首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was designed to measure air entrapment and consolidation as mechanisms that might contribute to reduced hydraulic conductivity with intermittent wetting similar to surge irrigation cycles. The changes in hydraulic conductivity with intermittent wetting would result in infiltration rate changes. Air entrapment and consolidation in a surface layer sample of 50 mm was the focus of the study. During drainage periods between successive wettings, pressure head gradients within the surface layer samples were controlled to simulate drainage in a field situation. Air entrapment was found to occur consistently with reduction in saturated hydraulic conductivity while consolidation was not as consistent in its response with changes in saturated hydraulic conductivity. Received: 16 February 1999  相似文献   

2.
为揭示咸水灌溉对土壤水力特性的影响机制,探求西北内陆干旱地区的合理灌溉模式,对石羊河流域中游地区开展制种玉米咸水灌溉田间试验,通过设置4种灌溉水矿化度水平(0.71,3.00,6.00,9.00 g/L),研究土壤盐分对土壤容重、孔隙度、质地和饱和导水率的影响.研究结果表明:对土壤进行咸水灌溉会引起土壤容重、孔隙度的改变,从而改变土壤饱和导水率.随着灌水次数的增多,各个处理土壤容重都越来越大,孔隙度越来越小,从而使得饱和导水率越来越小.此外咸水灌溉还会引起土壤质地的改变,特别是黏粒含量的增大,会使土壤饱和导水率减小.研究成果对咸水资源的高效利用及农业的可持续发展,具有重要的理论意义和实用价值.  相似文献   

3.
The management of irrigated agricultural fields requires reliable information about soil hydraulic properties and their spatio-temporal variability. The spatial variability of saturated hydraulic conductivity, Ks and the alpha-parameter αvG-2007 of the van Genuchten equation was reviewed on an agricultural loamy soil after a 17-year period of repeated conventional agricultural practices for tillage and planting. The Beerkan infiltration method and its algorithm BEST were used to characterize the soil through the van Genuchten and Brooks and Corey equations. Forty field measurements were made at each node of a 6 m × 7.5 m grid. The soil hydraulic properties and their spatial structure were compared to those recorded in 1990 on the same field soil, through the exponential form of the soil hydraulic conductivity given by the Gardner equation, using the Guelph Pressure Infiltrometer technique. No significant differences in the results obtained in 1990 and 2007 were observed for either particle-size distribution or dry bulk density. The mean value of αvG-2007 was found to be identical to that of αG-1990, while that of Ks-2007 was significantly smaller than that of Ks-1990. In contrast to the Gardner equation, the van Genuchten/Brooks and Corey expression was found to be more representative of a well-graded particle-size distribution of a loamy soil. The geostatistical analysis showed the two parameters, Ks and αvG-2007, were autocorrelated up to about 30 and 21 m, respectively, as well as spatially positively correlated within a range of 30 m. Despite the difference in the mean values of Ks between the two studies, the spatial structures were similar to those found in the 1990 experiment except for the covariance sign. The similarity in autocorrelation ranges indicate that the spatial analysis of soil hydraulic properties is independent of the infiltration methods (i.e., measurement of an infiltration flux) used in the two studies, while the difference in the covariance sign may be linked to the use of two different techniques of soil hydraulic parameterization. The covariance values found in the 2007 campaign indicates a positive relationship between the two parameters, Ks and αvG-2007. The spatial correlations of soil hydraulic parameters appear to be temporally stabilized, at least within the agro-pedo-climatic context of the study. This may be attributed to the soil textural properties which remain constant in time and to the structural properties which are constantly renewed by the cyclic agricultural practices. However, further experiments are needed to strengthen this result.  相似文献   

