首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vitro system for incorporating bacterially produced high-molecular-weight glutenin subunits (HMW-GS) into doughs was used to study the effects of specific domains of the HMW-GS. Synergistic effects of incorporating into doughs both the Dx5 and Dy10 subunits are localized to the N-terminal domains. All single and pair-wise combinations of original subunits and hybrid subunits with their N-terminal domains exchanged between Dx5 and Dy10 finds three classes of respondents: the greatest response is when the N-termini of both Dx5 and Dy10 are present, followed by presence of the Dx5 N-terminus alone, and the least response by the presence of the Dy10 N-terminus alone. In addition, studies of Dx5 variants possessing repetitive domains of different length and composition find evidence that the length of the HMW-GS repetitive domain is important for dough properties and that the exact composition of the repeat domain has a detectible, though lesser contribution. Finally, in this experimental system, the Glu-D1 x- and y-subunits function in the mixing experiments as if they were a fused dimer, although the exact molecular basis of the effect is not known.  相似文献   

2.
为探究陕西关中地区小麦HMW-GS亚基与品质性状间的关系,采用SDS-PAGE法对57份陕西关中地区小麦品种(系)HMW-GS亚基组成及相关品质性状进行了分析。结果表明,供试品种(系)中共检测出7种HMW-GS亚基类型和8种HMW-GS亚基组合;Glu-A1位点上有3种亚基类型,分别为1、2*和Null,以1亚基为主(78.95%);Glu-B1位点上检测到7+8(61.40%)与7+9(38.60%)两个类型;Glu-D1位点上检测到5+10(70.18%)和2+12(29.82%)两个类型。3个HMW-GS基因位点编码亚基共组成8种亚基组合,品质得分6~10分,其中1/7+8/5+10组合品质得分10分,出现频率最高。就HMW-GS不同位点对品质性状效应进行分析发现,Glu-D1位点对b*值、形成时间、稳定时间、弱化度和粉质质量指数的影响达到极显著水平(P<0.01);对面团流变学特性的影响,Glu-D1>Glu-B1。不同类型亚基对小麦品质的效应存在差异,7+8亚基对蛋白质含量、湿面筋含量和容重具有正效应,7+9和5+10亚基对形成时间和稳定时间的影响显著高于其他亚基(P<0.05);携带1/7+8/5+10亚基组合小麦的蛋白质、湿面筋含量和容重最高;携带1/7+9/5+10亚基组合具有较高面粉L*值和面团流变学特性指标值。  相似文献   

3.
We have determined the technological properties of four lines containing combinations of three HMW-GS transgenes, encoding HMW-GS 1Ax1, 1Dx5 and 1Dy10. These lines were produced by conventional crossing of three single transgenic lines of the bread wheat cultivar Anza that contains the endogenous HMW-GS pairs 1Dx2 + 1Dy12 and 1Bx7* + 1By8 and is null for the Glu-A1 locus. Consequently, the total number of HMW-GS ranged from 4 in the control line Anza to 7 in line T618 which contains all three HMW-GS transgenes. The lines were studied over two years using a range of widely used grain and dough testing methods. All lines with transgenic subunits showed higher levels of glutenin proteins than the Anza control, and these differences were highly significant for lines T616, T617 and T618, containing, respectively, the transgenes encoding HMW-GS 1Ax1 and 1Dy10, 1Dx5 and 1Dy10 and 1Ax1, 1Dx5 and 1Dy10. These increases in glutenin levels are compensated by lower levels of gliadins present in transgenic lines. These changes affected the ratio of polymeric to monomeric gluten proteins (poly:mono), the ratio of HMW-GS to LMW-GS (HMW:LMW) and the contents of individual 1Ax, 1Bx, 1By, 1Dx and 1Dy subunits. Transgenic lines expressing subunit 1Dy10 together with x-type subunits (T616, T617 and T618) were superior to line T606, which had only increases in x-type subunits. In particular, the combination of transgenic subunits 1Dx5 and 1Dy10 (line T617) gave better dough rheological properties than the other combinations of transgenic subunits. For example, dough development time and stability were increased by 3.5-fold and 8.5-fold, respectively, while the mixing tolerance index (MTI) was decreased by 3.3-fold in line T617 with respect to the control line. Alveograph analyses showed that all four transgenic combinations had increased P values compared to the Anza control but subunit 1Dx5 greatly reduced the extensibility (L). These results show that stacking HMW-GS transgenes by conventional crossing is a valid strategy for the improvement of wheat quality, with different effects being related to the different HMW-GS combinations.  相似文献   

