首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary, is a devastating disease in potato and tomato and causes yield and quality losses worldwide. The disease first emerged in central America and has since spread in North America including the United States and Canada. Several new genotypes of P. infestans have recently emerged, including US-22, US-23 and US-24. Due to significant economic and environmental impacts, there has been an increasing interest in the rapid identification of P. infestans genotypes. In addition to providing details regarding the various phenotypic characteristics such as fungicide resistance, host preference, and pathogenicity associated with various P. infestans genotypes, information related to pathogen movement and potential recombination may also be determined from the genetic analyses. Restriction fragment length polymorphism (RFLP) analysis with the RG57 loci is one of the most reliable procedures used to genotype P. infestans. However, the RFLP procedure requires propagation and isolation of the pathogen and relatively large amounts of DNA. Isolation of the late blight pathogen is sometimes impossible due to the poor condition of the infected tissues or the presence of fungicide residues. In this study, we describe a procedure to identify P. infestans at the molecular level in planta using terminal restriction fragment length polymorphism (T-RFLP) of the RG57 loci. This T-RFLP assay is sufficiently sensitive to detect and differentiate P. infestans genotypes directly in planta without propagation and isolation of the pathogen, to facilitate the timely implementation of best management practices.  相似文献   

2.
3.
Late blight, caused byPhytophthora infestans, is the most important disease of potato worldwide and foliar resistance is an important component of managing late blight in the field. The objective of this research was to identify germplasm for use in breeding cultivars with foliar resistance toP. infestans. More than 500 clones were tested from 1997 to 2002 in inoculated (US8 genotype) field experiments conducted at the Michigan State University Muck Soils Research Farm in Bath, Michigan. All of the current commercial cultivars tested were classified as susceptible toP. infestans. The most resistant clones were A90586-11, AWN86514-2, B0718-3, Jacqueline Lee (MSG274-3), MSI152-A, MSJ307-2, MSJ317-1, MSJ453-4Y, MSJ456-2, MSJ456-4, MSJ461-1, MSK101-2, MSK128-1, NY121, LBR8, LBR9, Tollocan, and Torridon. Some of these resistant selections were from crosses with B0718-3, Jacqueline Lee, and Tollocan suggesting that the resistance toP. infestans was transmissible. These resistant clones will provide the opportunity to breed late-blight-resistant cultivars from a diverse pool of cultivated germplasm. Consistent foliar reaction toP. infestans over years suggested that the Michigan State University Muck Soils Research Farm is a valuable location for North American breeders to assess the reaction of potato germplasm to the US8 genotype of late blight.  相似文献   

4.
Meloidogyne chitwoodi (Columbia root-knot nematode, CRKN) can cause serious damage in potato production systems, decreasing tuber value in the fresh market and processing industries. Genetic resistance to CRKN was first identified from the wild diploid potato species Solanum bulbocastanum accession SB22 and was successfully introgressed into tetraploid potato breeding material. To expand the base of genetic resistance, 40 plant accessions representing nine wild potato species were screened for their resistance to M. chitwoodi. Greenhouse screening identified fifteen clones from S. hougasii, one clone from S. bulbocastanum, and one clone from S. stenophyllidium with moderate to high levels of resistance against three isolates of M. chitwoodi. Geographical mapping showed that the resistance sources identified in this and previous studies primarily originated in the states of Jalisco and Michoacán in west-central Mexico. These new sources of resistance will be introgressed into elite potato populations to facilitate the development of potato cultivars with durable resistance to M. chitwoodi.  相似文献   

