首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
水氮互作对河套灌区膜下滴灌玉米产量与水氮利用的影响   总被引:7,自引:1,他引:6  
为探讨不同滴灌施氮策略对玉米生长、产量、水肥利用效率的影响,于2015年在河套灌区开展了玉米膜下滴灌田间试验。试验设置3个灌水水平(采用张力计指导灌溉,分别控制滴头正下方20cm深度处土壤基质势下限高于-20,-30,-40kPa),6个施氮水平(0,180,225,262.5,300,345kg/hm2),研究水氮互作对玉米株高、LAI、产量、水氮利用率的影响。结果表明,在玉米生育期前期,高氮对玉米株高与叶面积指数(LAI)具有明显的促进作用,在灌浆期,受水氮互作以及施氮量的影响,随施氮量的增大表现出先升高后降低的趋势,当施氮水平为N3(262.5kg/hm2)时为最大。完熟期玉米干物质积累对灌水的响应表现为:W1(-20kPa)W2(-30kPa)W3(-40kPa),施氮对玉米籽粒吸氮量的变化表现为:N3(262.5kg/hm2)N4(225kg/hm2)N2(300kg/hm2)N5(345kg/hm2)N0(0kg/hm2),N3比N1和N2分别升高15.71%和11.13%,比N4仅提高1.51%。灌水与施氮均可显著增加玉米籽粒产量、百粒重、穗行数以及行粒数,二者有显著的交互作用,且以氮为主效应。在施氮0~262.5kg/hm2范围内,氮肥利用率随施氮量的增加而升高,此后反而降低;在该范围内水分利用效率以及灌溉水利用效率均随施氮量升高而增加,随基质势控制水平的升高而明显下降,以灌水水平W3(-40kPa)为最大。在试验中,以W3N3处理的水氮利用率最高,其水分利用效率与氮肥回收率比产量最高的W2N4要分别高出1.93%和76.60%,但产量比W2N4要下降约8.58%。在河套灌区玉米膜下滴灌施氮条件下,灌水量-30kPa和施氮量225kg/hm2时,可获得最高的籽粒产量。在灌水量-40kPa和施氮量262.5kg/hm2条件下,可以获得低于最高籽粒产量约8%的籽粒产量与最高的水氮利用率。从节水和生态可持续发展角度来看,灌水水平W3(-40kPa)、施氮水平N3(262.5kg/hm2)为当地最佳的滴灌施氮策略。  相似文献   

2.
  【目的】  适宜的水氮管理是提高关中平原夏玉米产量的关键。研究水、氮减量及其交互作用对夏玉米养分积累和转运以及氮素利用的影响,为关中平原夏玉米高产高效栽培提供理论依据。  【方法】  于2018—2019年,在陕西杨凌设置水、氮二因素裂区田间试验。3个灌溉处理为传统灌水量800 m3/hm2 (W2)、减量50%灌水 (400 m3/hm2,W1)和无灌溉(W0)。每个灌溉量下设传统施氮量的100% (300 kg/hm2, N300)、–25% (225 kg/hm2, N225)、–50% (150 kg/hm2, N150)、–75% (75 kg/hm2, N75)和不施氮(N0) 5个水平,W2N300为传统水氮管理模式对照。分析夏玉米籽粒产量、氮磷钾养分积累与转运特征,计算氮肥利用效率。  【结果】  与W2N300相比,W2N225、W1N225、W1N150处理的夏玉米产量和产量构成因素无显著差异。W1N225显著提高了玉米抽雄后干物质积累,显著提高了玉米抽雄后氮、磷、钾养分积累和所占比例,W2N225、W1N300则与W2N300无显著差异。与W2N300相比,W1N225处理可以显著提高干物质和氮磷钾养分转运量,分别比W2N300处理的干物质和氮磷钾转运量提高了11.67%、16.28%、19.80%、18.95%。相关分析结果表明,玉米抽雄前后氮、磷、钾素积累量与籽粒产量均呈显著或极显著正相关,且抽雄后的氮、磷、钾积累量与产量的相关性高于抽雄前。  【结论】  在传统灌水量和施氮量基础上,减少50% 的灌水量,减少25%的氮素投入量可显著提高玉米抽雄后养分积累,促进养分转运量和抽雄后转运养分对籽粒贡献率的协同提高,进而提高了玉米产量和氮肥利用效率。综合考虑夏玉米产量,氮、磷、钾养分积累与其转运特征以及氮素利用效率等因素,在关中平原灌溉区,以灌水减量50% (即400 m3/hm2)、施氮减少25% (即 225 kg/hm2)的模式较为适宜。  相似文献   