4.
The aim of this study was to evaluate the cumulative and interactive effects on wheat (Triticum aestivum L.) gluten strength and mixing properties of dough associated with the duplication of the Glu-D1 locus. A partially isohomoeoallelic line RR240, in which a segment of the wheat chromosome 1D containing the Glu-D1 locus encoding the Dx2 + Dy12 subunits and translocated to the long arm of the chromosome 1A through homoeologous recombination, was assessed. Agronomic traits and yield components were studied in the translocated line RR240 and compared with the control line cv. Courtot. Both lines were evaluated under field conditions in two experimental years. Technological effects resulting from the duplication of HMW glutenin subunits Dx2 and Dy12 were evaluated using the Alveograph test, the Mixograph test and the baking test. The RR240 line was shown to have a lower agronomic performance for 1000-kernel weight and grain yield. However the duplication of the Glu-D1 allele was associated with a significant effect on dough strength and mixing resistance, and on the Zeleny sedimentation volume. Baking parameters were not significantly modified between both lines although the score values of the CNERNA test were observed to be slightly higher in RR240 than in Courtot.  相似文献   

5.
The mixing properties of the dough are critical in the production of bread and other food products derived from wheat. The high molecular weight glutenin subunits (HMW-GS) are major determinants of wheat dough processing qualities. The different alleles of the HMW-GS genes in hexaploid wheat vary in their effect on dough quality. To determine the contribution of the individual HMW-GS alleles, lines deficient in HMW-GS proteins were generated by chemical mutagenesis in the elite bread wheat Triticum aestivum cv. Summit. In this report we describe the identification and characterization of Dy10 and Ax1 deficient lines. Examination of the effect of Dy10 and Ax1 deficiency on dough rheological properties by mixography showed shorter mixing time to reach peak resistance, and weaker and less extensible doughs relative to the wild type control. This is the first time that the role of Dy10 in vivo has been examined apart from the Dx5 + Dy10 allelic pair combination.  相似文献   

6.
In this work we report the effects of the HMW-GS 1Ax1, 1Dx5 and 1Dy10 on the breadmaking quality of the bread wheat cultivar Anza that contains the HMW-GS pairs 1Dx2 + 1Dy12 and 1Bx7* + 1By8, and is null for the Glu-A1 locus. This allows the characterization of individual subunits 1Dx5 and 1Dy10 in the absence of subunit 1Dx5, and the interactions between these subunits and subunits 1Dx2 and 1Dy12 to be determined. Three transgenic lines termed T580, T581 and T590, containing, respectively, the HMW-GS 1Ax1, 1Dx5 and 1Dy10 were characterized over 3 years using a range of widely-used grain and dough testing methods. The transgenic subunits 1Ax1, 1Dx5 and 1Dy10 accounted for 25.2%, 20.3% and 17.9%, respectively, of the total HMW-GS in the three transgenic lines. Although lines T581 and T590 expressed similar levels of subunits 1Dx5 and 1Dy10 they had different effects on other aspects of protein composition, including changes in the ratios of glutenin/gliadin, of HMW/LMW-GS, the 1Dx2/1Dy12, the x-type/y-type HMW-GS and the proportions of high molecular mass glutenin polymers. In contrast, lines transformed to express subunits 1Ax1 and 1Dx5 showed similar changes in protein composition, with higher protein contents and decreased ratios of glutenin/gliadin and 1Dx2/1Dy12. In addition, both transgenic lines showed similar increases in the ratio of x-type/y-type subunits compared to the control line. The transgenic lines were analysed using Farinograph, Mixograph and Alveograph. This confirmed that the expression of all three subunits resulted in increased dough strength (and hence breadmaking quality) of the cultivar Anza. A beneficial effect of subunit 1Dx5 has not been reported previously, transgenic wheat lines expressing this subunit giving overstrong dough unsuitable for breadmaking. However, the expression of subunit 1Dy10 had a greater effect on breadmaking quality than subunits 1Ax1 and 1Dx5. The Farinograph parameters such as dough stability and peak time were increased by 9.2-fold and 2.4-fold, respectively, in line T590 (expressing 1Dy10) with respect to the control line. Similarly, the Mixograph mixing time was increased by four-fold and the resistance breakdown decreased by two-fold in line T590 compared with the control line. The Alveograph W value was also increased by 2.7-fold in line T590 compared to the control line. These transgenic lines are of value for studying the contribution of specific HMW-GS to wheat flour functional properties.  相似文献   

