首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The no-tillage system is perceived as having lower soil temperatures, wetter soil conditions, and greater surface penetration resistance compared with conventional and other conservation tillage systems. Concerns associated with the effect of the no-tillage system on certain soil physical properties (i.e. soil temperature, moisture, and compaction) prompted this study to evaluate the effect of an alternative tillage system, strip-tillage, on these physical properties, compared with chisel plow and no-tillage systems. The study was conducted on two Iowa State University research and demonstration farms in 2001 and 2002. One site was at the Marsden Farm near Ames, where the soils were Nicollet loam (Aquic Hapludolls) and Webster silty clay loam (Typic Haplaquolls). The second site was at the Northeast Research and Demonstration Farm near Nashua, where the soils were Kenyon loam (Typic Hapludolls) and Floyd loam (Aquic Hapludolls).Soil temperature increased in the top 5 cm under strip-tillage (1.2–1.4 °C) over no-tillage and it remained close to the chisel plow soil temperature. This increase in soil temperature contributed to an improvement in plant emergence rate index (ERI) under strip-tillage compared with no-tillage. The results show no significant differences in soil moisture status between the three tillage systems, although the strip-tillage soil profile has slightly greater moisture content than chisel plow. Moisture content through the soil profile particularly at the lower depths under all tillage treatments was greater than the plant available water (PAW). However, the changes in soil moisture storage were much greater with strip-tillage and chisel plow than no-tillage from post-emergence to preharvest at 0–30 and 0–120 cm. It was observed also that most change in soil moisture storage occurred between post-emergence and tasseling. Penetration resistance was similar for both strip-tillage and no-tillage, but commonly greater than chisel plow. In general, the findings show that strip-tillage can contribute effectively to improve plant emergence, similar to chisel plowing and conserve soil moisture effectively compared with no-tillage.  相似文献   

2.
The advent of conservation tillage presents a need for a greater understanding of plant disease and disease interactions in temperate humid agriculture, where excessive crop residues, continuous moist soil conditions and soil compaction are potential constraints. In this review, biotic and abiotic factors, and aspects of microbial antagonism, which can influence plant disease development in the root zone, are characterized in the context of conservation tillage in humid climates.Soil densification and reduction in macroporosity can aggravate abiotic root disease. Changes in soil aeration and permeability status can alter the quantitative and qualitative differences between soil rhizofloral populations, and survival and distribution of pathogen inoculum. Further-more, anaerobic soil conditions can result in root-pathogen interactions leading to plant disease development. A good quality soil physical environment is an important indicator for root health under conservation tillage in humid climates.Conservation tillage tends to concentrate plant debris and consequently microbial biomass in the top 5 to 15 cm of soil, and thus promotes survival of pathogens. However, disease-causing microbes make up only a proportion of the rhizofloral population. Relatively high soil microbial activity can lead to competition effects that may ameliorate pathogen activity and survival, and counteract a high pathogen inoculum pressure. Microbial antagonism in the root zone can lead to the formation of disease-suppressive soils. This phenomenon, which is important for the adoption of conservation tillage in humid climates, can be influenced by soil and crop management practices, especially crop rotation.  相似文献   

