首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Essential oil of Haplopappus greenei A. Gray was obtained by hydrodistillation of aerial parts, which were subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. Major components were identified as carvacrol (8.7%), beta-pinene (7.6%), trans-pinocarveol (6.2%), and caryophyllene oxide (5.8%), respectively. In total, 104 components representing 84.9% of the investigated essential oil were characterized. Furthermore, the essential oil was evaluated for antimalarial, antimicrobial, and antifungal activities. However, only antifungal activity was observed against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides using the direct overlay bioautography assay. Major essential oil components were also evaluated for antifungal activity; the carvacrol standard demonstrated nonselective activity against the three Colletotrichum species and the other compounds were inactive.  相似文献   

2.
Essential oils of Salvia macrochlamys and Salvia recognita were obtained by hydrodistillation of dried aerial parts and characterized by gas chromatography and gas chromatography-mass spectrometry. One hundred and twenty identified constituents representing 97.7% in S. macrochlamys and 96.4% in S. recognita were characterized, and 1,8-cineole, borneol, and camphor were identified as major components of the essential oils. The oils were evaluated for their antimalarial, antimicrobial, and antifungal activities. Antifungal activity of the essential oils from both Salvia species was nonselective at inhibiting growth and development of reproductive stroma of the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. S. macrochlamys oil had good antimycobacterial activity against Mycobacterium intracellulare; however, the oils showed no antimicrobial activity against human pathogenic bacteria or fungi up to a concentration of 200 microg/mL. S. recognita oil exhibited a weak antimalarial activity against Plasmodium falciparum.  相似文献   

3.
Essential oils of peppermint Mentha piperita L. (Lamiaceae), which are used in flavors, fragrances, and pharmaceuticals, were investigated for their antimicrobial properties against 21 human and plant pathogenic microorganisms. The bioactivity of the oils menthol and menthone was compared using the combination of in vitro techniques such as microdilution, agar diffusion, and bioautography. It was shown that all of the peppermint oils screened strongly inhibited plant pathogenic microorganisms, whereas human pathogens were only moderately inhibited. Chemical compositions of the oils were analyzed by GC and GC/MS. Using the bioautography assay, menthol was found to be responsible for the antimicrobial activity of these oils.  相似文献   

4.
The chemical composition of the aerial and root essential oils, hydrodistilled from Artemisia absinthium L. and Artemisia vulgaris L. (wild-growing populations from Serbia), were studied by gas chromatography, gas chromatography-mass spectrometry, and 13C nuclear magnetic resonance. During the storage of plant material under controlled conditions, a significant decrease of essential oil yields (isolated directly after drying and after 1 year of storage) and significant differences in their chemical compositions were observed. A possible mechanism for the observed oil component interconversion has been discussed. The noticeable differences in the chemical composition of the oils isolated from roots and aerial parts of A. absinthium and A. vulgaris were also correlated with the diverging biosynthetic pathways of volatiles in the respective plant organs. The antimicrobial activities against the common human pathogens of all of the isolated oils were tested according to National Committee on Clinical Laboratory Standards. The oils showed a broad spectrum of antimicrobial activity against the tested strains. Therefore, these oils can be used as flavor and fragrance ingredients.  相似文献   

5.
Essential oils from the heartwood and leaves of specimens of Vanillosmopsis pohlii collected in two different localities were analyzed by GC-MS. The major constituent of both heartwood essential oils was the sesquiterpene alpha-bisabolol. Essential oil composition from leaves was quite different for two specimens and showed beta-pinene and E-caryophyllene as principal constituents. The essential oil of heartwood and the pure sesquiterpene alpha-bisabolol were tested against Bemisia argentifolii, the white fly fruit plague, and pronounced insecticidal effects were observed.  相似文献   