5.
Potato breeding selection AWN86514-2, Solanum tuberosum gp tuberosum, is being released as germplasm that is highly resistant to prevalent North American strains of Phytophthora infestans. This selection has been tested under field conditions in Mount Vernon, Washington (P. infestans US11 and US8 with complex virulence pathotypes), as well as Corvallis, Oregon, and eight other locations in North America (predominantly P. infestans US8) between 1994 and 1997. Both foliage and tubers show partial resistance. Although AWN86514-2 is pollen sterile, it can be successfully used as a female parent. An average of 34% of the progeny from crosses between AWN86514-2 and four susceptible clones were resistant to late blight when tested at Toluca, Mexico, in 1996. AWN86514-2 also has high resistance to Verticillium wilt and potato virus Y. AWN86514-2 is late maturing, with medium yields of smooth, longoblong, buffskinned tubers. Specific gravity is high and french fry color from 7 C (45 F) storage is excellent. The male parent of AWN86514-2 was Ranger Russet, a dual purpose french fry and fresh market variety, and the female parent was KSA195-96, a selection made at Aberdeen, Idaho, from Polish germplasm received as true seed from the Polish Plant Breeding and Acclimatization Institute. Possible sources of the late blight resistance in this clone include S. acaule, S. demissum, S. phureja, S. simiplicifolium, S. stoloniferum, and S. tuberosum gp andigena which are in the lineage of KSA195-96. This germplasm was developed and released by USDA-ARS in cooperation with the Agricultural Experiment Stations of Idaho, Oregon, and Washington.  相似文献   

6.
7.
Zeaxanthin epoxidase (Zep) is one of at least two genes important for the incidence and amount of carotenoids in yellow-fleshed potato. The recessive allele of the gene encoding zeaxanthin epoxidase (Zep1) has previously been shown to inhibit the conversion of the xanthophyll zeaxanthin to other, more polar carotenoids. We examined the effect of the dosage of Zep1 on total carotenoids in yellow-fleshed tetraploid potato germplasm. The dosage of heterozygous individuals was determined using high-resolution DNA melting. We also surveyed a wide range of germplasm available in the USDA-ARS potato breeding program in Washington for the presence and dosage of Zep1. Genotypes with zero, one, or two copies of Zep1 had statistically similar levels of total tuber carotenoids. Triplex individuals showed a small but significant increase in total carotenoids over the previous three classes. In turn, individuals that were homozygous for Zep1 had much higher levels of total carotenoids than all other dosage classes. This suggests that a slight dosage effect is present, but that the effect of Zep1 is indeed largely recessive. A significant amount of variation in total carotenoids was observed within all Zep1 dosage classes, reinforcing the evidence that additional loci are important for high total carotenoids in potato. Our survey of breeding germplasm supported earlier research that Zep1 is uncommon in tetraploid potato germplasm. The use of high-resolution DNA melting again allowed us to identify the dosage of Zep1 in heterozygous individuals. This is important for breeding high-carotenoid potatoes at the tetraploid level, since recovery of homozygous Zep1 individuals is very rare. Identification of agronomically desirable parents with two or more copies of Zep1 would allow for higher recovery of homozygous Zep1 progeny, permitting additional selection for other desirable traits.  相似文献   

8.
TerraRossa (POR01PG20–12) is a mid-season specialty potato, released by Oregon State University, and is a product of the Northwest Potato Variety (Tri-State) Development Program. This cultivar is unique among commercially available potato cultivars in that plants produce small- to medium-sized smooth, oblong- to long-shaped tubers with red skin and red flesh. Total tuber yields of TerraRossa are similar to Dark Red Norland and less than Red La Soda. Average tuber size (136 g) is less than both of the comparison cultivars, reflecting inherent differences in tuber size distribution. TerraRossa tubers have total antioxidant levels higher than traditional white fresh varieties and comparable to the All Blue purple potato, known for its high antioxidant levels. Sensory evaluations of TerraRossa tubers indicated that it has good culinary attributes following boiling, baking, and microwaving. Potato chips made from TerraRossa tubers retained their unique red color, which represents a novelty in the chipping industry. TerraRossa could be a good candidate for the organic sector due to its tolerance to common scab (Streptomyces scabies) and tuber late blight (Phytophthora infestans) and its resistance to golden cyst nematode (Globodera rostochiensis). Due to its high yields, high chipping quality, good culinary properties, high antioxidant content and disease resistance, TerraRossa is a good candidate for opening new specialty type markets, adding diversity to the marketplace.  相似文献   