3.
The impact of tillage systems on soil CO2 emission is a complex issue as different soil types are managed in various ways, from no-till to intensive land preparation. In southern Brazil, the adoption of a new management option has arisen most recently, with no-tillage as well as no burning of crops residues left on soil surface after harvesting, especially in sugar cane areas. Although such practice has helped to restore soil carbon, the tillage impact on soil carbon loss in such areas has not been widely investigated. This study evaluated the effect of moldboard plowing followed by offset disk harrow and chisel plowing on clay oxisol CO2 emission in a sugar cane field treated with no-tillage and high crop residues input in the last 6 years. Emissions after tillage were compared to undisturbed soil CO2 emissions during a 4-week period by using an LI-6400 system coupled to a portable soil chamber. Conventional tillage caused the highest emission during almost the whole period studied, except for the efflux immediately following tillage, when the reduced plot produced the highest peak. The lowest emissions were recorded 7 days after tillage, at the end of a dry period, when soil moisture reached its lowest rate. A linear regression between soil CO2 effluxes and soil moisture in the no-till and conventional plots corroborate the fact that moisture, and not soil temperature, was a controlling factor. Total soil CO2 loss was huge and indicates that the adoption of reduced tillage would considerably decrease soil carbon dioxide emission in our region, particularly during the summer season and when growers leave large amounts of crop residues on the soil surface. Although it is known that crop residues are important for restoring soil carbon, our result indicates that an amount equivalent to approximately 30% of annual crop carbon residues could be transferred to the atmosphere, in a period of 4 weeks only, when conventional tillage is applied on no-tilled soils.  相似文献   

4.
Is conservation tillage suitable for organic farming? A review   总被引:3,自引:1,他引:3  
Conservation tillage covers a range of tillage practices, mostly non‐inversion, which aim to conserve soil moisture and reduce soil erosion by leaving more than one‐third of the soil surface covered by crop residues. Organic farmers are encouraged to adopt conservation tillage to preserve soil quality and fertility and to prevent soil degradation – mainly erosion and compaction. The potential advantages of conservation tillage in organic farming are reduced erosion, greater macroporosity in the soil surface due to larger number of earthworms, more microbial activity and carbon storage, less run‐off and leaching of nutrients, reduced fuel use and faster tillage. The disadvantages of conservation tillage in organic farming are greater pressure from grass weeds, less suitable than ploughing for poorly drained, unstable soils or high rainfall areas, restricted N availability and restricted crop choice. The success of conservation tillage in organic farming hinges on the choice of crop rotation to ensure weed and disease control and nitrogen availability. Rotation of tillage depth according to crop type, in conjunction with compaction control measures is also required. A high standard of management is required, tailored to local soil and site conditions. Innovative approaches for the application of conservation tillage, such as perennial mulches, mechanical control of cover crops, rotational tillage and controlled traffic, require further practical assessment.  相似文献   

5.
Micro and macroporosity, pore shape and size distribution, aggregate stability, saturated hydraulic conductivity and crop yield were analysed in alluvial silty loam (Fluventic Eutrochrept) and clay soils (Vertic Eutrochrept) following long-term minimum and conventional tillage. The soil structure attributes were evaluated by characterizing porosity by means of image analysis of soil thin sections prepared from undisturbed soil samples.

The interaggregate microporosity, measured by mercury intrusion porosimetry, increased in the minimally tilled soils, with a particular increase in the storage pores (0.5–50 μm). The amount of elongated transmission pores (50–500 μm) also increased in the minimally tilled soils. The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the greater hydraulic conductivity of the minimally tilled soils. The aggregate stability was less in the conventionally tilled soils and this resulted in a greater tendency to form surface crusts and compacted structure, compared with the minimally tilled soils. The latter tillage practice seemed to maintain, in the long-term, better soil structure conditions and, therefore, maintain favourable conditions for plant growth. In the silt loam, the crop yield did not differ significantly between the two tillage systems, while in the clay soil it decreased in the minimum tilled soil because of problems of seed bed preparation at the higher surface layer water content.  相似文献   