3.
  【目的】  合理施氮是粮食高产、稳产的重要保证。研究不同施氮水平下作物产量的可持续指数以及土壤硝态氮年际迁移特征,对指导黄淮海地区冬小麦–玉米轮作体系下农田氮肥的合理施用具有重要意义。  【方法】  长期定位试验始建于2006年,设置10个施氮水平:0、60、120、180、240、300、360、420、500和600 kg/hm2。测定冬小麦和夏玉米产量及土壤剖面 (0—200 cm) 硝态氮含量的年际变化特征。  【结果】  施氮水平显著影响冬小麦–夏玉米轮作体系下作物产量,施肥年限以及施肥年限与施肥量间的交互作用对小麦、玉米产量也存在极显著影响。施N 0~240 kg/hm2的处理,小麦、玉米产量随施氮量的增加逐渐增加;施N 300~600 kg/hm2的处理作物产量基本稳定,处理间差异不显著 (P > 0.05)。施氮能显著提高冬小麦产量的可持续性指数 (P < 0.05),但对夏玉米产量的可持续指数影响较小。随着施氮量增加,土壤硝态氮含量呈现逐渐增加的趋势,且施N量低于300 kg/hm2时,0—200 cm土层硝态氮含量均处于较低水平,施氮量超过300 kg/hm2后,土壤硝态氮含量显著增加。另外,随着试验年限的延长,土壤硝态氮累积峰逐渐下移,2008、2011和2017年土壤硝态氮含量峰值分别在40—60 cm、80—120 cm和80—160 cm。  【结论】  黄淮海盐化潮土区,冬小麦–夏玉米轮作制度下氮合理用量在冬小麦上的阈值为240 kg/hm2、在夏玉米上的阈值为180 kg/hm2,在此氮肥用量下,长期施肥既可保证作物 (小麦、玉米) 稳产,又不会显著增加土壤硝态氮残留及向下迁移。  相似文献   

4.
施肥与灌水对硝态氮在土壤中残留的影响   总被引:34,自引:1,他引:34  
通过田间试验研究不同施氮量与灌水量对春玉米和冬小麦田土壤中硝态氮分布与累积的影响,结果表明,春玉米收获后0~2 m土壤中累积硝态氮185.7~748.0 kg/hm2,其中1 m以上占57.9%~70.1%。由于施用氮肥而增加的硝态氮占施N量的1.8%(N 112.5 kg/hm2),50.7%(N 225 kg/hm2),56.7%(N 337.5 kg/hm2)和77.0%(N450 kg/hm2)。不施N和施N 112.5 kg/hm2时春玉米田土壤剖面没有明显累积峰;施N等于或高于225 kg/hm2时在60~80 cm土层有明显累积峰,施氮量高的峰值较高;施N 450 kg/hm2时在120~140 cm深度出现另一个累积高峰。冬小麦收获后土壤0~2 m硝态氮累积量为74.9~328.8 kg/hm2,其中1m以上占67.8%~90.7%。由于施用氮肥而增加的硝态氮占施N量的19.5%(N 112.5 kg/hm2),35.6%(N 225 kg/hm2),58.9%(N 337.5 kg/hm2)和56.4%(N 450 kg/hm2)。冬小麦田收获后土壤深层(1~2 m)没有明显的硝态氮累积,即使施氮量高达450 kg/hm2时也只在表层40 cm以上累积较多。不论是春玉米还是冬小麦,当生育期施氮量大于225 kg/hm2时0~2 m土层均有明显的硝态氮累积,施氮量高的累积量较高。施氮量是造成土壤中硝酸盐累积的主要因素,灌水量对春玉米田硝态氮的向下迁移有显著影响。  相似文献   

