首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
有机肥与无机肥配施对菜地土壤N2O排放及其来源的影响   总被引:1,自引:1,他引:0  
该研究采用同位素自然丰度法,通过室内培养试验研究北京地区菜地有机肥和无机肥配施对土壤释放N2O及同位素位嗜值SP(site preference)的影响,以期获得不同肥料及其配比下土壤N2O的来源及变化规律。结果表明:施用无机肥释放的N2O显著高于有机肥,其累积排放量是有机肥的6.63倍,且无机肥施用比例越高,排放量越大;各肥料组合在施用后7天内均以反硝化作用生成N2O为主,贡献最高达到78.89%,SP为6.97‰,之后硝化作用逐渐增强并成为主要途径,最高占比达76.48%,SP为25.24‰;培养期内施用无机肥可以促进反硝化作用,平均占比52.98%,SP为15.52‰,而有机肥会使硝化作用增强,平均占比71.35%,SP为23.55‰。因此,在北京潮褐土地区菜地土壤施用有机肥对N2O有良好的减排效果,可为蔬菜生产中肥料的合理应用提供科学依据。  相似文献   

2.
水体是氧化亚氮(N_2O)排放的重要来源,连续监测太湖地区井水水面N_2O排放通量和井水中溶解N_2O浓度以及不同深度水样N_2O浓度结果表明,井水N_2O-N年均排放通量为90.85μg/m~2·h,井水中溶解N:O-N浓度年均高达13.09μg/kg,不同层次水样N_2O浓度差异明显,且时间差异显著,暖季井水有作为N_2O汇的趋势,但仍以N_2O源为主导作用。水体N_2O排放通量与井水中溶解N_2O浓度呈显著正相关,且N_2O-N浓度与NO_3~--N浓度和水温呈显著正相关,井水中的反硝化作用强烈,井水是N_2O的重要来源。  相似文献   

3.
选择不同季节的4个N2O高排放通量日(2012年8月28日和12月27日、2013年3月14日和6月14日),利用静态暗箱-气相色谱法对设施菜地土壤N2O排放通量进行连续24h原位观测,以探讨其日变化特征,并确定1d内的最佳观测时间。结果表明,设施菜地施肥后(2012年12月27日除外)N2O排放通量呈明显的单峰型日变化规律,排放峰值一般出现在14:00左右,比气温峰值时间滞后约2h。同茬作物基肥后第13天与追肥后第2天相比,前者N2O日排放通量峰值和日均排放通量分别较后者高3.4~12.9倍和6.8~7.0倍。相关分析表明,4个典型日内,仅2012年12月27日的N2O排放通量与气温、3cm地温和10cm地温无显著相关,其它日均呈显著正相关。说明观测日土壤温度处于N2O形成适宜范围内,且气温日较差较大时,温度才是影响N2O排放通量日变化的主要因素。对24h内N2O排放通量的矫正分析结果表明,2012年8月28日和12月27日、2013年3月14日和6月14日分别在18:00-21:00、10:00-次日6:00、21:00、16:00-18:00的观测值,可以代表当天的 N2O 排放通量。若在其它时段采样,应进行有效的矫正处理,否则会导致对典型日N2O排放的估计偏高13.4%~240%或偏低13.1%~64.5%。  相似文献   

4.
选择不同季节的4个N2O高排放通量日(2012年8月28日和12月27日、2013年3月14日和6月14日),利用静态暗箱-气相色谱法对设施菜地土壤N2O排放通量进行连续24h原位观测,以探讨其日变化特征,并确定1d内的最佳观测时间。结果表明,设施菜地施肥后(2012年12月27日除外)N2O排放通量呈明显的单峰型日变化规律,排放峰值一般出现在14:00左右,比气温峰值时间滞后约2h。同茬作物基肥后第13天与追肥后第2天相比,前者N2O日排放通量峰值和日均排放通量分别较后者高3.4~12.9倍和6.8~7.0倍。相关分析表明,4个典型日内,仅2012年12月27日的N2O排放通量与气温、3cm地温和10cm地温无显著相关,其它日均呈显著正相关。说明观测日土壤温度处于N2O形成适宜范围内,且气温日较差较大时,温度才是影响N2O排放通量日变化的主要因素。对24h内N2O排放通量的矫正分析结果表明,2012年8月28日和12月27日、2013年3月14日和6月14日分别在18:00-21:00、10:00-次日6:00、21:00、16:00-18:00的观测值,可以代表当天的N2O排放通量。若在其它时段采样,应进行有效的矫正处理,否则会导致对典型日N2O排放的估计偏高13.4%~240%或偏低13.1%~64.5%。  相似文献   