7.
To test the effects of independently increasing the in vivo levels of high-molecular-weight glutenin subunits (HMW-GS) Dx5 and Dy10 on wheat flour properties, we increased the copy numbers of their corresponding genes by genetic transformation. Thirteen transformants with increases in one or both subunits were chosen for biochemical and functional characterization by solvent fractionation, RP-HPLC, SDS-sedimentation, and micro-mixing. Increases in Dx5 and Dy10 contents ranged from 1.4- to 3.5-fold and 1.2- to 5.4-fold, respectively, and generally resulted in increased polymeric protein, increased mixing times and tolerances, and lower peak resistances. Increases in Dx5 content had larger effects on most parameters than comparable increases in Dy10. Flours with more than 2.6-times the native levels of Dx5 could not be mixed under standard 2-g mixograph conditions, while flours with 5.4 times the native levels of Dy10 could be mixed if sufficient time was allowed. Increases in Dx5 and Dy10 had additive effects on mixing behavior. These experiments demonstrate that dough mixing strength and tolerance can be increased by raising the levels of native HMW-GS Dx5 or Dy10, but that the effects of the two subunits are quantitatively and qualitatively different.  相似文献   

8.
为进一步明确小麦高分子量麦谷蛋白亚基(HMW-GS)与小麦品质性状的关系,以黄淮麦区的127份小麦品种(系)为材料,利用SDS-PAGE技术、近红外谷物分析仪、粉质仪和拉伸仪等对其进行HMW-GS鉴定和品质检测.结果表明,参试材料在Glu-A1、Glu-B1和Glu-D1 3个位点上分别检测到2(x1、x-null)、...  相似文献   

9.
The high-molecular weight (HMW) glutenin subunits of bread wheat are major determinants of end-use quality. The objective of this study was to determine the 1Dx and 1Dy subunits present in 43 synthetic hexaploid wheat (SHW) lines derived by crossing durum ‘Langdon’ to 43 Aegilops tauschii accessions. Protein samples were initially electrophoresed multiple times on SDS-PAGE gels to arrange subunits into similar groups and then were electrophoresed on urea/SDS-PAGE gels. Initial results with SDS-PAGE gels indicated that there were six 1Dx and six 1Dy subunits in these SHW lines. However, results of the urea/SDS-PAGE indicated that some of the subunit groups could be further differentiated into additional subunits. A total of eleven 1Dx and eight 1Dy subunits including the newly designated subunits 1Dx2t-1, 1Dx2t-2, 1Dx2t-3, 1Dx1.5t-1, 1Dx2.1t-1, 1Dy10t-1, and 1Dy12t-1 were identified, and they composed 17 1Dx and 1Dy combinations in the SHW lines. Eight of the combinations included at least one novel subunit and hence they were novel Glu-D1 alleles. Our results indicated that urea/SDS-PAGE can be very useful in identifying new HMW glutenin subunits. Quality testing of the SHW lines will determine if any of the alleles are useful in improving wheat-baking quality.  相似文献   