6.
This study investigated the effect of management on -glucosidase, -glucosaminidase, alkaline phosphatase, and arylsulfatase activities and the microbial community structure in semiarid soils from West Texas, USA. Surface samples (0–5 cm) were taken from a fine sandy loam, sandy clay loam, and loam that were under continuous cotton ( Gossypium hirsutum L.) or in cotton rotated with peanut ( Arachis hypogaea L.), sorghum ( Sorghum bicolor L.), rye ( Secale cereale) or wheat ( Triticum aestivum L.), and had different water management (irrigated or dryland), and tillage (conservation or conventional). The enzyme activities were higher in the loam and sandy clay loam than in the fine sandy loam. Soil pH was not affected by management, but the soil organic C and total N contents were generally affected by the different crop rotations and tillage practices studied. The trends of the enzyme activities as affected by management depended on the soil, but in general crop rotations and conservation tillage increased the enzyme activities in comparison to continuous cotton and conventional tillage. The soil enzyme activities were significantly correlated with the soil organic C ( r -values up to 0.90, P< 0.001), and were correlated among each other ( r -values up to 0.90, P <0.001). There were differences in the fatty acid methyl ester profiles between the fine sandy loam and the sandy clay loam and loam, and they reflected the differences in the enzyme activities found among the soils. For example, a 15:0 ranged from 1.61±0.25% in cotton-peanut/irrigated/no-till in the fine sandy loam to 3.86±0.48% in cotton-sorghum/dryland/conservation tillage in the sandy clay loam. There were no differences due to management within the same soil.Trade names and company names are included for the benefit of the reader and do not infer any endorsement or preferential treatment of the product by USDA-ARS  相似文献   

7.
In Eastern Canada, cereal yields are often restricted by soil acidity and low fertility. Continuous cereal production can also lead to soil structural degradation. The addition of lime and fertilizers and the adoption of conversation tillage practices are proposed solutions which may have a positive impact on soil quality. The objective of the present work was to assess the impact of 3 years of different tillage practices and P additions, and of a single lime addition on organic C and total N, microbial biomass C, and on N mineralization at the surface layer (0–7.5 cm) of a Courval sandy clay loam (Humic Gleysol). The easily mineralizable N, total amount of N mineralized in 22.1 weeks, the rate of N mineralization, and microbial biomass C were significantly greater in the minimum tillage than in the moldboard plow treatment. Chisel plow treatment showed intermediate values. The ratios of potentially mineralizable N and of easily mineralizable to total soil N were also significantly larger under minimum tillage and chisel plowing than under moldboard plowing. The lime and P treatments had no significant effect on the measured soil quality parameters. The total amount of N mineralized per unit of biomass C decreased as the tillage intensity increased, suggesting a decrease in the efficiency of the biomass in transforming organic N into potentially plant-available forms and thus a loss in soil organic matter quality. The results of this study indicate that conservation tillage practices such as rototilling and chisel plowing are efficient ways of maintaining soil organic matter quality when old pastures are brought back into cultivation.  相似文献   

8.
The concept and some definitions of sustainable agriculture are reviewed. Most of these definitions include economic, environmental and sociological aspects. The finite area of land emphasizes the need for consideration of soil conservation and of soil quality in relation to sustainability. An important element of soil quality is rooting depth. Therefore loss of soil by erosion is a dominant factor in long-term sustainability. The effects of tillage on soil parameters in minimum data sets that have been proposed to describe soil quality are reviewed. Soil organic matter may be one of the most important soil quality characteristics in relation to tillage because of its influence on other soil physical, chemical and biological properties. Conservation tillage practices can increase the organic matter content, aggregate stability and cation exchange capacity (CEC) of the topsoil. However, bulk density and penetrometer resistance are also increased, especially with zero tillage. Although such soil quality parameters may form a basis for describing some of the consequences of particular tillage practices, they do not provide a basis for predicting the outcome in terms of crop growth and yield. This is both because critical values of soil quality parameters have not been defined and because in some soils biopore formation in zero or minimally tilled land can modify the soil for water movement and for root growth and function.

The effects of tillage on crop growth and yield in long-term experiments are reviewed. The review only includes experiments in North America, Europe and New Zealand that have lasted 10 years or more to allow for seasonal variation in weather, possible progressive changes in soil conditions and the learning phase often experienced when new tillage methods are used. While there is a good deal of variation in the results of these tillage experiments some patterns have emerged. In long-term experiments, yields of maize in Europe and the US and soybeans in the US have been similar after ploughing and no-tillage, especially on well-drained soils. In Europe, yields of winter cereals have also been similar after traditional and simplified tillage but yields of spring cereals have sometimes been less after direct drilling than ploughing.