5.
为了优化冬小麦水氮配置,实现养分水分资源高效利用,试验设计3个灌水水平(低灌水W1:25 mm;中灌水W2:40 mm;高灌水W3:55 mm)和5个氮肥水平(N0:0;N1:80 kg/hm^2;N2:180 kg/hm^2;N3:240 kg/hm^2;N4:300 kg/hm^2),共计15个处理,探究了喷灌条件下灌水、施氮及其互作对籽粒灌浆特性及水氮利用效率的影响,并通过建模求解最优水氮配置。结果表明:施氮对te(灌浆持续时间)和tm(最大灌浆速率出现时间)影响显著,两者均随施氮量的增加表现为先增加后降低。N3施氮水平下te和tm最大,均值分别为43.9,24.6天,比N0(不施氮)分别增加1.7,3.0天。W2N3处理的tm值最大,比最小处理W1N0延后5.0天。GFmax(最大灌浆速率)与AG(平均灌浆速率)呈极显著相关(r=0.841**),千粒重与产量(r=0.791**)、te(r=0.755**)和tm(r=0.717**)呈极显著正相关。W2N3组合产量和WUE(水分利用效率)均为最大,分别为8960 kg/hm^2和2.83 kg/m^3。水氮耦合通过优化灌浆过程可有效提高冬小麦产量。喷灌灌水定额26~35 mm、施氮量193~204 kg/hm^2(基施40%+拔节期追施60%)的水氮资源配置模式可实现节水增产双效目标。  相似文献   

6.
水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响   总被引:3,自引:1,他引:2  
为给强筋小麦(Triticum aeativum L.)高产优质栽培的水、氮合理运筹提供理论依据,在高产地力条件下,选用强筋小麦品种济麦20,设置不施氮(N0)、施氮180 kg/hm2 (N1)、240 kg/hm2 (N2)3个施氮水平,每个施氮水平下设置不灌水(W0)、底墒水+拔节水+开花水(W1)、底墒水+冬水+拔节水+开花水(W2)、底墒水+冬水+拔节水+开花水+灌浆水(W3)4个灌水处理,每次灌水量均为60 mm,研究了水氮互作对麦田耗水量、土壤硝态氮运移、氮素利用效率和水分利用效率的影响。结果表明,(1)增加施氮量,开花期和成熟期0—140 cm各土层的土壤硝态氮含量显著升高;增加灌水时期,土壤硝态氮向深层的运移加剧,成熟期0—80 cm各土层的土壤硝态氮含量降低,120—140 cm土层的土壤硝态氮含量升高。N1W1处理在开花期0—60 cm土层的土壤硝态氮含量较高,成熟期土壤硝态氮向100—140 cm土层运移少,有利于植株对氮素的吸收。(2)随施氮量的增加,子粒产量先升高后降低,以N1最高。N1水平下,W1处理获得了较高的子粒产量、子粒氮素积累量、氮素利用效率、氮肥农学利用率和氮肥偏生产力;在此基础上增加冬水(W2),上述指标无显著变化;再增加灌浆水(W3),上述指标显著降低。(3)施氮提高了小麦对土壤水的利用能力,随施氮量增加,土壤供水量及其占总耗水量的比例显著升高。N1水平下,W1处理获得了最高的水分利用效率;再增加灌水时期,水分利用效率显著降低,开花至成熟阶段的耗水模系数显著升高,灌水量占总耗水量的比例升高,降水量和土壤供水量占总耗水量的比例降低。本试验条件下,施氮为180 kg/hm2,灌底墒水+拔节水+开花水3水的N1W1处理,是兼顾高产、高效的水氮运筹模式。  相似文献   

7.
  【目的】  当前华北平原冬小麦–夏玉米生产中,存在氮肥投入量大、氮肥利用效率低等问题,在滴灌水肥一体化条件下研究施氮量对冬小麦–夏玉米周年产量、氮素利用效率和土壤全氮含量、硝态氮残留的影响,以期为该地区小麦–玉米节肥、高产高效的栽培模式提供理论依据。  【方法】  于2018—2020年在青岛农业大学胶州现代农业示范园开展小麦、玉米滴灌施肥田间试验。设冬小麦/夏玉米生长季不施氮(N0)和施氮 150/150 kg/hm2 (N1)、210/225 kg/hm2 (N2) 和270/300 kg/hm2 (N3) 4个水平,以传统施肥方式和常规施氮量240/240 kg/hm2为对照(CK)。分析冬小麦和夏玉米产量、氮素吸收量和土壤氮素残留量。  【结果】  N2处理冬小麦、夏玉米产量最高,与N3处理无显著差异,但显著高于N0、N1和CK处理;N3处理冬小麦、夏玉米的干物质积累量、氮素吸收量最高,与N2处理差异较小,而显著高于N0、N1和CK处理。冬小麦、夏玉米氮肥偏生产力随着施氮量的提高而降低;冬小麦季氮素利用效率随着施氮量的提高而降低;夏玉米季,N2、N1和N0处理的氮素利用效率显著高于N3和CK处理,且N0、N1和N2处理间无显著差异;冬小麦、夏玉米氮肥农学利用率均随着施氮量的提高而降低,N2施氮水平下,氮素利用效率和氮肥农学利用率均表现较优。随着施氮量的增加,0—100 cm土层土壤全氮含量和硝态氮含量呈增加的趋势,全氮积累主要集中在0—40 cm土层,N3、N2和CK处理0—100 cm土层土壤全氮含量与N0和N1处理之间的差异随着轮作年数的增加而逐渐增大,N2处理较N3和CK处理有效抑制了硝态氮在表层土壤的积累和向深层土壤的迁移,降低了硝态氮淋失风险。  【结论】  冬小麦季施氮210 kg/hm2和夏玉米季施氮225 kg/hm2 (N2)可实现周年作物增产高效,提高氮素利用效率,显著降低硝态氮向深层土壤迁移,降低硝态氮淋失风险,是滴灌水肥一体化下华北平原麦玉周年轮作适宜的施氮量。  相似文献   