10.
11.
Five different Glu-B1 HMW-GS patterns were identified among a collection of diverse durum wheat genotypes grown in 2001 in two locations in western Canada. The durum wheat lines exhibited a wide range of dough and gluten strength characteristics as measured by alveograph and 2 g mixograph parameters, gluten index (GI), and protein composition as measured by unextractable polymeric protein (UPP) content and the ratio of high-molecular weight (HMW) glutenin subunits (GS) to low-molecular weight (LMW) GS. HMW-GS subunits patterns represented within the genotypes were 6+8, 7+8, 7+16, 14+15 and 20. Two of the genotypes expressed Glu-A1 HMW-GS 2* in combination with other HMW-GS. Approximately 95% of the durum genotypes were γ-gliadin 45 types. Analysis of variance indicated that genotype was a greater source of variation in all measurements than was growing location, with the exception of protein content which showed less variation contributed by genotype and more contributed by location than for other quality parameters. UPP was strongly associated with all strength measurements. All of the γ-gliadin 42 types were low in UPP and weak. Among the γ-gliadin 45 types, those possessing HMW-GS 20 were typically in the lower half of the UPP and strength range. There was no clear evidence of an association between any of the other HMW-GS patterns and gluten strength. The majority exhibited HMW to LMW-GS ratios that were within the relatively narrow range of 0.15–0.25, yet there were wide variations in dough strength among genotypes within that range. Increasing proportions of HMW-GS resulting in ratios of greater than 0.30 were generally associated with weak dough and gluten and low UPP content.  相似文献   

12.
小麦面粉蛋白的含量和类型决定着小麦面粉的加工品质。为量化比较小麦面粉蛋白对品质影响的差异,以11个不同品质类型的品种为材料,分析了面粉蛋白巯基集团与面粉质量的相关性,发现自由巯基含量与面团稳定时间有极显著正相关性,与面筋指数有显著正相关性;基于面粉蛋白的自由巯基和分子内二硫键含量差异,建立了一个简单的品质贡献量化评价模型;依托蛋白质巯基预测结果,对90个不同类型的面粉蛋白的品质贡献进行了量化比较。结果表明,高分子量麦谷蛋白亚基中得分较高的是1Dy10、DX5和1Dy3;低分子量麦谷蛋白亚基中,位于 Glu-B3、 Glu-D3位点的蛋白得分达到7.2分,高于高分子量麦谷蛋白最高分的1Dy10(6.3分)。因为低分子量麦谷蛋白在面粉中的含量远超高分子量麦谷蛋白,推测面团强度的主要决定因素是低分子量麦谷蛋白,而不是传统观点认为的高分子量麦谷蛋白亚基。另外,一些燕麦类似蛋白和部分醇溶蛋白也对面团强度有一定贡献。  相似文献   

13.
Seven transgenic lines of a commercial wheat (Triticum aestivum L.) cultivar expressing transgenic subunits 1Ax1, 1Dx5 and 1Dy10, alone or in combination have been developed. Pasting properties were determined in these transgenic lines using a Rapid Visco Analyser (RVA) in order to determine the possible impact of HMW-GS transgene expression on the starch properties. Expression of the HMW-GS transgenes increased the proportions of the corresponding 1Ax, 1Dx and 1Dy subunits affecting significantly the ratios of HMW-GS:LMW-GS and x-type:y-type HMW-GS. Starch granule size distribution varied significantly among all transgenic lines, with the Anza control and transgenic line T616 (expressing subunits 1Ax1 and 1Dy10) showing the highest and the lowest percentage of B granules, respectively. All transgenic lines increased the water-binding capacities (WBC) at 25 °C and 90 °C. Line T606 (expressing subunits 1Ax1 and 1Dx5) and line T590 (expressing subunit 1Dy10) showed the lowest and the highest values for peak viscosity, respectively. Notably, lines expressing only transgenic x-type subunits (T580, T581 and T606), with high ratios of x-type:y-type HMW-GS, had low peak viscosities, final viscosities and breakdown viscosities. Line T590 had the highest breakdown viscosity while lines T606 and T581 had the lowest.  相似文献   

