首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正轮虫作为天然水体中主要浮游生物之一,因其繁殖迅速、营养丰富、体形大小适宜、能通过一定技术手段进行大量培养、容易被水产动物幼体摄食和消化吸收等优点,被广泛用于鱼、虾等水产动物的开口饵料。氨氮是我国大部分水系中主要污染指标,水质中氨氮浓度严重超标将影响水生动物的生长,对水生动物的许多器官造成损伤,甚至导致其发病死亡。  相似文献   

2.
朱清旭 《科学养鱼》2007,(12):76-76
随着水产养殖规模化、集约化及精养技术的发展,池塘中的残饵、排泄物及其它有机污染物也趋增多,有机污染物分解需大量消耗溶氧,同时产生大量的有害有毒物质,如氨氮、亚硝酸盐氮、硫化物等。随着这些有毒有害物质增加,不仅影响水产动物的生长、繁殖,严重的甚至产生中毒死亡。而水体中病原微生物的数量与水体中氨氮、亚硝酸盐氮、硫化物的浓度直接相关,如淡水鱼类细菌性败血症的发病条件之一是水体恶化,氨氮、亚硝酸盐氮明显偏高。因此,如何有效地调控养殖水体的水质成为水产养殖业中一个关键的问题。  相似文献   

3.
冷水性鱼类工厂化养殖中臭氧催化氧化降解氨氮   总被引:12,自引:0,他引:12       下载免费PDF全文
研究低温下臭氧催化氧化降解养殖水体氨氮的有效途径,并对降解过程中产生的反应副产物进行分析。利用臭氧发生器和催化反应设备,把加入5mg/L NaBr的养殖水体与臭氧充分混合,在Br^-的催化作用下,使臭氧与氨氮产生氧化反应,产生氮气,达到去除氨氮的目的。实验在一个9.2m^3水体、养殖密度为10kg/m^3的封闭循环式冷水鱼养殖系统中,以虹鳟(Oncorhynchus mykiss)为实验动物,在192h的换水周期内,每24小时采水样1次,检测养殖水体中的pH、溶解氧、氨氮、硝酸盐、亚硝酸盐、悬浮物等水质指标,确定低温下臭氧催化氧化降解养殖水体氨氮的能力和使用方法。研究表明,在Br^-的催化作用下臭氧可有效氧化降解养殖水体的氨氮,降解效率可达50.11%,比臭氧直接氧化法高24.31%;降解过程中硝酸盐、亚硝酸盐都有一定积累,但在臭氧的作用下亚硝酸能转化为硝酸盐,亚硝酸盐含量在192h降至0.089mg/L,硝酸盐为主要副产物;pH值逐渐下降,192h降至5.55,养殖过程中可用NaOH-NaHCO3缓冲液进行适当调节。臭氧催化氧化降解氨氮是一种有效的水处理方式,对于冷水性鱼类工厂化养殖的循环水体处理具有重要的实用价值。  相似文献   

4.
20世纪80年代中期,在北方的辽宁、山东等地迅速发展起来的皱纹盘鲍育苗和养成技术是我国海水集约化养殖的开始,它以集约化的形式贯穿了育苗和养殖的全过程。然而在集约化养殖中,氨氮含量过多会严重影响水产动物的生长、繁殖,甚至产生中毒死亡,氨氮、亚硝酸盐含量的明显偏高也是鱼类细菌性疾病的致病因素之一。本文阐述了养殖水体氨氮积累的来源及危害,  相似文献   

5.
随着水产养殖规模化、集约化及精养技术的发展,池塘中的残饵、排泄物及其它有机污染物也趋增多,有机污染物分解需大量消耗溶氧,同时产生大量的有害有毒物质,如氨氮、亚硝酸盐氮、硫化物等。随着这些有毒有害物质增加,不仅影响水产动物的生长、繁殖,严重的甚至产生中毒死亡。而水体中病原微生物的数量与水体中氨氮、亚硝酸盐氮、硫化物的浓度直接相关,如淡水鱼类细菌性败血症的发病条件之一是水体恶化,氨氮、亚硝酸盐氮明显偏高。因此,如何有效地调控养殖水体的水质成为水产养殖业中一个关键的问题。  相似文献   