5.
N2O是一种重要的温室气体,菜地高水高肥导致其排放量大。该研究通过解析滴灌条件下不同肥料处理对白菜地N2O排放的影响,以阐明滴灌下不同肥料处理的N2O来源,为菜地土壤N2O减排提供理论依据。设置无机复合肥(NPK)、有机肥(M)、无机水溶肥(WS)和无肥(NF)4种常见肥料处理,采用滴灌方式灌溉,收集菜地土壤排放的N2O,并利用稳定同位素技术分析N2O的同位素特征值,通过15N在N2O分子中的位置偏好值、N2O和H2O之间的净同位素效应值搭建双同位素图谱,分析N2O产生途径及其贡献。结果表明:对于NPK、M、WS和NF处理,N2O排放通量分别为1 074、146.5、116.2和112.9 μg/(m2·h);NPK、M、WS处理的氮肥利用效率分别为45.1%、22.0%、45.2%;NPK、M、WS和NF处理下N2O主排期的硝化作用贡献分别约为38%、46%、54%和49%,N2O主排期的N2O还原程度分别约为14%、71%、46%和70%。可见,无机水溶肥处理显示了最高的氮素利用效率和较低的N2O排放量,且其与无机复合肥处理的N2O还原程度都相对较低不利于反硝化过程中的N2O减排;有机肥处理则有最高的N2O还原程度,是减少反硝化作用N2O产生的主要途径。综合考虑,该研究推荐菜地施肥时采用有机肥作为底肥,管理过程中配合水肥一体化技术,达到促进N2O还原以减少N2O排放和提高肥料氮素利用效率的效果。  相似文献   

6.
N2O是重要的温室气体之一,由此引起的全球变暖和臭氧层破坏是当今重要的环境问题。采用遮光密闭箱和气相色谱法研究了氮肥施用对小麦地N2O释放和反硝化作用的影响。结果表明,小麦生长季节里,高氮、中氮以及不施氮处理N2O平均排放通量分别为2.71、2.42、1.97 gN.hm-.2d-1;尿素、硫酸铵、硝酸钾3种氮肥品种处理下,平均N2O排放通量分别为2.42、2.14、3.13 gN.hm-2.d-1。小麦生长季节里,高氮、中氮以及不施氮处理平均反硝化速率分别为4.91、4.50、1.67 gN.hm-.2d-1;尿素、硫酸铵、硝酸钾3种氮肥品种处理下,平均反硝化速率分别为4.50、3.68、5.29 gN.hm-.2d-1。氮肥施用明显促进了土壤-植物系统中N2O排放通量和反硝化作用,氮肥施用量水平和N2O排放通量、反硝化作用呈正相关。硝酸钾对N2O排放通量和反硝化作用贡献最大,硫酸铵最小。研究还表明,小麦地N2O释放和反硝化作用与季节有一定相关性,温度较高季节排放量及反硝化作用明显,反之则较弱。  相似文献   