4.
The spatial variability of irrigation water recharge and crop yield is affected by a number of factors. Soil surface elevation, infiltration and soil water MAD are the most relevant related to level-basin irrigation. Measurements of soil water recharge (using a neutron probe) were compared to estimates based on ring infiltrometers and observations of the opportunity time. Estimates of cumulative infiltration (ECI) were obtained, separating the variability of infiltration and opportunity time (largely determined by elevation). Soil surface elevation was correlated with measured recharge, grain yield and total dry matter. A correlation was found between infiltration and the measurements of water recharge. While soil surface elevation can be regarded as a management variable, little can be done to reduce the variability of infiltration. Distribution uniformities from ECI were about 20% higher than those obtained from measurements of water recharge. Seasonal uniformity was only marginally higher than average uniformity, confirming the low random component of water recharge in level-basin irrigation. Deep percolation was more intense in areas with low MAD. This finding emphasizes the relevance of characterizing the variability of soil physical properties in surface irrigation. Extrapolation of the results of this research to field-scale irrigation basins should take into account the methodology used: in particular, the reduced scale of the experimental level basin. Received: 24 February 1998  相似文献   

5.
地表滴灌条件下土壤湿润体运移量化表征   总被引:2,自引:0,他引:2  
基于非饱和土壤水分运动的Richards方程,采用HYDRUS-2D/3D模拟软件对11种典型土质(美国制土壤质地分类系统)中滴灌湿润体的运动过程进行了数值模拟。结果表明,湿润体平均含水率的增量与滴灌流量正相关,与饱和导水率负相关;湿润体垂向迁移距离与滴头流量、饱和导水率和时间呈幂函数关系;湿润体径向迁移距离可用滴头流量、平均含水率的增量、垂向迁移距离和时间来定量表征。据此建立了描述不同土质中湿润体动态变化规律的经验公式,通过与数值模拟结果、文献试验数据等进行对比,表明此经验公式对不同土质中湿润体运移规律的预测效果较好,可为农业生产中地表滴灌设计提供简便实用的计算工具。  相似文献   

6.
Summary A simple laboratory method was developed to measure changes in saturated hydraulic conductivity and bulk density as affected by intermittent saturating and draining of soil columns. Significant changes in soil properties were measured after intermittent wetting and draining. Laboratory experiments showed significant changes in bulk density and saturated hydraulic conductivity of soil samples during drainage period following saturation of initially dried samples. The rate of changes in soil properties during the drainage period was a function of soil type and degree of desaturation. The effect of intermittent application of water in reducing the soil hydraulic conductivity and subsequently the infiltration rate was verified in the field by measuring the changes in soil intake rate during intermittent (Surge-flow) irrigation.  相似文献   

7.
宁夏黄灌区灌淤土水力参数研究   总被引:1,自引:0,他引:1  
对宁夏黄灌区灌淤土水力参数进行了较为系统的研究.研究结果表明,原状土与扰动土饱和导水率变化范围分别为10~100 cm/d和3~50 cm/d.原状土饱和导水率随土壤剖面变化规律与扰动土一致:随着土壤深度的增加,饱和导水率呈现高低往复变化.原状土和扰动土的饱和导水率受粘粒含量、密度、孔隙度影响较大,受有机质含量影响较小...  相似文献   

8.
西南喀斯特地区土壤饱和导水率及其影响因素研究   总被引:4,自引:0,他引:4  
通过对西南喀斯特地区典型土壤的饱和导水率的分析,研究了喀斯特地区不同植被退化类型下土壤的饱和导水率及其影响因素。结果表明,西南喀斯特地区不同植被退化类型下土壤的饱和导水率存在着明显的差异,原状土表层饱和导水率在27.2×10-4~50.8×10-4cm/s之间,一般未经人为干扰的原始森林土壤饱和导水率>人为干扰形成的灌丛土壤>农业用地;在土壤剖面中自上而下饱和导水率明显降低;扰动土壤表层饱和导水率在0.27×10-4~1.53×10-4cm/s之间,明显低于原状土壤,仅为原状土壤的0.9%~3.0%。喀斯特地区影响土壤饱和导水率的主要因素有土壤容重、土壤孔隙度、土壤有机质含量、土壤质地等。主成分分析结果表明,影响原状土饱和导水率的主要因素为土壤质地和土壤孔性,而土壤孔性是影响扰动土壤导水率的主导因素。  相似文献   