14.
高分子量谷蛋白亚基(HMW-GS)对小麦面粉加工品质有促进作用,尤其是Glu-D1d基因编码的1Dx5+1Dy10亚基能增加面团的筋度和弹性.小麦背景中的1BL·1RS易位对小麦面粉加工品质有显著的负面影响.因此,在小麦品质育种中如何判定小麦背景中是否含有1BL·1RS易位和HMW-GS的Glu-D1d基因具有重要意义.本研究利用3对分别检测1BL·1RS易位、Glu-B3和Glu-D1位点的共显性特异标记,结合SDS-PAGE鉴定,对16份已知遗传背景和Glu-D1x等位基因材料及38株(周麦18×烟农19)F2群体进行了分析,探索出适合同时鉴定小麦背景中1BL·1RS易位和Glu-D1d基因的多重PCR技术实验体系,并采用该体系对国内外352份小麦品种(系)进行了鉴定.结果表明,该体系是同时鉴定小麦背景中1BL·1RS易位和Glu-D1d基因的一种非常有效、简便可行的实验方法,可在标记辅助选择(MAS)育种中应用.  相似文献   

15.
小麦高分子量谷蛋白亚基基因分子育种研究进展   总被引:3,自引:0,他引:3  
为给小麦品质改良工作者提供通过分子生物技术优化HMW-GS组成方面的全面信息,综述了HMW-GS的基因克隆、分子标记以及基因工程改良三个方面近年来的国内外研究进展.迄今为止, 被克隆和测序的HMW-GS基因已有20多个,即1Ax1、1Ax2*、1Ax2*B、1Ay1、1Bx7、1Bx9、1Bx17、1Dx2、1Dx5、1Bx20、1By8、1By9、1Dy10、1Dy12、1AxNull、1Bx14、 1Bx23、1Dx2.2、1Dx2.1、1Dy10.1、1Dy12t等,还不断有新的基因被发现和克隆.克隆方法可概括为两种:一种是以HMW-GS克隆作为探针筛选cDNA或基因组DNA文库, 从而获得所需的靶基因序列, 然后再选择合适的载体进行克隆测序;另一种则是采用PCR技术.HMW-GS基因的分子标记方法主要有RFLP法、PCR法和SNP(单核苷酸多态性)法.目前已有研究者通过基因工程方法将部分外源HMW-GS基因导入小麦,有效地改善了受体品种的加工品质.  相似文献   

16.
Genetic transformation via the biolistic method has been used to introduce genes encoding natural and novel high-molecular-weight glutenin subunits (HMW-GS) into wheat. The appearance of new seed proteins of sizes not predicted by the transgene coding sequences was noted in some experiments. In this report, the identities of thirteen of these novel proteins were determined by tandem mass spectrometry (MS/MS). Seven different proteins larger than and two proteins smaller than the native protein were shown to contain peptides from 1Dx5. A novel protein found in some progeny of crosses between a transgenic plant and Great Plains winter wheats was larger than but contained several peptides from 1Dy10. In one line, a protein larger than and a protein smaller than HMW-GS each contained peptides from the N- and C-terminus of 1Dx5 and from the repeat region of 1Dy10. In a sixth transgenic line, the native Bx7 gene was apparently replaced by a gene that encodes a larger version of 1Bx7. The variant proteins accumulate in the polymeric protein fraction, indicating that they can form inter-molecular disulfide bonds. These results show that novel proteins found in some transformants are encoded by altered versions of either the transforming or endogenous HMW-GS genes.  相似文献   

17.
为探索施氮对强筋小麦HMW-GS表达量及加工品质的影响,在大田条件下以强筋小麦品种山农12号为材料,设置了不同施氮时期和施氮量的处理,分析了这些处理条件下强筋小麦的HMW-GS表达量及主要品质参数.结果表明,HMW-GS表达量受氮肥处理的影响,每一个HMW-GS表达量都有一个适合的最佳施氮时期和施氮量.综合考虑各HMW-GS表达量,以拔节期施氮且施纯氮量90 kg/ha,孕穗期不施氮较好.不同施氮时期和施氮量主要影响小麦蛋白质的品质;面团揉混仪参数受氮肥处理的影响比面团粉质仪参数受到的影响小;无论是面包体积还是面包评分,都是以拔节期施纯氮45 kg/ha、孕穗期施纯氮210 kg/ha效果最好.相关分析表明,无论是面团流变学特性还是面包品质,Glu-D1位点和X-型亚基的贡献都优于Glu-B1位点和Y-型亚基.表明不同的施氮时期和施氮量都对强筋小麦HMW-GS的表达及强筋小麦主要加工品质有影响.  相似文献   