7.
竹叶及其生物质炭输入对板栗林土壤N2O通量的影响   总被引:2,自引:1,他引:1  
【目的】氧化亚氮(N2O)是温室气体的主要组成部分,其增温效应极强,陆地生态系统是N2O的主要排放源之一。人工林生态系统是陆地生态系统的重要组成部分,但目前关于经营措施对人工林生态系统土壤N2O通量的影响研究较少。本文研究了竹叶及其生物质炭输入对板栗林土壤N2O排放通量的影响,为调控亚热带人工林土壤N2O排放通量提供理论基础与科学依据。【方法】定位试验于2012年7月~2013年7月在浙江省临安市三口镇典型板栗林区进行,设对照、输入竹叶、输入生物质炭3个处理,利用静态箱-气相色谱法测定板栗林土壤N2O通量的动态变化以及土壤温度、土壤含水量、水溶性有机碳(WSOC)、水溶性有机氮(WSON)、微生物量碳(MBC)、微生物量氮(MBN)、NH+4-N和NO-3-N含量。【结果】不同处理条件下,板栗林土壤N2O排放通量均呈显著的季节性变化特征,最高值出现在7月,最低值出现在1月。与对照相比,竹叶处理的土壤N2O年平均通量和年累积排放量分别增加了17.2%和12.8%,而生物质炭处理的土壤N2O年平均通量和年累积排放量分别降低了27.4%和20.5%。竹叶处理的土壤WSON、MBN、NH+4-N及NO-3-N含量增加12.4%、19.1%、8.3%和13%,而生物质炭处理的NH+4-N和NO-3-N含量分别降低了14.1%和18%。在对照、竹叶以及生物质炭处理条件下,板栗林土壤N2O排放通量与土壤温度(表层5 cm处)和WSOC含量均有显著相关性(P 0.05),与土壤MBC含量均无显著相关性。竹叶处理土壤N2O通量与NH+4-N、NO-3-N及WSON含量均有显著相关性(P0.05)。【结论】在不同处理条件下,板栗林土壤N2O排放通量均呈现明显的季节性变化特征,表现为夏季高、 冬季低。输入竹叶可显著增加板栗林土壤N2O排放通量,而输入生物质炭N2O排放通量显著降低;输入竹叶和生物质炭可能是通过影响土壤碳库与氮库特征而影响土壤N2O的排放通量。  相似文献   

8.
采用静态箱自动采样监测系统,对生长季内华北平原春玉米田在不同施肥处理下(化肥、有机肥、有机无机配施和不施肥)的土壤N2O排放通量进行监测,分析各处理的土壤N2O排放量和变化规律,探讨土壤温度、水分和有效氮含量对土壤N2O排放通量的影响,并在相同施氮量条件下寻求既能增产又能减少N2O排放的施肥措施。结果表明:不同施肥处理下N2O排放通量存在显著差异(P〈0.05),其中施肥处理的农田N2O-N排放总量为0.99~1.17kg.hm-2,占总施氮量的0.45%~0.55%;N2O通量与土壤铵态氮含量呈极显著正相关(P〈0.01);土壤含水量是影响农田N2O排放的一个主要因子,N2O通量与土壤含水量呈显著正相关;在产量无显著下降的情况下,有机无机配施的减排效果最好。  相似文献   

9.
水稻土和菜田添加碳氮后的气态产物排放动态   总被引:1,自引:0,他引:1  
【目的】动态连续监测添加碳氮底物后各气体产物—O2、 NO、 N2O、 CH4和N2的排放,对土壤碳氮转化过程和气体产生过程做更深入的理解,揭示不同土地利用方式典型红壤的温室气体产生机制。【方法】采集长江中游金井小流域不同土地利用方式稻田和菜地土壤为研究对象,利用全自动连续在线培养检测体系(Robot系统),通过两组试验分别研究土壤碳氮转化过程中各气体产物的动态变化。试验1采用菜地和稻田土壤进行好气培养,设置不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖6个处理。试验2采用稻田土壤进行淹水培养,设不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg铵态氮+1%秸秆、 缺氧条件下添加40 mg/kg铵态氮+1%的葡萄糖、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖8个处理。培养温度均为20℃,土壤水分含量为70% WFPS (土壤孔隙含水量),培养周期为15天。【结果】从菜地和稻田土壤不同碳氮添加处理气态产物及无机氮的动态变化可看出: 1)菜地土壤好气培养初期硝化作用产生了大量N2O; 受低碳和低含水量的限制,反硝化作用较弱。当提供充足碳源和厌氧条件,出现N2O和NO的大量排放。2)在好气稻田和淹水稻田培养过程中,反硝化作用是N2O产生的主要途径。3)稻田土壤中,提供充足碳源和厌氧条件,各气态产物出现的顺序依次是NO、 N2O和N2,与三种气体在反硝化链式反应过程中的生成顺序一致。淹水稻田加铵态氮和碳源处理N2为主要产物,添加硝态氮处理后,N2O成为主要气态产物。当土壤碳源充足时,反硝化过程进行彻底,反硝化产物以终产物(N2)为主。4)在稻田土壤出现厌氧或添加碳源条件下,均检测到大量CH4产生; 且在甲烷产生的同时,NO-3几乎消耗殆尽。【结论】金井小流域典型红壤菜地N2O主要来自于硝化作用,好气和淹水稻田N2O主要来源于反硝化作用; 当碳源充足和厌氧时,菜地及稻田反硝化作用增强; 反硝化产物组成、 产物累积量及出峰顺序与碳源和氧气浓度有关。  相似文献   