9.
Summary Several irrigation management experiments were conducted at different locations on sandy soils in Haryana State to overcome excessive permeability, poor soil moisture retention and storage in the root zone. Subsurface compaction to 30–40 cm depth created by 6 passes of a 1,500 kg tractor-driven iron roller, 24 to 48 h after irrigation, was found to be beneficial in reducing irrigation requirement. In general, yield of different crops was not affected significantly by surface rolling, except that of mustard which increased significantly. Slight increase in subsurface compaction, about 0.1 g cm–3, increased the soil moisture retention and reduced the infiltration rate and saturated hydraulic conductivity. Hydraulic conductivity was a better parameter than bulk density for evaluating the effect of rolling. The depth of irrigation water applied in rolling treatment was about 58–74% that of the no-rolling control. Compaction thus reduced water input to these sandy soils without adversely affecting the crop yield.  相似文献   

10.
红壤地区典型农田土壤饱和导水率及其影响因素研究   总被引:11,自引:1,他引:11  
研究了湖南祁阳红壤地区旱地、水田的原状土和扰动土的饱和导水率,并分析了土壤的有机质含量、土壤质地、土壤容重等土壤基本性质对土壤饱和导水率的影响状况。结果表明:原状土的饱和导水率变化于44.8×10-4~1.94×10-4cm/s之间,扰动土的饱和导水率变化于2.59×10-4~1.09×10-4cm/s之间;同一水稻土剖面上的饱和导水率基本呈现由上向下逐渐减小的趋势,且原状土的饱和导水率普遍大于扰动土的饱和导水率。原状土和扰动土的饱和导水率与土壤的主要物理性质之间存在着一定的相关性。通过SPSS统计软件分析显示,土壤容重是影响饱和导水率的最主要因素,而其它如有机质含量和粘粒含量等因素也有着一定的影响。  相似文献   

11.
为探讨深松耕作对华北平原地区土壤物理性状和水分入渗性能的影响,采用双环(APM)、入渗仪等试验材料,研究了深松(40 cm)+旋耕(PS)和仅旋耕(CK)2种耕作方式对冬小麦全生育期土壤物理性状及入渗特性的影响.结果表明:冬小麦全生育期,PS处理(0,40]cm土层土壤容重、紧实度较CK分别降低6.58%,31.29%,土壤含水率较CK增加12.11%;PS处理20,40 cm深度土壤饱和导水率较CK分别显著提高116.65%,83.69%,60 cm深度土壤饱和导水率较CK提高8.25%;PS处理土壤初始入渗速率、稳定入渗速率和累计入渗量畦灌前较CK分别提高21.52%,31.75%和11.56%,畦灌后较CK分别提高61.54%,68.42%和12.63%,差异具有统计学意义;采用4种入渗模型对入渗试验进行了比较,其中,Kositiakov入渗模型能够较好地对各处理进行拟合,决定系数R 2在0.92~0.96,得到了不同处理畦灌前后的入渗系数a和入渗指数b.研究结果可为不同耕作方式模拟畦灌过程、确定畦灌最优灌水技术参数提供参考依据.  相似文献   

12.
Orchard and vineyard producers conduct preplant site evaluations to help prevent planting permanent tree and vine crops on lands where the crop will not perform to its highest potential or attain its full life expectancy. Physical soil characteristics within specific soil profiles and spatially throughout an orchard influence decisions on land preparation, irrigation system selection, horticultural choices, and nutrient management. Producers depend on soil surveys to help them understand the soil characteristics of the land and may be interested in technology that provides additional information. Electromagnetic induction (EM38) and four-probe soil resistance sensors (VERIS) are being used in combination with global positioning systems to map spatial variability of soils using apparent soil electrical conductivity (ECa). The hypothesis evaluated in this study is whether rapid, in situ, and relatively low-cost methods of measuring ECa (EM38 and VERIS) can effectively identify and map physical soil variability in non-saline soils. The supposition is that in non-saline soils, ECa levels will relate well to soil texture and water-holding capacity and can be used to map physical soil variability. In turn, the information can be used to guide decisions on preplant tillage, irrigation system design, water and nutritional management, and other horticultural considerations. Two sites in the Sacramento Valley were mapped each with EM38 and VERIS methods. Site-specific management zones were identified by each provider on ECa maps for each site, and then soil samples were collected by University of California researchers to verify these zones. Results showed that on non-saline soils, ECa measured with both EM38 and VERIS correlate with physical soil properties such as gravel, sand, silt, and clay content but the relationship between conductivity and these physical soil properties varied from moderately strong to weak. The strength of the correlation may be affected by several factors including how dominant soil texture is on conductivity relative to other soil properties and on methods of equipment operation, data analysis and interpretation. Overall, the commercial providers of ECa surveys in this study delivered reasonable levels of accuracy that were consistent with results reported in previous studies. At one site, an ECa map developed with VERIS provided more detail on physical soil variability to supplement published soil surveys and aided in the planning and development of a walnut orchard. At a second site, almond yield appeared to correlate well with distinctly different soil zones identified with EM38 mapping.  相似文献   