6.
We evaluated 17 plant essential oils and nine oil compounds for antibacterial activity against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica in apple juices in a bactericidal assay in terms of % of the sample that resulted in a 50% decrease in the number of bacteria (BA(50)). The 10 compounds most active against E. coli (60 min BA(50) range in clear juice, 0.018-0.093%) were carvacrol, oregano oil, geraniol, eugenol, cinnamon leaf oil, citral, clove bud oil, lemongrass oil, cinnamon bark oil, and lemon oil. The corresponding compounds against S. enterica (BA(50) range, 0.0044-0.011%) were Melissa oil, carvacrol, oregano oil, terpeineol, geraniol, lemon oil, citral, lemongrass oil, cinnamon leaf oil, and linalool. The activity (i) was greater for S. enterica than for E. coli, (ii) increased with incubation temperature and storage time, and (iii) was not affected by the acidity of the juices. The antibacterial agents could be divided into two classes: fast-acting and slow-acting. High-performance liquid chromatography analysis showed that the bactericidal results are related to the composition of the oils. These studies provide information about new ways to protect apple juice and other foods against human pathogens.  相似文献   

7.
The essential oil obtained by hydrodistillation from aerial parts of Satureja cuneifolia Ten., collected in three different maturation stages such as preflowering, flowering, and postflowering, were analyzed simultaneously by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Thymol (42.5-45.2%), p-cymene (19.4-24.3%), and carvacrol (8.5-13.2%) were identified as the main constituent in all stages. At the same time, the essential oils and main components were evaluated for their antimicrobial activity using a microdilution assay resulting in the inhibition of a number of common human pathogenic bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and the yeasts Candida albicans and Candida tropicalis. The minimum inhibitory concentrations (MIC) varied between 62.5 and 250 microg/mL within a moderate antimicrobial activity range. Furthermore, the antioxidant capacity of the essential oils and major components thymol and carvacrol were examined in vitro. The essential oils obtained from S. cuneifolia in three different stages and its main components were interacted with 1,1-diphenyl-2-picrylhydrazyl (DPPH (*)) as a nitrogen-centered stable radical, resulting in IC 50 = 1.6-2.1 mg/mL. In addition, the effects on inhibition of lipid peroxidation of the essential oils were assayed using the beta-carotene bleaching method. All of the tested oils inhibited the linoleic acid peroxidation at almost the same level as butylated hydroxytoluene (BHT) (93.54-94.65%). BHT and ascorbic acid were used as positive controls in the antioxidant assays.  相似文献   

8.
The essential oils of Ocimum basilicum L., Origanum vulgare L., and Thymus vulgaris L. were analyzed by means of gas chromatography-mass spectrometry and assayed for their antioxidant and antimicrobial activities. The antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with effects on lipid peroxidation (LP). RSC was assessed measuring the scavenging activity of the essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH(*)) and OH(*) radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. Essential oils exhibited very strong RSCs, reducing the DPPH radical formation (IC(50)) in the range from 0.17 (oregano) to 0.39 microg/mL (basil). The essential oil of T. vulgaris exhibited the highest OH radical scavenging activity, although none of the examined essential oils reached 50% of neutralization (IC(50)). All of the tested essential oils strongly inhibited LP, induced either by Fe(2+)/ascorbate or by Fe(2+)/H(2)O(2). The antimicrobial activity was tested against 13 bacterial strains and six fungi. The most effective antibacterial activity was expressed by the essential oil of oregano, even on multiresistant strains of Pseudomonas aeruginosa and Escherichia coli. A significant rate of antifungal activity of all of the examined essential oils was also exhibited.  相似文献   