10.
小麦-玉米轮作田与菜地N2O排放的对比研究   总被引:6,自引:0,他引:6  
于亚军  高美荣  朱波 《土壤学报》2012,49(1):96-103
应用静态箱/气相色谱法对旱地小麦-玉米轮作田和种菜历史超过20a的菜地进行了N2O排放的定位观测,分析了旱地和菜地生态系统N2O排放特征的差异,及施氮、土壤温度、土壤湿度和作物参与对两种农田系统N2O排放的不同影响。结果表明,不施氮情况下,旱地和菜地N2O排放通量分别为17.8±5.6和50.7±13.3μg m-2h-1,菜地N2O排放通量是旱地农田的3.1倍。在施氮(N 150 kg hm-2)情况下,菜地N2O排放系数较旱地高39.0%。粮食作物参与和蔬菜作物参与对增加各自农田生态系统N2O排放量的贡献无明显差异。旱地和菜地不同作物季N2O排放量的差异主要是由于作物生育期长短不同造成单位时间施肥强度存在差异。所以,根据作物生育期特点调节施肥量可能会减少农田生态系统N2O排放量,并且由于菜地各蔬菜生育期长短的差异更大,因此,菜地若能实现精量施肥,其N2O减排的潜力可能大于旱地农田。  相似文献   

11.
中亚热带地区春季降雨频繁,茶园施肥量大,该季节茶园土壤氧化亚氮(N2O)排放量较高,研究春季茶园土壤N2O排放及其影响因子有一定意义。以中亚热带丘陵区土壤为对象,采用静态箱-气相色谱法,研究了两种植茶年限茶园和林地土壤春季N2O排放特征及其影响因子。结果表明:茶园N2O排放量明显高于林地,50年茶园N2O排放量明显高于20年茶园,林地N2O的排放量最少;50年茶园、20年茶园和林地土壤春季N2O累积排放量分别为2.07、1.39、0.22 kg·hm-2。两种植茶年限茶园土壤N2O排放通量均与土壤NO-3-N含量呈显著正相关(P<0.05),林地土壤N2O排放通量则与土壤NH+4-N含量呈极显著正相关关系(P<0.01);茶园和林地土壤N2O排放通量均与5 d累积降雨量之间存在显著的相关性。多元逐步回归分析显示,茶园土壤N2O排放通量受土壤温度和NO-3-N含量影响,共同解释其48%~49%的变化;林地土壤N2O排放通量受土壤温度和NH+4-N含量影响,共同解释其55%的变化。这项研究显示施肥对春季茶园N2O排放的促进作用与降雨有关。  相似文献   

12.
对华北平原小麦-棉花(麦棉)、小麦-大豆(麦豆)、小麦-玉米(麦玉)轮作田的CO2和N2O排放通量进行了测定,分析了温室气体排放通量与土壤中碳、氮元素、气温以及施肥等之间的关系。主要结论:1)麦棉、麦豆、麦玉田的土壤CO2平均排放通量分别为CO2-C 141.7、109.8、128.2 mg.m-2.h-1,其中夏播作物的排放通量高于小麦季;2)麦棉、麦豆及麦玉田作物生长季的土壤N2O平均排放通量分别为N2O-N 98.8、38.9、44.7μg.m-2.h-1,也表现为麦后季作物的排放量高于小麦季;3)同一生育期中不同处理的N2O排放主要与土壤中无机氮含量相关,不同生育期的N2O排放通量主要受不同生育期的土壤温度及水分状况的影响;4)在施肥灌溉后的9 d内土壤N2O排放通量较高,之后逐渐降低,至施肥后22~27 d即与不施肥处理的排放持平。  相似文献   