8.
为了探明晋南地区冬小麦-夏玉米轮作区适宜的节水减氮管理模式,采用田间试验,研究分析了5个水氮组合模式对夏玉米氮素积累特征、籽粒产量、品质和氮肥利用率的影响。结果表明,与大水漫灌、传统撒施肥料(CK)相比,微喷水肥一体化处理的夏玉米籽粒产量提高12.05%~45.4%,其中以微喷灌4次(出苗水+小喇叭口水+大喇叭口水+抽雄水),施纯氮227.5 kg/hm2,氮肥后移、追氮2次处理(WN3)的籽粒产量和蛋白质含量最高,籽粒氮素积累量、总氮素积累量分别较施纯氮227.5 kg/hm2,追氮1次处理(WN2)提高6.8%、14.26%,且与微喷灌、施纯氮300 kg/hm2(WN1)和WN2相比,WN3处理的氮肥利用率分别提高41.81%、23.14%,氮肥农学利用效率分别提高47.45%、49.01%。综上所述,晋南冬小麦-夏玉米一年两熟区,采用微喷水肥一体化可替代漫灌实现节水减氮高产栽培,推荐微喷灌溉4次、氮肥后移处理(基肥45.5 kg/hm2+小喇叭口期追肥136.5 kg/hm2+抽雄期追肥45.5 kg/hm2)作为晋南地区夏玉米灌水施氮适宜的运筹方式,该模式相比CK减少灌水量50%、减施氮肥24.16%,提高氮肥利用效率的效果最好,实现了节水减氮的效果。  相似文献   

9.
【目的】土壤有机氮组成和有效性影响土壤肥力的高低。研究不同施氮量下土壤有机氮组分含量的变化规律,及其与冬小麦氮素吸收之间的关系,为科学开展氮肥减施提供理论依据。【方法】冬小麦–夏玉米轮作田间试验在河南温县进行,试验历经3季冬小麦和两季夏玉米。小麦设置5个施氮(N)量处理:300 kg/hm2(N300)、225 kg/hm2 (N225)、195 kg/hm2 (N195)、165 kg/hm2 (N165)、0 kg/hm2 (N0),从第2季冬小麦开始,调查冬小麦产量和吸氮量,小麦播种前和收获后测定0—20 cm土层土壤全氮、有机氮组分含量。【结果】实现冬小麦稳产的最低施氮量为165 kg/hm2,满足冬小麦对氮素需求的最低施氮量为195 kg/hm2。酸解氮(TNex)是土壤中主要的有机氮组分,占全氮的59.06%~92.26%。随着试验时间的延长,N165和N195处理降低了TNex在有机氮中的比例,而N0、N225和N300...  相似文献   