18.
The polymerization of glutenin polymers was monitored by measuring the Unextractable Polymeric Protein (UPP) at 3-day intervals after anthesis for four pairs of near-isogenic wheat lines. Two pairs, the variety Lance, differing at the Glu-D1 locus (HMW-GS 5+10 or 2+12) and the variety Halberd, differing at the Glu-B1 locus (HMW-GS 7+9 or 20x+20y) were grown in the field (2000) and twice in the greenhouse (2000 and 2001). Two other pairs, the varieties Warigal and Avocet, differing at the Glu-D1 locus (HMW-GS 5+10 or 2+12) were grown in the greenhouse in 2001. The behavior of all lines was consistent from greenhouse and field plantings in that the lines possessing strength-associated HMW-GS (5+10 at Glu-D1 and 7+9 at Glu-B1) showed an increase in accumulation of larger glutenin polymers (measured by UPP) at an earlier stage during grain filling than the lines with allelic counterparts (HMW-GS 2+12 at Glu-D1 and 20x+20y at Glu-B1). In all cases, the increases were maintained until maturity, paralleling the greater dough strength of flour from these lines, measured by mixograph dough development time.  相似文献   

19.
There is a need to develop more sensitive and reliable tests to help breeders select wheat lines of appropriate quality. Gluten thermostability, measured by the viscoelasticity of heated gluten, was assessed for its usefulness in evaluating quality of wheats in breeding programs. Two sets of wheat samples were used: Set I consisting of 20 cultivars and/or breeders' lines (BL), with diverse dough strengths and allelic variations of high Mr glutenin subunits coded at the Glu-A1, Glu-B1 and Glu-D1 loci (N=20) and Set II consisting of 16 near isogenic BL of F7 generation that had been in a quality selection program for three years. Thermostability of the isolated wet gluten was determined by measuring its viscoelastic properties, and was related to noodle texture, flour protein content, protein composition, dough physical properties and other quality predicting tests.Viscoelasticity of heat-treated gluten, isolated with 2% NaCl solution, significantly correlated with most of the tests used to measure dough and/or gluten strength and Chinese white salted noodle texture. The rate of thermal denaturation of proteins depends on Mr and packing density. High ratios of monomeric proteins such as gliadins and low Mr glutenin subunits to high Mr glutenin subunits increase the thermostability of the gluten. The measurement of viscoelasticity of heat-denatured gluten can be a useful test to determine gluten quality. Our study showed that gluten viscoelasticity and most of the tests related to dough and/or gluten strength are independent of allelic variations of the high molecular weight glutenin subunits. This test has been developed for predicting white salted noodle quality.  相似文献   

20.
为了了解节节麦及人工合成多倍体的Glu—D1位点高分子量谷蛋白亚基组成及表达情况,采用十二烷基磺酸钠-聚丙烯跣胺凝胶电泳(SDS-PAGE),分析了4份节节麦及其在此基础上形成的人工合成多倍体高分子量走谷蛋白亚基(high—molecular-weight glutenin subunit,HMW-GS)的组成。研究结果表明,4份节节走AS60-1、AS60-2、AS77和AS2383在Glu—D1位点上出现了4种不同的亚基类型,分别为2 10、5 12、5 10和2.1 10;2份节节走人工加倍形成四倍体AS2390、AS2410的HMW—GS分别为2.1 10和5 10;3份节节麦-圆锥麦人工合成双二倍体RSP、SHW—L1及SHW—L2的HWM—GS分别为2^*、17 18、5 10;2^*、17 18、2 10和2 10。谷蛋白王基呈现了共显性遗传,表明节节麦高分子量谷蛋白基因能在人工多倍体情况下得到正常表达。本文还对利用节节麦优良基因的方式作了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号