Trends in tillage practices are reviewed. Conservation tillage in the US is increasing and is used on about 30% of cropland, including no-till on about 10% of cropland. This increase in use of conservation tillage is mainly attributed to the legal requirement for farmers who are in government price support programs to adopt conservation plans which may involve conservation tillage. However, the allowable rates of erosion in these plans are likely to be in excess of rates of erosion for long-term sustainability. Survey information on tillage practices needs to be considered in relation to predictions on suitability of conservation tillage based on experimental results. In the semi-arid prairies of Canada there is a trend toward fewer cultivation operations, but in eastern Canada the mouldboard plough is still the dominant tillage method. In Europe although erosion is less obvious it is believed to be increasing, but minimum tillage is not widely used. This is because of the need to remove at least some straw for successful minimum tillage in sequential winter wheat and barley crops, but there are few economic uses for straw, and burning is illegal in many countries. In the more moist cooler conditions of Europe grass weed proliferation is another constraint, at least with present technology. So far, the overall success of conservation tillage has not been limited by the growing problem of genetic resistance of weeds to herbicides. Societal attitudes to the continued use of herbicides may pose longer-term problems for some conservation tillage practices.  相似文献   


9.
Subsoil compaction may reduce the availability and uptake of water and plant nutrients thereby lowering crop yields. Among the management options for remediating subsoil compaction are deep tillage and the selection of crop rotations with deep-rooted crops, but little is known of the effects of applications of organic amendments on subsoil compaction. The objectives of this study were to determine the effects of subsoil compaction on corn yield and N availability in a sandy-textured soil and to evaluate the use of deep tillage and surface applications of poultry manure to remediate subsoil compaction. A field experiment planted to corn (Zea mays L.) was conducted from 2000 to 2001 on a Reelfoot fine sandy loam (fine-silty, mixed thermic Aquic Argiudolls) formed in silty alluvium located in southeast Missouri near the Mississippi River. Treatments were arranged in a factorial design with three levels of subsoil compaction and subsoiling and four rates (averaging 0, 6, 11 and 18 Mg ha−1) of poultry manure. Subsoil tillage to a depth of 30 cm had multiple effects, including overcoming a natural or tillage-induced dense layer or pan and increasing volumetric soil water content and crop N uptake, especially in the 2001 cropping year with low early season precipitation. N recovery efficiency (NRE) was significantly higher in the subsoil treatment compared to the highest compaction treatment in 2001. No significant interactions between manure rates and compaction and subsoiling treatments were observed for corn grain and silage yields, N uptake and NRE. Average increases in corn grain yields over all manure rates due to subsoil tillage of compacted soil were 2002 kg ha−1 in 2000 and 3504 kg ha−1 in 2001. Application of poultry manure had a consistent positive effect on increasing grain yields and N uptake in 2000 and 2001 but did not significantly alter measured soil physical properties. The results of this study suggest that deep tillage and applications of organic amendments are management tools that may overcome restrictions in both N and soil water availability due to subsoil compaction in sandy-textured soils.  相似文献   