10.
为探明不同灌溉方式、不同灌水量与氮肥用量条件下小麦、玉米周年水分利用机制,采用田间试验,开展了喷灌与地面灌条件下灌水次数(0,1,2,3次,450 m~3/hm~2)与施氮量(小麦季:180,240,270 kg/hm~2;玉米季:210,270,330 kg/hm~2)对小麦、玉米生长及产量和灌水利用率、小麦生理特征等的影响研究。结果表明:喷灌较地面灌更利于小麦叶片SPAD值的提高。在不同灌量条件下,喷灌更利于促进小麦光合速率的提高,且以N270+3水处理的光合速率最高,其次为N180+1水处理。在中低氮水平,地面灌以灌2水产量最高,而喷灌在灌1水条件下产量最高。玉米产量在低氮和高氮水平下,随灌水量的增加而增加,而中氮(270 kg/hm~2)水平则表现为先增加而后降低的趋势,且中氮水平的玉米产量相对较高。对周年效应而言,喷灌的小麦、玉米周年产量和灌水利用率基本均高于地面灌。在两种灌溉条件下,均以小麦、玉米分别灌2水[450 m~3/(hm~2·次)],周年施氮量510 kg/hm~2的周年总产量最高。周年总灌水利用率在两种灌溉条件下均以周年总施氮量390 kg/hm~2+总灌水900 m~3/hm~2最高,其次为中氮(N240+N270)灌1水处理。周年总水分利用效率以喷灌周年总施氮量510 kg/hm~2+总灌水900 m~3/hm~2最高,以地面灌周年总施氮量510 kg/hm~2+总灌水1 800 m~3/hm~2最高。说明适当减少灌水更利于周年小麦、玉米水分利用率的提高。从增产与节水综合因素考虑,推荐小麦、玉米周年灌水施肥模式为:小麦N240+玉米N270+喷灌各2水[450 m~3/(hm~2·次)]。  相似文献   

11.
【目的】在我国水稻生产中探讨秸秆全量还田与氮肥配施的理论与技术,阐明秸秆还田对水稻产量、 氮素利用率及氮素损失的影响,对于提高水稻产量和氮素利用效率、 减少氮污染具有重要意义。【方法】2009~2011年,以水稻南粳46为材料,在江苏常熟农业生态实验站进行原状土柱模拟试验。试验采用裂区设计,主区为秸秆全量还田(S)和无秸秆还田(S0); 副区为氮肥用量(N),设置N 120、 180、 240和300 kg/hm2 4个氮水平,以不施氮肥(N0)为对照。分析了水稻基肥期、 分蘖期、 穗肥期的氨挥发量和土壤80 cm处渗漏水全氮含量,土壤0—15 cm全氮含量,水稻产量,以及水稻籽粒和秸秆氮含量,计算水稻生育期氮肥的氨挥发损失率、 淋溶损失率、 土壤残留率以及水稻的氮肥利用效率。【结果】水稻产量随氮肥适宜用量增加而增加,与单施氮肥相比,秸秆还田下水稻平均增产6.3%,其中N 240 kg/hm2 处理产量最高; 水稻的氮肥利用率随施氮量的增加呈下降趋势,秸秆还田能够提高水稻的氮肥利用率,氮肥农学效率和氮肥表观利用率较单施氮肥分别提高1.4~3.4 kg/kg和1.8%~4.2%; 水稻田氨挥发损失量、 氮肥淋溶损失量和土壤残留氮量均随施氮量的增加而增加,在N 240 kg/hm2水平下,秸秆还田氨挥发损失量增加18.2%、 土壤残留氮量增加10.1 kg/hm2,减少氮素淋溶损失量30.9%,氮肥总损失率降低6.0%。【结论】在秸秆全量还田下,配施适量的氮肥,可以提高水稻对氮肥的利用率,增加产量,同时减少氮肥损失。本试验中,以麦秸全量还田配施N 240 kg/hm2为最优组合。  相似文献   