6.
集约化养殖水体氨氮危害及调控措施   总被引:1,自引:0,他引:1  
集约化养殖水体氨氮含量普遍较高,氨氮问题是制约池塘养殖高产高效的瓶颈问题。本文介绍了养殖水体氨氮循环机理、氨氮的毒性及危害,因地制宜提出调控措施:放养适宜的密度、提高饲料利用率、增加水体溶氧、采用生物防控等方法,将氨氮对养殖动物的危害降到最低。  相似文献   

7.
为深入了解水体中过量的氨氮对水产动物带来的问题,综述了氨氮胁迫对水产动物的生长、消化酶、抗氧化酶活及免疫机制的影响。  相似文献   

8.
<正>青海湖裸鲤俗称"湟鱼",属鲤形目,鲤科,裂腹鱼亚科。是青海湖中唯一的水生经济动物。具有耐寒冷、耐盐碱的特性。养殖水体中氨氮通常是制约鱼类正常生长的重要因子之一。在养殖过程中,尤其是高密度养殖模式下,当含量达到一定值时能够影响鱼类的行为、代谢、免疫等,对养殖个体产生毒害作用,诱发多种疾病,甚至导致大量死亡,造成巨大损失。该试验研究氨氮对青海湖裸鲤水花鱼苗的毒性,对水体中氨氮对青海湖裸鲤的安全浓度和半  相似文献   

9.
枯草芽孢杆菌与腐植酸钠合剂净水效果的研究   总被引:1,自引:0,他引:1  
养殖水体中高含量氨氮和亚硝酸盐对水产动物有害。试验通过不同配比腐植酸钠与枯草芽孢杆菌(Bacillus subtili)混合剂处理模拟养殖污水,结果表明养殖水体投入10 mg/L腐植酸钠与1.2×10~3 cfu/mL枯草芽孢杆菌混合剂对水体中氨氮和亚硝酸盐的处理效果较好。  相似文献   

10.
地衣芽孢杆菌De在优质草鱼养殖中的应用研究   总被引:8,自引:0,他引:8  
运用综合对比分析法探讨了地衣芽孢杆菌Bacillus licheniformis De在优质草鱼(Ctenopharyngodon idellus)养殖中的应用效果,其评价指标分别为成活率、水体pH、透明度、溶解氧及水中氨氮、硝酸盐浓度等。结果表明,施用地衣芽孢杆菌De可在一定程度上使水体环境和养殖生产性能得到优化,提高养殖草鱼的成活率,显著降低水体透明度及水中氨氮、硝酸盐含量(P〈0.05),使水体pH、溶解氧有利于草鱼的生长。其中施菌组较对照组的成活率、水体pH、溶解氧分别提高了3.2%、3.9%、25.5%,而水体透明度、氨氮及亚硝氮浓度则分别降低了38.5%、74.6%、69.3%。  相似文献   

11.
张忙友 《水产养殖》2012,33(10):55-55
氨氮和亚硝酸盐是养殖水体最常见隐形杀手.随着养殖密度的不断增大,经常伴随在养殖的全过程,给养殖动物造成诸多不良后果. 1 产生过程 氨氮和亚硝酸盐是由养殖动物的排泄物、水体施肥、动植物尸体、淤泥中的有机质等厌氧分解转化而来. 亚硝酸盐是氨氮在亚硝化细菌和反硝化细菌的参与下转化而成,一旦水体溶氧不足,硝化细菌及反硝化细菌数量不足等,正常的硝化作用受阻,亚硝酸盐的生产机制就会加强,并在水体内大量积累,形成潜在危害.可以说,水体中的含氮物质是生产亚硝酸盐的原料,而亚硝化细菌和反硝化细菌则是加工厂,水体缺氧或微缺氧是产生的环境条件.  相似文献   

12.
水体施肥是培育优质、适口、水产动物易消化吸收的天然饵料(浮游生物)或二级饵料(有机碎屑),通过人工促进饵料生物增长从而提高水产品产量的有效措施之一。大水面合理的施肥养鱼首先要判断水质的好坏肥瘦.然后再分析影响水体肥度的原因,制定科学合理的施肥方案,使肥料既不浪费也不造成环境污染,最终达到提高水产品产量的目的。  相似文献   

13.
浮游植物是水体中的主要初级生产者,除作为滤食性动物的饵料和水体中溶解氧的主要提供者外,还能够调节透明度,为养殖对象的生长提供适宜的光照环境。在其生长过程中,能够吸收氨氮,  相似文献   