9.
Phenolics antioxidant phytochemicals have been recently implicated for the lower rates of cardiac disease mortality among people consuming a Mediterranean diet. Essential oils are natural products extracted from vegetable materials, which can be used as antibacterial, antifungal, antioxidants, and anti-carcinogenic agents or to preserve and give specific flavors to foods. The activities of 23 selected essential oils in inhibiting the copper-catalyzed oxidation of human-low-density lipoproteins (LDL) were determined in vitro. LDL oxidation was inhibited between 6, 2, and 83% by 2 microM (GAE) total phenolics. The relative inhibition of LDL oxidation was used to categorize the essential oils into four groups below 2% when they contained methylchavicol, anethol, p-cymen, apiole, cinnamic ether; 6-10% if they possessed a majority of carvacrol, thymol, p-cymene, or vanillin; 10-50% for moderate amounts of thymol, carvacrol, cuminol, or eugenol; and 50-100% when eugenol is the major component. Total phenol content of essential oils gave a correlation with LDL antioxidant activity of r = 0.75. The Activity of each phenolics compound could play a role in protecting LDL against oxidation if the substance is absorbed by the body.  相似文献   

10.
Major active compounds from essential oils are well-known to possess antimicrobial activity against both pathogen and spoilage microorganisms. The aim of this work was to determine the alteration of the membrane fatty acid profile as an adaptive mechanism of the cells in the presence of a sublethal concentration of antimicrobial compound in response to a stress condition. Methanolic solutions of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol were added into growth media of Escherichia coli O157:H7, Salmonella enterica serovar typhimurium, Pseudomonas fluorescens, Brochothrix thermosphacta, and Staphylococcus aureus strains. Fatty acid extraction and gas chromatographic analysis were performed to assess changes in membrane fatty acid composition. Substantial changes were observed on the long chain unsaturated fatty acids when the E. coli and Salmonella strains grew in the presence of limonene and cinnamaldehyde and carvacrol and eugenol, respectively. All compounds influenced the fatty acid profile of B. thermosphacta, while Pseudomonas and S. aureus strains did not show substantial changes in their fatty acid compositions.  相似文献   

11.
The essential oil, obtained by using a Clevenger distillation apparatus, and water-soluble (polar) and water-insoluble (nonpolar) subfractions of the methanol extract of Thymus pectinatus Fisch. et Mey. var. pectinatus were assayed for their antimicrobial and antioxidant properties. No (or slight) antimicrobial activity was observed when the subfractions were tested, whereas the essential oil showed strong antimicrobial activity against all microorganisms tested. Antioxidant activities of the polar subfraction and the essential oil were evaluated using 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, superoxide radical scavenging, and lipid peroxidation assays. The essential oil, in particular, and the polar subfraction of the methanol extract showed antioxidant activity. The essential oil was analyzed by GC/MS, and 24 compounds, representing 99.6% of the essential oil, were identified: thymol, gamma-terpinene, p-cymene, carvacrol, and borneol were the main components. An antimicrobial activity test carried out with fractions of the essential oil showed that the activity was mainly observed in those fractions containing thymol, in particular, and carvacrol. The activity was, therefore, attributed to the presence of these compounds. Other constituents of the essential oil, such as borneol, gamma-terpinene, and p-cymene, could be also taken into account for their possible synergistic or antagonistic effects. On the other hand, thymol and carvacrol were individually found to possess weaker antioxidant activity than the crude oil itself, indicating that other constituents of the essential oil may contribute to the antioxidant activity observed. In conclusion, the results presented here show that T. pectinatus essential oil could be considered as a natural antimicrobial and antioxidant source.  相似文献   

12.
Essential oils extracted by hydrodistillation from fruits of Cuminum cyminum L. and Carum carvi L. were analyzed by gas chromatography (GC) and GC-mass spectrometry (MS). The main components of C. cyminum oil were p-mentha-1,4-dien-7-al, cumin aldehyde, gamma-terpinene, and beta-pinene, while those of the C. carvi oil were carvone, limonene, germacrene D, and trans-dihydrocarvone. Antibacterial activity, determined with the agar diffusion method, was observed against Gram-positive and Gram-negative bacterial species in this study. The activity was particularly high against the genera Clavibacter, Curtobacterium, Rhodococcus, Erwinia, Xanthomonas, Ralstonia, and Agrobacterium, which are responsible for plant or cultivated mushroom diseases worldwide. In general, a lower activity was observed against bacteria belonging to the genus Pseudomonas. These results suggest the potential use of the above essential oils for the control of bacterial diseases.  相似文献   