12.
不同氮肥类型和用量对小麦产量和加工品质的影响   总被引:1,自引:0,他引:1  
  【目的】   分析不同用量有机肥氮和化肥氮对小麦籽粒产量和品质的影响,为提升小麦品质提供科学施肥依据。   【方法】   不同氮肥类型长期定位试验位于山东陵县,始于2006年。肥料分为有机肥氮和化肥氮两大类,用量均设定为0、60、120、180、240、300、360、420、500、600 kg/hm2。2018年取样测定小麦产量和籽粒品质指标,运用多元统计分析方法评价了长期施用不同量有机肥氮和化肥氮对济麦22产量和品质的影响。   【结果】   氮肥类型对小麦籽粒容重、出粉率两个磨粉品质指标无显著影响,氮肥用量对籽粒容重、出粉率影响显著,施氮量越高,容重越低,出粉率越高。氮肥类型和用量对营养品质和加工品质影响显著。施氮量低于300 kg/hm2时,有机肥氮处理小麦的蛋白质含量、沉淀值、湿面筋含量、面团吸水率、面团形成时间均小于化肥氮处理;施氮量高于300 kg/hm2,有机肥氮和化肥氮处理的小麦品质指标差异较小。相关性分析表明,蛋白质含量、湿面筋含量、沉淀值与大多数品质指标存在显著的相关性。主成分分析表明,蛋白质含量因子对品质变异的贡献率为57%,显著大于其他主成分因子。品质指标综合分析表明,无论有机肥氮还是化肥氮,施氮量越大品质综合得分越高,相同施氮量下化肥氮处理小麦的品质综合得分大于有机肥氮处理,且施氮量越大差距越小。综合产量和籽粒品质的聚类分析表明,19个施肥处理可分为4类:第一类为不施氮和施有机肥氮60 kg/hm2 处理,为低产低质型;第二类为有机肥氮120 kg/hm2和化肥氮60 kg/hm2处理,为低产中质型;第三类为有机肥氮180、240 kg/hm2和化肥氮120 kg/hm2处理,为中产中质型;第四类为有机肥氮 ≥ 300 kg/hm2和化肥氮 ≥ 180 kg/hm2的处理,为高产高质型。   【结论】   氮肥类型对小麦籽粒产量和品质的影响与用量有关,有机肥氮低于300 kg/hm2或化肥氮低于180 kg/hm2,产量和品质均较差,且有机肥氮处理的小麦产量和籽粒品质低于化肥氮处理,有机肥氮用量 ≥ 300 kg/hm2或化肥氮用量 ≥ 180 kg/hm2时,可确保高产优质。  相似文献   

13.
氮肥基施深度对夏玉米产量、 氮素利用及氮残留的影响   总被引:2,自引:0,他引:2  
【目的】研究华北平原区底施氮肥深度对夏玉米产量、 氮素吸收量、 氮肥利用率以及氮素在土壤中残留的影响,以期为夏玉米的氮肥施用提供依据。【方法】采用小区试验和15N示踪试验的方法。小区试验设对照(CK),常规垄侧施氮(T-side),垄内8 cm深(T-8)、 16 cm深(T-16)、 24 cm深(T-24)施氮和垄内3层施氮(T-all)6个处理,养分施用量为N 180 kg/hm2,P2O5 120 kg/hm2,K2O 150 kg/hm2。示踪试验采用原位原状土柱法,设3个处理: 15N尿素施在8 cm深,另两层16 cm、 24 cm施用普通尿素(N8); 15N尿素施在16 cm深,另两层8 cm、 24 cm施用普通尿素(N16); 15N尿素施在24 cm深,另两层8 cm、 16 cm施用普通尿素(N24); 养分用量与小区试验相同。【结果】大田试验结果表明,T-all处理的玉米产量最高,比T-24提高了8.45%,达显著水平; T-all、 T-8、 T-16处理的夏玉米产量均高于T-side,分别比T-side提高了6.65%、 3.29%和5.43%,所有施肥处理中以T-24的玉米产量最低。玉米各生育期的氮素吸收量也以T-24处理最低; 与T-side处理相比,T-all处理的玉米氮吸收量在吐丝以前偏低,收获时稍高。夏玉米带状施肥主要影响垄内(施肥部位)土壤碱解氮含量,对垄间(非施肥带)土壤碱解氮含量影响不大; 与T-16、 T-24深层施氮相比,T-side、 T-8浅层施氮处理显著提高了玉米生育前期垄内表层土壤的碱解氮含量。示踪试验结果表明,施于8 cm、 16 cm、 24 cm的氮素利用率分别为37.24%、 31.33%、 18.75%。玉米收获后0100 cm土层N24处理的氮素残留量显著高于N8和N16处理,并且N24处理的氮素残留主要分布在4080 cm土层。【结论】本区域夏玉米底施尿素的适宜深度为816 cm。  相似文献   