9.
Changes in the oomycetePhytophthora infestans in the United States and other parts of the world pose a significant threat to potato production. A continual evaluation of potato clones for resistance to late blight is necessary to identify clones with resistance and to monitor the stability of resistance in light of the emergence of new and more aggressive strains of this pathogen. Twentytwo potato clones (10 cultivars and 12 selections) were evaluated in 1997 for late blight resistance at seven U.S. locations. Seven late blight differentials (R1R2R3R4, R1R2R4, R1R3R4 R3, R8 R10, and Rmulti) were also included in the test at five of these locations. The US-8 strain of P.infestans was present at all locations. Percent infected foliage was recorded at approximately weekly intervals following the onset of disease. Area under the disease progress curve (AUDPC) was calculated. The nonparametric stability statistics mean absolute rank differences (S i (1) ) and variances of the ranks (S i (2) ) were used to analyze phenotypic stability. Although neither of these statistics was significant for individual clones, both of these statistics were significant when summed over clones, indicating the importance of genotype × environment interactions on the rankings of these clones across locations. The most late blight-resistant and susceptible clones were the most stable; clones in the intermediate ranges were most subject to rank changes due to genotype × environment interactions. The most late blight-resistant clones were AWN86514-2, B0692-4, B0718-3, and B0767-2. The most susceptible clones were B0811-13, B1004-8, Nor-Donna, and Krantz. AUDPC was very low for the late blight differentials R8 and Rmulti, moderately low for R10 and very high for the remaining differentials. This study is important in characterizing the reaction of potato clones to new strains of P.infestans.  相似文献   

10.
Changes in the fungal pathogenPhytophthora infestans in the United States pose a significant threat to potato production. Sources of resistance to these new genotypes of P.infestans need to be identified for potato breeders to have parental materials for crossing, and the phenotypic stability of late blight resistance in these potato clones needs to be determined. Sixteen potato clones which reportedly have some resistance to late blight were evaluated at eight locations: Florida (FL), Maine (ME), Michigan (MI), Minnesota (MN), North Dakota (ND), New York (NY), Pennsylvania (PA) and Wisconsin (WI) in 1996. Percent infected foliage was recorded at approximately weekly intervals following the onset of the disease at each location. Area under the disease progress curve (AUDPC) was calculated. Clones were ranked for mean AUDPC within location and the nonparametric stability statistics, mean absolute rank differences and variance of the ranks, were analyzed for phenotypic stability. Neither of these statistics was significant, indicating a lack of genotype x environment interaction on the rankings of these clones across locations in 1996. The four clones with lowest AUDPC scores were U.S. clones AWN86514-2, B0692-4, B0718-3 and B0767-2. These clones should be useful parental materials for breeders seeking to incorporate genes for late blight resistance into potatoes.  相似文献   

11.

Background

The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars.

Results

In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5′ portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, ?A15, ?A42, ?A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance.

Conclusion

The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.
  相似文献   

12.
Common scab caused by the soil-borne bacterium Streptomyces scabies is a serious disease for the potato industry. We have identified a strong source of resistance in the diploid wild relative Solanum chacoense. This resistance has been introgressed into tetraploid cultivated potato via unilateral sexual polyploidization. This paper describes three hybrid clones (M8, M16, M17) for use by potato breeding programs to enhance resistance to common scab. They were created by crossing a diploid clone (50% S. tuberosum, 50% S. chacoense) to tetraploid cultivars, producing hybrids with 75% cultivated and 25% wild germplasm. The clones are male and female fertile, and are adapted to temperate zone production environments.  相似文献   

13.
Verticillium wilt is a fungal disease of potato caused by two species of Verticillium, V. dahliae and V. albo atrum. The pathogen infects the vascular tissue of potato plants through roots, interfering with the transport of water and nutrition, and reducing both the yield and quality of tubers. We have evaluated the reaction of 283 potato clones (274 cultivars and nine breeding selections) to inoculation with V. dahliae under greenhouse conditions. A significant linear correlation (r = 0.4, p < 0.0001) was detected between plant maturity and partial resistance to the pathogen, with late maturing clones being generally more resistant. Maturity-adjusted resistance, that takes into consideration both plant maturity and resistance, was calculated from residuals of the linear regression between the two traits. Even after adjusting for maturity, the difference in the resistance of clones was still highly significant, indicating that a substantial part of resistance cannot be explained by the effect of maturity. The highest maturity-adjusted resistance was found in the cv. Navajo, while the most susceptible clone was the cv. Pungo. We hope that the present abundance of data about the resistance and maturity of 283 clones will help potato breeders to develop cultivars with improved resistance to V. dahliae.  相似文献   