14.
<正>室内恒温培育甲鱼苗种是目前既快又好的集约化甲鱼苗种培育技术,但室内池塘高温水体极易因养殖动物的排泄物产生氨氮浓度过高而造成甲鱼苗种死亡,过去常规的方法是用彻底换水来改善水体环境,而这种方法不但在换水过程中造成甲鱼苗种应激发病,换水排污也极易造成室外环境污染。本试验是通过掌握恒温室内养殖池塘的水体变化规律,用葡萄糖作为碳源和营养降低水体中氨氮比例来优化水体质量,从而达到提高  相似文献   

15.
汪燕玲 《内陆水产》2004,29(9):25-25
长期使用抗生素和其他化学药物防治养殖病害已引发了一系列问题,近年来.人们开始尝试在养殖水体中施用有益微生物制剂来改善养殖生态环境.提高养殖动物的免疫力.抑制病原微生物.从而减少疾病的发生。微生物制剂是由一些对人类和养殖对象无致病危害并能改良水质、抑制水产病害的有益微生物制成,主要包括硝化细菌、光合细菌、枯草杆菌、放线菌、乳酸菌、酵母菌、链球菌和EM微生物菌群等。它具有改良水质、增加溶氧、降低氨氮、抑制致病菌生长、改善动物体内水环境生态平衡、提高动物抗病与免疫力,促进养殖对象生长等功能。  相似文献   

16.
<正>目前,常用养殖水体氨氮污染及防治养殖生物氨氮中毒的方法主要有物理、化学和生物三种。微生态水质调节剂在改善水产动物的品质方面具有抗生素、消毒剂等化学药剂无法比拟的优势。枯草芽孢杆菌能产生许多胞外酶,迅速分解水体中有机物,并且能快速、彻底降解养殖水体中氨氮和亚硝酸态氮,而不会对鱼体造成不良影响,操作简单,成本低,效果显著,具有明显的经济效益和社会效益。我们以硫酸铵为唯一氮源的选择性培养基,从养殖水体中分离到的5株氨氮降解菌和5株亚硝酸盐降解菌,其中X4菌株对氨氮20小时内的降解率80%;  相似文献   

17.
扁藻(Platymonas sp.)不仅是海产鱼虾贝等幼虫的良好饵料,而且它具有较强的吸收氨氮的能力,可净化育苗水体的水质。因此,扁藻是目前对虾等海产动物育苗的常用活饵料之一。目前已有一些专著介绍  相似文献   

18.
沸石除氨氮是一种深度处理技术,适合于养殖水体。本文重点介绍了沸石的结构、性能和除氨氮的作用机理以及在养殖水体中除氨氦的应用,并对今后沸石除氨氮的改进作了展望。  相似文献   

19.
<正>一、鱼体内和水体氨氮的产生氨氮是指以离子氨(NH4+)和非离子氨(NH3)形式存在的氮,其中对水产动物毒性比较大的是非离子氨。鱼体内氨氮的来源:大部分氨在肝脏中产生,由血液运送到鳃或肾排出体外。水体中氨氮的来源:1投入池塘中未完全消化利用的饲料,施入池塘的含氮有机肥料,池塘中死亡的动植物,在分解代谢的过程中,产生大量氨氮;2鱼类的排泄物:鳃排泄的氨和由肾脏排泄的尿素、尿酸等尿液成分;3部分投入品:部分投入品使用后氨氮会大幅上升。  相似文献   

20.
章晨静 《内陆水产》2001,26(11):33-33
甲鱼养殖温室中氨氮含量往往很高,当人一走进温室便可闻到刺鼻的氨味。当氨氮含量超过一定限度时,会引起甲鱼生长不适甚至会造成氨中毒死亡。据有关资料记载,当水体中氨氮含量在20~50毫克/升时,甲鱼能正常生长;当达到70~80毫克/升时,引起轻度不适,影响甲鱼摄食;当大于100毫克/升时,造成甲鱼氨中毒死亡。(杨先乐《鳖病及其防治》)。氨(NH3)有较强毒性,是水质变坏和水体老化的重要因素。为降低水体中氨氮的含量,常用的方法是大换水,这种方法只是解决暂时问题,不能标本兼治。现简要谈谈降低水体中氨氮含量…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号