13.
The aim of the study presented here was to gain knowledge about the vapor-phase antimicrobial activity of selected essential oils and their major putatively active constituents against a range of foodborne bacterial and fungal strains. In a first step, the vapor-phase antimicrobial activities of three commercially available essential oils (EOs)-cinnamon (Cinnamomum zeylanicum), thyme (Thymus vulgaris), and oregano (Origanum vulgare)-were evaluated against a wide range of microorganisms, including Gram-negative bacteria (Escherichia coli, Yersinia enterocolitica, Pseudomonas aeruginosa, and Salmonella choleraesuis), Gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, and Enterococcus faecalis), molds (Penicillium islandicum and Aspergillus flavus), and a yeast (Candida albicans). The minimum inhibitory concentrations (MICs) were generally lower for oregano EO than for the thyme and cinnamon EOs, especially against the relatively resistant Gram-negative. The persistence of the EOs' antimicrobial activities over time was assessed, and changes in the composition of the atmosphere they generated over time were determined using single-drop microextraction (SDME) in combination with gas chromatography-mass spectrometry (GC-MS) and subsequent analysis of the data by principal component analysis (PCA). More relevant chemicals were selected. In addition, the vapor-phase activities of putatively key constituents of the oils were screened against representative Gram-positive (L. monocytogenes) and Gram-negative (S. choleraesuis) bacteria, a mold (A. flavus), and a yeast (C. albicans). Of the tested compounds, cinnamaldehyde, thymol, and carvacrol showed the strongest antimicrobial effectiveness, so their MICs, defined as the minimum vapor concentrations that completely inhibited detectable growth of the microorganisms, were calculated. To check for possible interactions between components present in the EOs, cinnamon EO was fortified with cinnamaldehyde and thyme EO with thymol, and then the antimicrobial activities of the fortified oils were compared to those of the respective unfortified EOs using fractional inhibitory concentration (FIC) indices and by plotting inhibition curves as functions of the vapor-phase concentrations. Synergistic effects were detected for cinnamaldehyde on A. flavus and for thymol on L. monocytogenes, S. choleraesuis, and A. flavus. In all other cases the fortification had additive effects, except for cinnamaldehyde's activity against S. choleraesuis, for which the effect was antagonistic. Finally, various microorganisms were found to cause slight changes over time to the atmospheres generated by all of the EOs (fortified and unfortified) except the fortified cinnamon EO.  相似文献   

14.
The compositions of essential oils isolated from the aerial parts of Artemisia absinthium, Artemisia santonicum, and Artemisia spicigera by hydrodistillation were analyzed by GC-MS, and a total of 204 components were identified. The major components of these essential oils were camphor (34.9-1.4%), 1,8-cineole (9.5-1.5%), chamazulene (17.8-nd%), nuciferol propionate (5.1-nd%), nuciferol butanoate (8.2-nd%), caryophyllene oxide (4.3-1.7%), borneol (5.1-0.6%), alpha-terpineol (4.1-1.6%), spathulenol (3.7-1.3%), cubenol (4.2-0.1%), beta-eudesmol (7.2-0.6%), and terpinen-4-ol (3.5-1.2%). The antifungal activities of these essential oils were tested against 11 plant fungi and were compared with that of a commercial antifungal reagent, benomyl. The results showed that all of the oils have potent inhibitory effects at very broad spectrum against all of the tested fungi. Pure camphor and 1,8-cineole, which are the major components of the oils, were also tested for antifungal activity against the same fungal species. Unlike essential oils, these pure compounds were able to show antifungal activity against only some of the fungal species. In addition, the antioxidant and DPPH radical scavenging activities of the essential oils, camphor, and 1,8-cineole were determined in vitro. All of the studied essential oils showed antioxidant activity, but camphor and 1,8-cineole did not.  相似文献   