10.
Soil compaction caused by random traffic or repetitive tillage has been shown to reduce water use efficiency, and thus crop yield due to reduced porosity, decreased water infiltration and availability of nutrients. Conservation tillage coupled with subsoiling in northern China is widely believed to reduce soil compaction, which was created after many years of no-till. However, limited research has been conducted on the most effective time interval for subsoiling, under conservation tillage. Data from conservation tillage demonstration sites operating for 10 years in northern China were used to conduct a comparative study of subsoiling interval under conservation tillage. Three modes of traditional tillage, subsoiling with soil cover and no-till with soil cover were compared using 10 years of soil bulk density, water content, yield and water use efficiency data. Cost benefit analysis was conducted on subsoiling time interval under conservation tillage. Yield and power consumption were assessed by based on the use of a single pass combine subsoiler and planter. Annual subsoiling was effective in reducing bulk density by only 4.9% compared with no-till treatments on the silty loam soils of the Loess plateau, but provided no extra benefit in terms of soil water loss, yield increase or water utilization. With the exception of bulk density, no-till and subsoiling with cover were vastly superior in increasing water use (+10.5%) efficiency and yield (+12.9%) compared to traditional tillage methods. Four years of no-till followed by one subsoiling reduced mechanical inputs by 62%, providing an economic benefit of 49% for maize and 209% for wheat production compared to traditional tillage. Annual subsoiling reduced inputs by 25% with an increased economic benefit of 23% for maize and 135% for wheat production. Yield and power consumption was improved by 5% and 20%, respectively, by combining subsoiling with the planting operation in one pass compared with multipass operations of subsoiling and planting. A key conclusion from this is that annual subsoiling in dryland areas of northern China is uneconomical and unwarranted. Four years of no-till operations followed by 1 year subsoiling provided some relief from accumulated soil compaction. However, minimum soil disturbance and maximum soil cover are key elements of no-till for saving water and improving yields. Improved yields and reduced farm power consumption could provide a significant base on which to promote combined planter and subsoiling operations throughout northern China. Further research is required to develop a better understanding of the linkages between conservation tillage, soil quality and yield, aimed at designing most appropriate conservation tillage schemes.  相似文献   

11.
Nitrogen from fertilisers and crop residues can be lost as nitrous oxide (N2O), a greenhouse gas that causes an increase in global warming and also depletes stratospheric ozone. Nitrous oxide emissions, soil chemical status, temperature and N2O concentration in the soil atmosphere were measured in a field experiment on soil compaction in loam and sandy loam (cambisols) soils in south-east Scotland. The overall objective was to discover how the intensity and distribution of soil compaction by tractor wheels or by roller just before sowing influenced crop performance, soil conditions and production and emissions of N2O under controlled traffic conditions. Compaction treatments were zero, light compaction by roller (up to 1 Mg per metre of length) and heavy compaction by loaded tractor (up to 4.2 Mg). In this paper we report the effects on production and emissions of N2O and relate them to soil and crop conditions. Nitrous oxide fluxes were substantial only when the soil water content was high (>27 g per 100 g). Fertiliser application stimulated emissions in the spring whereas crop residues stimulated emissions in autumn and winter. Heavy compaction increased N2O emissions after fertiliser application or residue incorporation more than light or zero compaction. The bulk densities of the heavily and lightly compacted soils were up to 89% and 82% of the theoretical (Proctor) maxima. Higher soil cone resistances, temperatures and nitrogen availability and lower gas diffusivities and air-filled porosities combined to make the heavily compacted soil more anaerobic and likely to denitrify than the zero or lightly compacted soil. Compaction sufficient to increase N2O emissions significantly corresponded with adverse soil conditions for winter barley (Hordeum vulgare L.) growth. Soil tillage, which ensures that soil compaction is no greater than in our light treatment and is confined to near the soil surface, may help to mitigate both surface fluxes of N2O and losses to the subsoil.  相似文献   