14.
【目的】研究强筋小麦产量品质形成的适宜氮肥形态和施氮量,对增加小麦产量、提高籽粒品质及减少农田氮污染有重要意义,同时为合理精确运筹施氮提供理论依据。【方法】田间试验采用二因素裂区设计,氮肥形态为主区(硝态氮肥、铵态氮肥、酰铵态氮肥),氮肥用量为副区(低氮75kg/hm^2、中氮150kg/hm^2、高氮225kg/hm^2)。分析小麦的氮转运量和产量、品质。【结果】1)在同一形态氮肥下,小麦成熟期氮累积量、籽粒产量和收获指数均在中氮(150kg/hm^2)处理达到最大值,中氮(150kg/hm^2)处理能通过显著增加花前氮转运量和花后氮积累量进而提高籽粒含氮量。生物产量、籽粒蛋白质组分含量(除醇溶蛋白)、蛋白质含量、湿面筋含量、面筋指数、总淀粉、直链淀粉、支链淀粉、可溶性糖和蔗糖含量均随施氮量增加而提高。2)在同一施氮量下,硝态氮肥和酰胺态氮肥处理的小麦各时期植株含氮量、生物产量和籽粒产量均显著高于铵态氮肥(P<0.05),硝态氮肥和酰胺态氮肥的籽粒产量处理无显著差异(除低氮处理)。铵态氮肥处理的品质最差,酰胺态氮肥处理更有利于增加蛋白质和淀粉含量,改善籽粒品质,酰胺态氮肥处理的氮素吸收效率和氮素生产效率最高。3)不同形态氮肥显著影响穗数,施氮量显著影响千粒重。产量和品质达到最优所需的氮肥用量不同,中氮(150kg/hm^2)时产量最高,高氮(225kg/hm^2)时品质最优。4)方差分析表明,不同形态氮肥和施氮量对冬小麦各生育阶段氮素积累量及所占比例有极显著的影响(P<0.01),且二者存在极显著的互作效应。通径分析表明,叶片花前氮转运量对产量的直接影响最大,直接通径系数为0.614。【结论】酰胺态氮肥是适合该地区的氮肥种类,酰胺态氮肥在中氮(150kg/hm^2)条件下能显著提高强筋小麦产量和籽粒含氮量,在高氮(225kg/hm^2)条件下能显著改善强筋小麦品质,因此在实际小麦生产中要根据产量品质要求合理运筹氮肥。  相似文献   

15.
【目的】膜下滴灌玉米种植模式在松嫩平原西部大面积推广,研究该模式下不同叶龄追施不同氮肥量对玉米的干物质积累、 氮肥利用及产量形成的影响,可为建立该种植模式玉米施肥制度提供理论依据。【方法】 在底施N 60 kg/hm2、 P2O5 90 kg/hm2和K2O 120 kg/hm2的条件下,设置4个追施尿素态氮肥水平处理: 0(N0)、 40(N40)、 90(N90)和140(N140)kg/hm2,于叶龄指数为30%、 45%、 60%和75%时,随滴灌进行追施,以不追肥为对照(CK)。测定了不同处理玉米叶片光合效率、 干物质积累和运转以及产量,计算了氮肥的利用率。【结果】随着玉米生育进程,在一定施肥范围内(0~150 kg/hm2),玉米产量、 叶面积指数、 叶绿素含量、 干物质积累、 植株氮素积累、 氮肥利用率、 氮肥农学效率及氮收获指数均随施氮量的增加而增加,当氮肥超过一定数量时(200 kg/hm2),各指标增加不明显,甚至下降。在叶龄指数为45%时追施90 kg/hm2氮肥处理,叶面积指数及叶绿素含量分别为6.92和2.69 mg/g,籽粒产量为11957.89 kg/hm2,干物质积累量、 花后同化物输入籽粒量及花后同化物对籽粒的贡献率分别为423.76 g/plant、 14451.50 kg/hm2和85.86%;氮肥利用率、 氮肥农学利用率分别为69.10%和38.38 kg/kg,显著高于其他处理(P0.05)。【结论】在松嫩平原西部膜下滴灌种植模式下,在玉米叶龄指数为45%时追施90 kg/hm2氮肥,可显著提高光合利用率,改善玉米生育后期的氮素吸收和干物质积累并增加产量,提高玉米对氮肥的吸收利用效率。  相似文献   