15.
In this study antifungal activities of essential oils from different tissues of Japanese cedar (Cryptomeria japonica D. Don) against four wood decay fungi and six tree pathogenic fungi were investigated. In addition, the yields of essential oils obtained by water distillation were compared and their constituents determined by GC-MS analyses. The yield of essential oils from four tissues of Japanese cedar is in the decreasing order of leaf (27.38 mL/kg) > bark (6.31 mL/kg) > heartwood (3.80 mL/kg) > sapwood (1.27 mL/kg). Results obtained from the antifungal tests demonstrate that the essential oil of Japanese cedar heartwood used against Laetiporus sulphureus and Trametes versicolor and sapwood essential oil used against L. sulphureus had strong antifungal activities at 500 mug/mL, with IC(50) values of 39, 91, and 94 microg/mL, respectively. Besides, the essential oils of Japanese cedar heartwood used against Rhizoctonia solani, Collectotrichum gloeosporioides, Fusarium solani, and Ganoderma australe had strong antifungal activities at 500 microg/mL, with IC(50) values of 65, 80, 80, and 110 microg/mL, respectively. GC-MS analyses showed that the sesquiterpene hydrocarbon compounds dominate in the essential oil from Japanese cedar heartwood, amounting to a total percentage of 82.56%, with the major compounds of delta-cadinene (18.60%), isoledene (12.41%), and gamma-muurolene (11.82%). It is proposed that the excellent antifungal activities of Japanese cedar heartwood essential oils might correlate with the presence of these compounds.  相似文献   

16.
Essential oils from the stems/leaves (L) and flowers (F) of Lavandula stoechas L. ssp. stoechas growing wild in southern Sardinia (Italy) were extracted by hydrodistillation and analyzed by gas chromatography coupled with flame ionization detector and ion trap mass spectrometry. The major compound was fenchone, accounting for, on average, 52.60% in L and 66.20% in F, followed by camphor (13.13% versus 27.08%, in L and F, respectively). F essential oil yields (volume per dry weight) decreased from the beginning to the end of the flowering stage, whereas L yields remained constant during the year. The nine main compounds derived from two different subpathways, A and B. The compounds that belong to the same subpathway showed a similar behavior during the year. The essential oils were tested for their antifungal activity using the paper disk diffusion method. The essential oils tested were effective on the inactivation of Rhizoctonia solani and Fusarium oxysporum and less effective against Aspergillus flavus. Among the single compounds tested, fenchone, limonene, and myrtenal appeared to be the more effective on the inhibition of R. solani growth.  相似文献   

17.
The addition of plant essential oils to edible films and coatings has been shown to protect against bacterial pathogens and spoilage while also enhancing sensory properties of foods. This study evaluated the effect of adding 0.5 and 0.75% carvacrol (active ingredient of oregano oil) to apple- and tomato-based film-forming solutions and 0.5 and 0.75% cinnamaldehyde (active ingredient of cinnamon oil) to apple-based film-forming solutions on sensory properties of cooked chicken wrapped with these films. Paired preference tests indicated no difference between baked chicken wrapped with tomato and apple films containing 0.5% carvacrol and cinnamaldehyde compared to chicken wrapped with tomato or apple films without the plant antimicrobials. The taste panel indicated a higher preference for carvacrol-containing tomato-coated chicken over the corresponding apple coating. There was also a higher preference for cinnamaldehyde-containing apple films over corresponding carvacrol-containing wrapping. Films containing antibacterial active compounds derived from essential oils can be used to protect raw chicken pieces against bacterial contamination without adversely affecting preferences of wrapped chicken pieces after baking.  相似文献   