14.
The objective of the study was to assess the direct and indirect effects of 13 important morphological and biochemical traits on yield enhancement in 28 advanced breeding lines of potato (Solanum tuberosum L.) in the foothills of north-western Himalayas. Tuber yield was positively correlated with number of tubers per plant (r?=?0.76), number of stems per plant (r?=?0.53), number of leaves per plant (r?=?0.43) and tuber weight (r?=?0.37). Furthermore, tuber yield exhibited a significant negative correlation with days to maturity (r?=???0.39). Days to 50% emergence had a significant negative correlation with protein content (r?=???0.42). Path analysis revealed that the components of yield, number of tubers per plant and tuber weight, had high positive direct effects (0.876 and 0.618, respectively) on tuber yield, whereas the effects of other traits were low (≤?0.128). Furthermore, tuber weight had an indirect negative effect on tuber yield through the number of tubers. Tuber size had a low correlation (0.19) with tuber yield because a positive indirect effect (0.451) through tuber weight was balanced by a negative indirect effect (??0.254) through tuber number. The number of stems and number of leaves had positive indirect effects (0.377 and 0.377, respectively) on tuber yield through tuber numbers, whereas days to maturity had a negative indirect effect (??0.298) through tuber numbers. There were virtually no indirect effects through the biochemical traits. The implications for potato breeding are discussed.  相似文献   

15.
Resistance in the tubers of potato clones with various levels of foliar multigenic resistance toPhytophthora infestans was measured to detect possible correlations between tuber and foliar resistance. A highly significant correlation was found using wound-healed tuber tissues. High levels of tuber resistance were detected in most foliar-resistant clones when inoculations with race 1,2,3,4 were made after 24–48 hours of wound periderm formation at 20 C. The resistance of wound-healed tissues increased as the time between wounding and inoculation increased. This increase in resistance was significantly greater for clones with foliar resistance than for clones with susceptible foliage.  相似文献   

16.
Powdery scab caused by Spongospora subterranea f. sp. subterranea (Sss) causes extensive losses in potato production systems globally. Two pot experiments were established in the greenhouse in summer 2013 and winter 2014 to evaluate the effectiveness of different soil chemicals, fumigant, amendments and biological control agents (BCAs) against Sss in the rhizospheric soil, potato roots and tubers. The study used visual assessment methods to assess the effect of treatments on root galling and zoosporangia production, and qPCR to measure Sss concentration in the soil and in the potato roots and tubers. All six soil treatments, namely metam sodium, fluazinam, ZincMax, calcium cyanamide, Biocult and a combination of Bacillus subtilis and Trichoderma asperellum recorded significantly (P < 0.05) lower numbers of zoosporangia in the roots compared to the untreated control. The same effect was observed on the concentration of Sss DNA in the roots at tuber initiation. A more diverse picture was obtained when root gall scores at tuber initiation and Sss DNA in the rhizospheric soil at tuber initiation and harvesting were compared. Significant differences (P < 0.05) were also noted in disease severity, disease incidence, and tuber yield between metam sodium, fluazinam, ZincMax, calcium cyanamide and the untreated control. Calcium cyanamide gave the highest tuber yield. The study demonstrated the potential of soil treatments such as metam sodium, fluazinam, ZincMax and calcium cyanamide in managing Sss in potatoes by reducing the pathogen both in the rhizospheric soil and the roots of the potato plant.  相似文献   

17.
The precise level of environmental control in vitro may aid in identifying genetically superior plant germplasm for rooting characteristics (RC) linked to increased foraging for plant nitrogen (N). The objectives of this research were to determine the phenotypic variation in root morphological responses of 49 Solanum chacoense (chc), 30 Solanum tuberosum Group Phureja – Solanum tuberosum Group Stenotomum (phu-stn), and three Solanum tuberosum (tbr) genotypes to 1.0 and 0.5 N rate in vitro for 28 d, and identify genotypes with superior RC. The 0.5 N significantly increased density of root length, surface area, and tips. All RC were significantly greater in chc than in either phu-stn or tbr. Based upon clustering on root length, surface area, and volume, the cluster with the greatest rooting values consisted of eight chc genotypes that may be utilized to initiate a breeding program to improve RC in potato.  相似文献   