12.
Low and extremely variable precipitations limit dryland crop production in the semi-arid areas of Aragón (NE Spain). These areas are also affected by high annual rates of topsoil losses by both wind and water erosion. A long-term experiment to determine the feasibility of conservation tillage in the main winter barley production areas of Aragón was initiated in 1989 at four locations, three on loam to silt loam soils (Xerollic Calciorthid) and one on a silty clay loam (Fluventic Ustochrept), receiving between 300 and 600 mm of average annual rainfall. In this study, we compared, under both continuous cropping and cereal-fallow rotation, the effects of conventional tillage (mouldboard plough) and two conservation tillage systems, reduced tillage (chisel plough) and no-tillage, on soil water content and penetration resistance during the first two growing seasons. Whereas reduced and conventionally tilled treatments generally had similar soil water content during the experimental period, the effects of no-tillage were inconsistent. No-tilled plots had from 26% less to 17% more stored soil water (0–80 cm) than conventional tilled plots at the beginning of the growing season. In contrast to the conventional and reduced tillage treatments, penetration resistances were between 2 and 4 MPa after sowing in most of the plough layer (0–40 cm) under no-tillage at all sites. Fallow efficiencies in moisture storage in the cereal-fallow rotation, when compared with the continuous cropping system, ranged from −8.7 to 12%. The highest efficiencies were recorded when the rainfall in the months close to primary tillage exceeded 100 mm. Since this event is very unlikely, long fallowing (9–10 months) appears to be an inefficient practice for water conservation under both conventional and conservation management. Our results suggest that, up to now, only reduced tillage could replace conventional tillage without adverse effects on soil water content and penetration resistance in the dryland cereal-growing areas of Aragón.  相似文献   

13.
Experimental investigations were conducted over three years to test the hypothesis that soil compaction affects the physical and mechanical properties of corn ears and corn cobs. Field experiments were made on sub-drained clay and sandy loam soils at Macdonald College Farm in Quebec Province of Canada. The mechanical properties of corn ears and corn cobs were determined from quasi-static force-deformation analysis performed with a universal Instron testing machine.

The results showed that soil compaction treatments did not significantly influence corn cob elastic modulus and strength in simple bending nor in radial compression. Cob moisture content did not significantly change as a result of the application of various traffic treatments. However, corn cob diameter and pith diameter were both significantly affected by soil compaction.

Corn ear moisture content and bending strength were not significantly affected by soil compaction. However, corn ear yield in all three years was found to be dependent on the amount of soil compaction applied.

Also studied were the effects of various tillage methods in ameliorating the deleterious effects of soil compaction on crop yield and crop quality. It is concluded that a judicious choice of tillage machinery system can minimize the reductions in ear yield due to soil compaction.  相似文献   


14.
In the tropical area of Veracruz (Mexico) the decision of when and how to carry out tillage operations is based on qualitative criteria. It often results in excessive and unnecessary work, energy waste, operational delay, soil exposure to water erosion and soil structural damage. Objective criteria are needed in this area for selecting when and how to do cultivation in order to meet crop and conservation requirements. The workable range of typical soils of the area (Haplic Pheaozems) was quantified by assessing in-field implement effects on the soil structure and measuring the specific energy applied by the tractor–implement combination. This was done over a range of soil moisture contents inside and outside the theoretical friable consistency state of the soils, determined by the shrinkage and plastic limits. Empirical relationships between initial moisture content and the technological result of tillage showed that these results for moist loam and clay soils shifted from optimum to poor at soil water potentials that coincides quite well with the plastic limit. However, as soil was drying out, the implement effect changed from optimum to sub-optimum at soil moisture contents well above the shrinkage limit, so the actual field workable range was smaller than the theoretical friable status of the soils. The minimum input of specific energy to obtain optimum results, was close to the soil water potential where results changed to sub-optimum as soils were drying out. To support decisions for tillage planning and operation, valuable information on workable periods can be obtained by making use of quantified workability thresholds.  相似文献   

15.
《Soil & Tillage Research》1988,12(3):269-283
The effects of conservation tillage on crop production have been widely investigated, but less information is available on root growth with different tillage systems over a range of soils. In this study, we compared corn (Zea mays L.) root length density and distribution with conventional moldboard plowing (MP) and 3 conservation-tillage treatments: chisel plowing (CH); ridge-tillage (RT); no-tillage (NT); for Griswold and Kewaunee silt loam and Plainfield loamy-sand soils. Root length densities were determined for the row (R), non-wheel track (NWT) and wheel track (WT) positions for two growing seasons (1982 and 1983). Conservation-tillage systems had equal or higher root densities than MP for all positions and depths at all 3 sites. Maximum root densities occurred between 10 and 40 cm for all tillage systems at all locations. In most cases, reduced root growth was associated with wheel traffic positions. Wheel traffic reduced root densities in the surface 10 cm by as much as 52% in MP at the Plainfield site.  相似文献   

