基中,于37℃、50mL/LCO2饱和湿度下常规培养,对培养的细胞进行nestin免疫荧光染色检测,并将pEGFP-N2基因在80V、80μs条件下采用电击法转化导入神经干细胞中。结果表明,培养7d后,有大部分细胞聚集成团,并大量增殖;Nestin免疫荧光染色后呈阳性;导入pEGFP-N2基因的神经干细胞培养后在荧光显微镜下可观察到绿色荧光。表明从成体小鼠获得的骨髓,在该试验培养条件下有神经干细胞生成,并且外源标记基因pEGFP-N2在其细胞中实现了表达。  相似文献   

10.
哺乳动物胚胎干细胞一般可从胚胎囊胚内细胞团分离得到 ,具有在体外保持不分化的无限增殖能力 ,在合适的培养条件下 ,胚胎干细胞可定向诱导分化形成多种细胞类型。人们对胚胎干细胞进行体外培养与定向分化可以得到大量同源细胞 ,以应用于患疾病的细胞或器官移植治疗等研究。文章概述了胚胎干细胞增殖与分化的信号调节机制、诱导分化方法 ,国内外研究概况及展望 4个方面的内容  相似文献   

11.
Out of Eden: stem cells and their niches   总被引:2,自引:0,他引:2  
Watt FM  Hogan BL 《Science (New York, N.Y.)》2000,287(5457):1427-1430
Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. Both intrinsic and extrinsic signals regulate stem cell fate and some of these signals have now been identified. Certain aspects of the stem cell microenvironment, or niche, are conserved between tissues, and this can be exploited in the application of stem cells to tissue replacement therapy.  相似文献   

12.
Why stem cells?   总被引:2,自引:0,他引:2  
Stem cells are viewed from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organism's long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues.  相似文献   

13.
The regeneration of complex structures in adult salamanders depends on mechanisms that offer pointers for regenerative medicine. These include the plasticity of differentiated cells and the retention in regenerative cells of local cues such as positional identity. Limb regeneration proceeds by the local formation of a blastema, a growth zone of mesenchymal stem cells on the stump. The blastema can regenerate autonomously as a self-organizing system over variable linear dimensions. Here we consider the prospects for limb regeneration in mammals from this viewpoint.  相似文献   

14.
Adult stem cells offer the potential to treat many diseases through a combination of ex vivo genetic manipulation and autologous transplantation. Mesenchymal stem cells (MSCs, also referred to as marrow stromal cells) are adult stem cells that can be isolated as proliferating, adherent cells from bones. MSCs can differentiate into multiple cell types present in several tissues, including bone, fat, cartilage, and muscle, making them ideal candidates for a variety of cell-based therapies. Here, we have used adeno-associated virus vectors to disrupt dominant-negative mutant COL1A1 collagen genes in MSCs from individuals with the brittle bone disorder osteogenesis imperfecta, demonstrating successful gene targeting in adult human stem cells.  相似文献   

15.
Multilineage potential of adult human mesenchymal stem cells   总被引:7,自引:0,他引:7  
Human mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells were isolated from marrow aspirates of volunteer donors. These cells displayed a stable phenotype and remained as a monolayer in vitro. These adult stem cells could be induced to differentiate exclusively into the adipocytic, chondrocytic, or osteocytic lineages. Individual stem cells were identified that, when expanded to colonies, retained their multilineage potential.  相似文献   

16.
The immune system develops in waves during ontogeny; it is initially populated by cells generated from fetal hematopoietic stem cells (HSCs) and later by cells derived from adult HSCs. Remarkably, the genetic programs that control these two distinct stem cell fates remain poorly understood. We report that Lin28b is specifically expressed in mouse and human fetal liver and thymus, but not in adult bone marrow or thymus. We demonstrate that ectopic expression of Lin28 reprograms hematopoietic stem/progenitor cells (HSPCs) from adult bone marrow, which endows them with the ability to mediate multilineage reconstitution that resembles fetal lymphopoiesis, including increased development of B-1a, marginal zone B, gamma/delta (γδ) T cells, and natural killer T (NKT) cells.  相似文献   

17.
The adult Drosophila midgut contains multipotent intestinal stem cells (ISCs) scattered along its basement membrane that have been shown by lineage analysis to generate both enterocytes and enteroendocrine cells. ISCs containing high levels of cytoplasmic Delta-rich vesicles activate the canonical Notch pathway and down-regulate Delta within their daughters, a process that programs these daughters to become enterocytes. ISCs that express little vesiculate Delta, or are genetically impaired in Notch signaling, specify their daughters to become enteroendocrine cells. Thus, ISCs control daughter cell fate by modulating Notch signaling over time. Our studies suggest that ISCs actively coordinate cell production with local tissue requirements by this mechanism.  相似文献   

18.
Foreign environments may induce adult stem cells to switch lineages and populate multiple tissue types, but whether this mechanism is used for tissue repair remains uncertain. Urodele amphibians can regenerate fully functional, multitissue structures including the limb and tail. To determine whether lineage switching is an integral feature of this regeneration, we followed individual spinal cord cells live during tail regeneration in the axolotl. Spinal cord cells frequently migrate into surrounding tissue to form regenerating muscle and cartilage. Thus, in axolotls, cells switch lineage during a real example of regeneration.  相似文献   

19.
为探索鹿茸的形态发生与鹿茸干细胞(包括发生干细胞和再生干细胞)内[Na~+]的关系有关,以鹿茸干细胞为模型,研究不同干性的哺乳动物干细胞内[Na~+]的差异,并鉴定引起这种差异的电压门控性钠离子通道(NaV)因素。采集并培养具有不同干性的梅花鹿鹿茸干细胞,包括生茸区骨膜细胞(AP细胞,鹿茸发生干细胞)和角柄骨膜细胞(PP细胞,鹿茸再生干细胞,其干性低于AP细胞),以鹿普通脸部骨膜细胞(FP细胞)作为对照,并采用CoroNa染色方法,通过荧光强度来分析不同类型细胞内[Na~+]的差异,结合PCR方法鉴定转录水平上NaV基因的差异,并分别用睾酮和MS-222对细胞进行处理,观测其对细胞内[Na~+]的影响。结果表明:鹿茸干细胞内[Na~+]高于FP细胞,其中AP细胞内[Na~+]高于PP细胞;NaV1.1基因在AP细胞中特异性转录;睾酮对这3种细胞内[Na~+]水平没有显著影响;但是,MS-222处理能够在一定程度上降低细胞内[Na~+]。本研究发现:鹿茸干细胞内[Na~+]与其干性一致,干性高的AP细胞内[Na~+]也相对较高;NaV1.1基因在转录水平上的差异,可能是造成AP细胞内[Na~+]高的主要原因;干扰NaV的MS-222能够在一定程度上降低细胞内[Na~+]。说明哺乳动物器官的发生和再生可能与低等动物器官上的发现类似,都与细胞内[Na~+]有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号