18.
Germin like proteins (GLPs) are a large group of related and ubiquitous plant proteins which are considered to be involved in different processes important for plant development and defense. Multiple functional copies of this gene family have been reported in a number of species (wheat, barley, rice, soybean mosses and liverwort), and their role is being evaluated by gene regulation studies and transgenic approaches. To analyze the role of a rice (Oryza sativa) root expressed germin like protein1 OsRGLP1, for its antifungal activity, transgenic potato plants were developed. These transgenic potato plants were molecularly characterized and biologically assessed after inoculation with Fusarium oxysporum f. sp. tuberosi. Functional analysis showed high accumulation of H2O2, increased Superoxide Dismutase (SOD) activity and no oxalate oxidase activity (OxO) in transgenics in comparison to nontransformed control. This increased SOD activity, resistance to heat and sensitivity to H2O2 suggest it is a Fe-like SOD. OsRGLP1 expression in potato plants exhibited enhanced resistance in comparison to nontransformed wild type plants suggesting its role in providing protection against Fusarium oxysporum f. sp. tuberosi through elevated SOD level. Overall, results suggest that OsRGLP1 is a candidate for the engineering of potato plants with increased fungal tolerance however, the greater height and tuber number was observed. This phenotype associated with the resistance needs to be evaluated to determine if this is a positive or negative feature.  相似文献   

19.
The relationship between active oxygen metabolism and resistance to late blight (Phytophthora infestans) in potato (Solanum tuberosum L.) was studied for 72 h post-inoculation by comparing three resistant cultivars (low disease index) with three susceptible ones (high disease index). Activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), and the content of ascorbic acid (ASA), were higher in the resistant cultivars than in the susceptible ones. The production rate of the superoxide anion radical (O2?) was lower in the resistant cultivars than in the susceptible ones. These changes, which were associated with the potato plant’s response to infection with P. infestans, provide some insight into the physiological basis of resistance and may also provide a screening tool for resistance to late blight.  相似文献   

20.

Background

The rice blast resistance gene Pi54 was cloned from Oryza sativa ssp. indica cv. Tetep, which conferred broad-spectrum resistance against Magnaporthe oryzae. Pi54 allelic variants have been identified in not only domesticates but also wild rice species, but the majority of japonica and some indica cultivars lost the function.

Results

We here found that Pi54 (Os11g0639100) and its homolog Os11g0640600 (named as #11) were closely located on a 25 kbp region in japonica cv. Sasanishiki compared to a 99 kbp region in japonica cv. Nipponbare. Sasanishiki lost at least six genes containing one other R-gene cluster (Os11g0639600, Os11g0640000, and Os11g0640300). Eight AA-genome species including five wild rice species were classified into either Nipponbare or Sasanishiki type. The BB-genome wild rice species O. punctata was Sasanishiki type. The FF-genome wild rice species O. brachyantha (the basal lineage of Oryza) was neither, because Pi54 was absent and the orientation of the R-gene cluster was reversed in comparison with Nipponbare-type species. The phylogenetic analysis showed that #11gene of O. brachyantha was on the root of both Pi54 and #11 alleles. All Nipponbare-type Pi54 alleles were specifically disrupted by 143 and 37/44?bp insertions compared to Tetep and Sasanishiki type. In addition, Pi54 of japonica cv. Sasanishiki lost nucleotide-binding site and leucine-rich repeat (NBS–LRR) domains owing to additional mutations.

Conclusions

These results suggest that Pi54 might be derived from a tandem duplication of the ancestor #11 gene in progenitor FF-genome species. Two divergent structures of Pi54 locus caused by a mobile unit containing the nearby R-gene cluster could be developed before domestication. This study provides a potential genetic resource of rice breeding for blast resistance in modern cultivars sustainability.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号