16.
In irrigated grain-growing soils on Canada's prairies, straw management can affect nitrogen (N) fertility and long-term soil organic matter reserves. We conducted a 2-year field experiment in southern Alberta, on a Dark Brown Chernozemic Lethbridge loam (Typic Boroll), to determine the effects of straw removal, tillage, and fertilizer timing on crop uptake of soil and fertilizer N. During the study (1991 and 1992), the crop was oat (Avena sativa L.) and wheat (Triticum aestivum L.), respectively, in an experiment that had been in a wheat-wheat-oat-wheat rotation since 1986. Five straw-tillage treatments were: straw-fall plow, straw-pring plow, no straw-fall plow, no straw-spring plow and no straw-direct seeding. Fertilizer N was applied in fall or spring. Ammonium nitrate (5 at.% 15N) was added at 100 kg N ha−1 in fall 1990 or spring 1991. For oat (1991), plant N derived from soil was higher under fall plow than under spring plow, higher with tillage than direct seeding, and unaffected by straw removal. The plant N derived from fertilizer was not affected by straw removal in fall plow treatments, but under spring plow, it was higher with straw removal. The plant N derived from fertilizer showed a significant straw-tillage × fertilizer timing interaction; with fall incorporated straw, plant N derived from fertilizer was 44.0 kg N ha−1 for spring-applied, and 30.6 kg N ha−1 for fall-applied N, but in other straw-tillage treatments there was no effect of fertilizer timing. Cumulative fertilizer N recovery (plant + soil) over the 2 years averaged 64.2%, and was unaffected by straw-tillage treatment. Fertilizer N recovery, however, was less with fall-applied N (61.3%) than spring applied N (66.8%). At mid-season, fall plow treatments had higher soil inorganic N and inorganic N derived from fertilizer than spring plow treatments, apparently because of less immobilization. The fall plow treatments also retained higher inorganic N after harvest. Straw removal and fertilizer timing did not influence soil inorganic N and soil inorganic N derived from fertilizer. N removal in straw (16 kg N ha−1 yr−1) could deplete soil N in the long-term. Long-term effects of tillage timing on soil N will depend on the relative amount of N lost by leaching with fall plowing and that lost by denitrification under spring plowing. With direct seeding, crop yield and uptake of soil N was less, and N losses by denitrification could be greater. Application of N in spring, rather than fall, should enhance crop N uptake, reducing N losses and enhancing long-term soil organic N.  相似文献   

17.
Conservation of soil water is an important management objective for crop production in the semi-arid tropics where droughts are persistent. Identification of the best tillage methods to achieve this objective is thus imperative. The integrated effects of conservation tillage on soil micro topography and soil moisture on a sandy loam soil were evaluated. The field experiment consisted of five tillage treatments, namely tied ridging (TR), no till (NT), disc plough (DP), strip catchment tillage (SCT) and hand hoe (HH). Data measured in the field included soil moisture content, surface roughness, infiltration and sorghum grain yield. A depth storage model was used to estimate depression storage TR treatment and the higher the surface roughness, the greater the depression storage volume. Regression analysis showed that random roughness decreased exponentially with increase in cumulative rainfall. Higher moisture contents were associated with treatments having higher depressional storage. Infiltration rate was significantly higher in the tilled soils than the untilled soils. The DP treatment had the highest cumulative infiltration while NT had the lowest. The Infiltration model which was fitted to the infiltration data gave good fit. Grain yield was highest in TR and least in NT, whereas DP and HH had similar yields.  相似文献   