16.
密度、 氮肥对玉米杂交种节根数量的影响   总被引:2,自引:0,他引:2  
【目的】玉米地上和地下茎节生长的节根分别被定义为地上节根(气生根)和地下节根; 地上和地下节根在玉米生长全生育期的水分、 养分吸收以及抗倒伏方面起重要作用。密度和氮肥施用是作物生长和高产最为关键的两个农学影响因子,研究高产密植栽培中氮素如何影响玉米地上及地下节根数的变化,可为选择适宜的品种提供依据。【方法】以玉米自交系GEMS30、 Zheng653、 Mo17、 B73、 CIMBL153为母本,以武312(Wu312)及其近等基因系为父本组配的10对测交组合为试验材料,在2个密度水平(60000和80040 plant/hm2)和3个氮水平(0、 120和240 kg/hm2)下,通过田间挖根,然后按照玉米生长的轮次逐一割下节根并记录数量,同时利用NK-100型数显式弹簧拉力计测定地上第3节位的抗倒拉力。研究总节根数、 地上节根数(气生根)、 地下节根数、 茎秆抗倒拉力和产量的变化规律及其相互关系。【结果】本研究条件下,高密度显著降低产量; 供氮水平也显著影响产量,N 120 kg/hm2时产量高于N 0和240 kg/hm2。地上节根和地下节根数均受氮肥、 密度及氮肥密度互作的显著影响。高密种植平均使地上节根数减少3~6条,而地下节根数量不受影响; 抗倒拉力降低14%~29%,但是在N 240 kg/hm2条件下,高密度对地上和地下节根数的影响不显著。在N 120 kg/hm2供应条件下的地上和地下节根数、 抗倒拉力均高于不施氮,低密度下玉米地上节根数也高于N 240 kg/hm2。不同杂交种的地上节根对氮和密度的响应存在显著差异,其中以B73为母本的2个基因型最为敏感。相关分析表明,在N 0和N 120 kg/hm2条件下,无论密度高低,地下节根数与产量都呈显著正相关; 在低密度下N 0和N 120 kg /hm2条件下, 地下节根数与抗倒拉力呈显著正相关。但高密度在N0下,地上节根数与产量呈显著负相关。【结论】在适宜栽培条件下,地下和地上节根数量多,抗倒能力强,产量高,地下节根数对产量和抗倒伏的贡献相对更为重要。在胁迫条件下,过多的地上节根数可能对产量形成起负作用。因此,根据目标产量,在适宜栽培条件下,选择地下节根数多的品种可以提高产量和抗倒伏率。  相似文献   

17.
玉米免耕留膜可减少后茬轮作春小麦水氮用量   总被引:2,自引:2,他引:0  
【目的】河西绿洲灌区玉米普遍采用地膜覆盖措施,其收获后地膜的完整率仍高达70%。研究后茬小麦继续利用该地膜条件下相适应的水氮耦合管理,以期最大化发挥农资的效益,提高小麦产量和氮肥利用率。【方法】2016—2017年度,在甘肃河西绿洲灌区玉米–小麦轮作田进行三因素裂区田间试验。选择头茬玉米进行免耕 (NT) 和传统耕作 (CT) 的田块,在后茬小麦播种时,保留免耕玉米的覆盖地膜,免耕进行小麦播种,而在传统耕作玉米地块,清理残膜,粉碎后翻入土壤中。在两种耕作处理方式下,设传统灌水减量20% (1920 m3/hm2,I1) 和传统灌水量2400 m3/hm2 (I2) 两个灌溉处理,传统施氮减量40% (135 kg/hm2,N1)、传统施氮减量20% (180 kg/hm2,N2) 与传统施氮225 kg/hm2 (N3) 三个施氮水平,组成12个处理。从春小麦出苗20 d后,每15 d采集植株样,测定各器官含氮量,计算营养器官的氮素转运量、转运率、营养器官氮素转运对籽粒贡献率及氮素收获指数。【结果】与传统耕作相比,免耕留膜各处理显著提高了春小麦地上部氮素累积量,两年提高10.9%~14.2%。灌水减量20%+施氮减量20%处理提高了春小麦地上部氮素累积量,较传统耕作、灌水与施氮处理提高4.3%~6.1%。免耕较传统耕作提高了春小麦叶、茎营养器官氮素向穗部的转运量、转运率及对籽粒的贡献率,以免耕同步集成减量20%灌水+减量20%施氮 (NTI1N2) 处理提高幅度较大,较灌水减量20%+施氮减量40% (CTI1N3) 处理叶、茎氮素向穗部的转运量分别提高31.9%~45.7%与54.5%~61.5%,转运率分别提高15.5%~16.3%与20.8%~23.1%,对籽粒的贡献率分别提高13.3%~29.0%与26.4%~36.7%。NTI1N2处理可获得较高籽粒产量与氮素收获指数,较CTI2N3处理分别提高15.2%~22.0%与7.6%~10.0%。【结论】在玉米–小麦轮作体系下,前茬免耕玉米覆盖的地膜对后茬小麦生长依然有显著效果。而且,此时减少20%的常规灌水量和常规施氮量,可以获得更高的产量和氮肥利用率。因此,在河西绿洲灌区小麦–玉米轮作体系中,应推广玉米收获后采用免耕,并在后茬小麦继续使用覆盖的地膜,同时减少20%的灌水量和氮肥施用量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号