13.
采用静态箱-气相色谱法对西北干旱区当前普遍采用的膜下滴灌和传统的无膜漫灌两种栽培管理下土壤CH4和N2O通量日变化和季节变化特征进行了研究。结果表明,随时间的推移,无膜漫灌栽培管理措施下棉田土壤CH4日变化通量呈先降后升趋势,而膜下滴灌栽培处理CH4排放通量日变化则呈现先升后降趋势;在整个生长季节,无膜漫灌和膜下滴灌土壤CH4季节变化规律不太明显,前者吸收大气CH4 45.2~52.5 mg m-2 a-1,后者释放CH4通量为0.7~23.1 mg m-2 a-1。两种栽培管理措施下棉田土壤N2O通量的日变化和季节变化均随时间的推移均呈现先升后降趋势,但是,无膜漫灌日均排放N2O通量显著高于膜下滴灌。在整个生长季节,无膜漫灌土壤N2O释放量(N2O 99.3~320.0 mg m-2 a-1)显著高于膜下滴灌(N2O60.0~259.0 mg m-2 a-1)。以上结果说明,膜下滴灌栽培管理措施可以改变旱田传统无膜漫灌栽培土壤与大气CH4的交换方向,促进土壤CH4向大气的排放,但对N2O通量日变化和季节变化规律不产生影响,显著降低土壤N2O的排放量。  相似文献   

14.
农田土壤N2O排放的连续自动测定方法   总被引:6,自引:2,他引:6  
本文介绍了农田N2O排放连续自动测定系统的方法原理、系统整体构造和气路配置,并通过对华北平原旱地土壤夏玉米季N2O排放的连续观测,比较了连续自动测定方法与传统手动间歇取样测定方法的差异。结果表明,夏玉米季N2O排放具有明显的日排放规律,且在三叶期和十叶期施肥后存在明显的释放高峰;通过选取7:20、8:30、9:40、10:50、12:00、13:20、14:30、15:40、16:50和18:00不同采样时间的测定结果,分别模拟了间隔为3d和6d的排放总量,结果表明,间隔取样的累积排放结果与连续观测结果的差异,与采样当天中具体的采样时间紧密相关,间隔估算结果随着采样时间的延后具有先升高后降低的趋势,与N2O的日排放规律相一致。本研究中,不同时间间隔对估算结果影响不明显。  相似文献   

15.
优质樱桃番茄高效水氮耦合管理   总被引:1,自引:1,他引:0  
【目的】水分和氮素是限制作物产量和品质的最重要因素,合理的水肥管理是农业生产高产高效的关键。结合同位素技术研究最优水氮耦合模式,为樱桃番茄生产中合理灌水和施氮,提高番茄果实品质及水分利用效率(WUE)提供科学依据。【方法】以樱桃番茄品种‘千禧’为试验材料,结合稳定同位素技术进行水肥耦合盆栽试验。试验设置3个灌溉水平(W)和3个氮素水平(N),灌溉水平包括90%土壤持水量(充分供水,WH),70%土壤持水量(中度水分胁迫,WM)和50%土壤持水量(重度水分胁迫,WL);氮素水平包括高氮(0.23 g/kg,NH),中氮(0.16 g/kg,NM)和低氮(0.08 g/kg,NL)。试验采用完全随机设计,共9个处理。在灌溉施肥处理60天后收获,分析测定了植株不同部位的生物量及碳、氮、氧同位素含量。【结果】在WH和WM条件下,增加氮素用量使番茄地上部干物质量和叶面积显著增加,增幅分别为19.8%~45.4%和29.4%~106.8%;相同氮素水平下,WH和WM的地上部干物质量和叶面积比WL分别增加24.7%~83.4%和17.6%~90.4%。WHNH处理干物质量和叶面积最高,WMNH处理次之,但后者耗水量低,具有最高的WUE。在WH和WM下,随着氮素用量的增加番茄植株的WUE和氮素含量同步增加。土壤水分水平下降提高了植株的WUE以及δ13C和δ18O,而WUE提高的主要原因是由于叶片气孔的优化调控,植株叶片的δ13C和δ18O可以用于表示灌溉施肥条件下长时间尺度上的WUE信息。WLNM处理提高番茄的糖分含量,而WHNM处理能降低番茄的有机酸含量,从而使番茄口感更好,提高番茄品质。【结论】中度水分胁迫和高氮处理(WMNH)能在促进番茄生长和提高氮素吸收和利用效率的同时减少水分用量,提高番茄的水分利用效率,为本试验的最优水氮耦合处理。  相似文献   