18.
Sugar beet (Beta vulgaris L.) growers in Nebraska, U.S.A. have been convinced by equipment manufacturers in the past 10 years that chisel tillage is needed on their soils to remove compaction zones. No data were available to assess the reality of their conviction that chiseling was an essential part of their tillage systems. The experiments discussed here were designed to test the impact and need for chiseling to depths up to 30 cm in systems where moldboard plowing to a depth of 20 cm is the most common primary tillage. Various degrees of soil compactness were created artificially in soil of the same type (Typic Haplustoll) in 3 different fields. Combinations of moldboard plowing and chiseling were then imposed on them. The relationships of water infiltration rates and resistance to penetration as measured by a penetrometer to the tillage treatments and to ultimate sucrose yield were determined. In all but the severest compaction treatment, either chiseling or moldboard plowing had equivalent impacts on yield restoration. In the most severely compacted soil chiseling was totally ineffective in 1 year and equal to plowing in another year. Combination plowing and chiselinng did not have an additive effect beyond plowing or chiseling along under any compaction condition. Even though the implements were equally effective in restoring yield potential, neither of them, alone nor in combination restored yields to levels achieved on non-compacted soil. Penetrometer resistance measurements indicated that compacted soil below 30 cm was the problem. The data indicated that it may be possible for a given soil type, to relate penetrometer resistance to the need for tillage to remove compaction. On these experiments each increase in resistance of 700 kPa over a range of 4000–8000 kPa resulted in a 10% reduction in sucrose yield.  相似文献   

19.
Soil compaction has deleterious effects on soil physical properties, which can affect plant growth, but some soils are inherently resilient, whereby they may recover following removal of the stress. We explored aspects of soil physical resilience in a field‐based experiment. We subjected three soils of different texture, sown with winter wheat or remaining fallow, to a compaction event. We then monitored soil strength, as a key soil physical property, over the following 16 months. We were also interested in the associated interactions with crop growth and the microbial community. Compaction had a considerable and sustained effect in a sandy loam and a sandy clay loam soil, resulting in an increase in strength and decreased crop yields. By contrast compaction had little effect on a clay soil, perhaps due initially to the buoyancy effect of pore water pressure. Fallow clay soil did have a legacy of the compaction event at depth, however, suggesting that it was the actions of the crop, and rooting in particular, that maintained smaller strengths in the cropped clay soil rather than other physical processes. Compaction generally did not affect microbial communities, presumably because they occupy pores smaller than those affected by compaction. That the clay soil was able to supply the growing crop with sufficient water whilst remaining weak enough for root penetration was a key finding. The clay soil was therefore deemed to be much more resilient to the compaction stress than the sandy loam and sandy clay loam soils.  相似文献   

20.
Effects of conventional tillage on biochemical properties of soils   总被引:3,自引:1,他引:3  
Modification of soil environment by different farming practices can significantly affect crop growth. Tillage causes soil disturbance, altering the vertical distribution of soil organic matter and plant nutrient supplies in the soil surface, and it may affect the enzyme activity and microbial biomass which are responsible for transformation and cycling of organic matter and plant nutrients. In this study, the influence of three conventional tillage systems (shallow plowing, deep plowing and scarification) at different depths on the distribution and activity of enzymes, microbial biomass and nucleic acids in a cropped soil was investigated. Analysis of variance for depth and tillage showed the influence of the different tillage practices on the activity of some enzymes and on the nucleic acids. Glucosidase, galactosidase, nitrate reductase and dehydrogenase activity were significantly affected by the three tillage modalities. Activity in the upper layer (0–20 cm) was higher in the plots tilled by shallow plowing and scarification than in those tilled by deep plowing. Positive relationships were observed between the soil enzymes themselves, with the exception of urease and pyrophosphatase activity. Moreover, significant correlations were found between DNA and β-galactosidase, and between RNA and β-glucosidase, β-galactosidase, alkaline phosphatase and phosphodiesterase. α-Glucosidase, β-galactosidase, alkaline phosphatase and phosphodiesterase were highly correlated with biomass C determined by the fumigation-extraction method. Received: 27 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号