18.
Plant essential oils from 29 plant species were tested for their insecticidal activities against the Japanese termite, Reticulitermes speratus Kolbe, using a fumigation bioassay. Responses varied with plant material, exposure time, and concentration. Good insecticidal activity against the Japanese termite was achived with essential oils of Melaleuca dissitiflora, Melaleuca uncinata, Eucalyptus citriodora, Eucalyptus polybractea, Eucalyptus radiata, Eucalyptus dives, Eucalyptus globulus, Orixa japonica, Cinnamomum cassia, Allium cepa, Illicium verum, Evodia officinalis, Schizonepeta tenuifolia, Cacalia roborowskii, Juniperus chinensis var. horizontalis, Juniperus chinensis var. kaizuka, clove bud, and garlic applied at 7.6 microL/L of air. Over 90% mortality after 3 days was achieved with O. japonica essential oil at 3.5 microL/L of air. E. citriodora, C. cassia, A. cepa, I. verum, S. tenuifolia, C. roborowskii, clove bud, and garlic oils at 3.5 microL/L of air were highly toxic 1 day after treatment. At 2.0 microL/L of air concentration, essential oils of I. verum, C. roborowskik, S. tenuifolia, A. cepa, clove bud, and garlic gave 100% mortality within 2 days of treatment. Clove bud and garlic oils showed the most potent antitermitic activity among the plant essential oils. Garlic and clove bud oils produced 100% mortality at 0.5 microL/L of air, but this decreased to 42 and 67% after 3 days of treatment at 0.25 microL/L of air, respectively. Analysis by gas chromatography-mass spectrometry led to the identification of three major compounds from garlic oil and two from clove bud oils. These five compounds from two essential oils were tested individually for their insecticidal activities against Japanese termites. Responses varied with compound and dose. Diallyl trisulfide was the most toxic, followed by diallyl disulfide, eugenol, diallyl sulfide, and beta-caryophyllene. The essential oils described herein merit further study as potential fumigants for termite control.  相似文献   

19.
The antimicrobial activities against Escherichia coli O157:H7 as well as the stability of carvacrol, the main constituent of oregano oil, were evaluated during the preparation and storage of apple-based edible films made by two different casting methods, continuous casting and batch casting. Antimicrobial assays of films and high-performance liquid chromatography (HPLC) analysis of film extracts following storage up to 49 days at 5 and 25 degrees C revealed that (a) optimum antimicrobial effects were apparent with carvacrol levels of approximately 1.0% added to the purees prior to film preparation, (b) carvacrol in the films and film weights remained unchanged over the storage period of up to 7 weeks, and (c) casting methods affected carvacrol concentration, bactericidal activity, physicochemical properties, and colors of the apple films. Carvacrol addition to the purees used to prepare the films reduced water vapor and oxygen permeability of apple films. The results indicate that carvacrol has a dual benefit. It can be used to both impart antimicrobial activities and enhance barrier properties of edible films. The cited observations facilitate relating compositional and physicochemical properties of apple puree films containing volatile plant antimicrobials to their use in foods.  相似文献   

20.
Carvacrol is a component of several essential oils and has been shown to exert antimicrobial activity. The structural requirements for the activity of carvacrol were determined by comparison to structurally related (nonessential oil) compounds. Removal of the aliphatic ring substituents of carvacrol slightly decreased the antimicrobial activity. The effect of the hydroxyl group of carvacrol on activity could not be determined by simply comparing it to p-cymene, because this compound is immiscible with water; therefore, 2-amino-p-cymene, the amino analogue of carvacrol, which has a similar hydrophobicity and structural characteristics, was used. 2-Amino-p-cymene had similar membrane disruption and bacterial killing characteristics as carvacrol showing that, contrary to previous reports, the hydroxyl group of carvacrol itself is not essential for the antimicrobial activity. However, the observed 3-fold lower activity for 2-amino-p-cymene as compared to carvacrol indicates special features in the antimicrobial mode of action of carvacrol due to the hydroxyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号