16.
温度对旱田土壤N2O排放的影响研究   总被引:9,自引:0,他引:9  
以南方亚热带代表性旱田土壤—贵州玉米 -油菜轮作田、大豆 -冬小麦轮作田和休耕地为研究对象 ,同步观测了整个轮作期土壤N2 O排放通量和温度的季节变化。同时 ,采用DNDC模型定量探讨了未来气温变化对土壤N2 O排放的潜在影响。结果表明 ,温度是土壤N2 O排放通量规律性日变化的最主要控制因素 ;除大豆地外 ,其他作物生长季节和休耕地的N2 O排放通量季节变化与温度之间均存在一定程度的正相关性 ,其中冬春季休耕地的N2 O排放通量与温度间存在弱指数函数关系。模型检验结果表明 ,除大豆地外 ,其余试验地的N2 O排放通量均随年均气温升高而升高 ,在冬春季 ,土壤N2 O排放通量对气温变化的敏感性强于夏秋季 ,尤其以冬春季休耕地受气温变化的影响最为显著。  相似文献   

17.
【目的】N2O是重要的温室气体,其增温潜势是CO2的298倍,而且破坏臭氧层。森林生态系统是陆地生态系统的重要组成部分,占全球陆地面积的33%,森林土壤N2O排放对全球气候变化有重大的影响。山核桃(Carya cathayensis)是非常重要的经济林,是山核桃主产区农民的主要经济来源。近年来,农民采取施用无机肥和有机肥等措施来提高山核桃产量,但施肥对山核桃林地土壤N2O排放的影响尚不清楚,本文以不施肥作为对照(CK),研究单施有机肥(Organic fertilizer, OF)、单施化肥(Inorgnaic fertilizer, IF)、 有机无机肥配施(Organic fertilizer and Inorgnaic fertilizer, OIF)对山核桃林地土壤N2O气体排放的影响。【方法】 利用静态箱-气相色谱法对山核桃林地土壤N2O排放通量进行了为期1年的测定。采样箱为组合式,即由底座、顶箱组成,均用PVC板做成,面积为30 cm30 cm,高度为30 cm。气体样品采集频率基本为每月1次,采集气体时,将采集箱插入底座凹槽(凹槽内径和深度均为5 cm)中,用蒸馏水密封,分别于关箱后0、 10、 20、 30 min采集,用注射器抽样60 mL置于气袋,带回实验室用岛津GC-2014气相色谱仪进行测定,检测器为电子捕获检测器(ECD),检测器温度为250℃。【结果】 山核桃林地不同施肥土壤N2O排放通量均呈现明显的季节性变化,以夏季最高、冬季最低。土壤N2O的排放通量在N -0.021~ 0.161 mg/(m2 h)之间变化,不同处理土壤N2O年累积排放量依次为单施有机肥单施化肥有机无机肥配施对照,对应值分别为N 2.17、 2.01、 1.94和0.94 kg/(hm2a)。与对照相比,施肥处理显著增加N2O的排放(P0.05),但是各施肥处理N2O排放量之间的差异不显著。单施有机肥和有机无机肥配施处理土壤N2O排放通量与土壤水溶性有机碳含量和微生物量碳呈显著相关关系(P0.05),而单施化肥和对照则无显著相关性。土壤N2O排放通量与地下5 cm处土壤温度均显著相关(P0.05),而土壤N2O排放与土壤含水量间没有显著相关性。【结论】 施肥显著促进了山核桃林地土壤N2O排放,不同施肥处理之间山核桃林地土壤N2O排放无显著差异。添加有机肥引起土壤水溶性有机碳和微生物碳的增加可能是有机肥增加山核桃林地土壤N2O排放速率的主要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号