13.
Reduced quality of wastewater discharged into the Rio Grande River is reported to be the cause of crop contamination and heavy metal transport onto fertile soils. This study was conducted to characterize Cd, Pb, Ni, Zn, Cr, and Co concentrations in two alfalfa (Medicago saliva L.) fields irrigated with river water (in Texas) or wastewater mixed with river water (in Mexico) and to examine spatial variability of acid-extractable metal deposition in soil and in uptake by alfalfa. Multiple transects were established in both fields for intensive forage collection and soil sampling to depths of 1.2 m, with spacing every 7.6 or 15.2 m. Metal concentrations rarely exceeded 20 mg kg−1 with the exception of Zn. Relative metal concentrations were in the order Zn > Cr > Ni > Pb > Co > Cd in both fields, and were highly correlated with clay content within the plow zone. Linear and spherical variogram models best described surface metal deposition with spatial dependence > 100 m with regard to irrigation delivery. However, increasing metal concentrations below the plow zone at the Texas site, inconsistent geostatistical trends for soil Zn and Ni, and no association of Pb with soil texture suggested that irrigation delivery was not the exclusive transport source. Estimated metal loads from river water over a 50-year period suggested that irrigation may account for up to 31 % of surface metals. It is likely that atmospheric fallout from a local ore smelter and indigenous background levels significantly contributed to observed soil metal levels. Metal concentrations in unwashed alfalfa forage tissue were at least five times less than those in soil and showed no consistent association with soil concentrations. Metal concentrations in alfalfa forage posed no toxicity threat to animals or public health. Blending wastewaters in the Rio Grande River and canal system has diluted heavy metals to low concentrations for irrigation, but not to more stringent levels for fish and wildlife. Degraded waters could be diverted from the river and directly used for irrigation under careful water and soil management.  相似文献   

14.
The actual irrigation water demand in a district in Sicily (Italy) was assessed by the spatially distributed agro-hydrological model SIMODIS (SImulation and Management of On-Demand Irrigation Systems). For each element with homogeneous crop and soil conditions, in which the considered area can be divided, the model numerically solves the one-dimensional water flow equation with vegetation parameters derived from Earth Observation data. In SIMODIS, the irrigation scheduling is set by means of two parameters: the threshold value of soil water pressure head in the root zone, hm, and the fraction of soil water deficit to be re-filled, Δ. This study investigated the possibility of identifying a couple of irrigation parameters (hm, Δ) which allowed to reproduce the actual irrigation water demand, given that the study area was adequately characterized with regard to the spatial distribution of the soil hydraulic properties and the vegetation conditions throughout the irrigation season. The spatial distribution of the soil and vegetation properties of the study area, covering an irrigation district of approximately 800 ha, was accurately characterized during the summer of 2002. The soil hydraulic properties were identified by an intensive undisturbed soil sampling, while the vegetation cover was characterized in terms of leaf area index, surface albedo and fractional soil cover by analysing multispectral LandSat TM imageries. Irrigation volumes were monitored at parcel scale.A reference scenario with hm = −700 cm and Δ = 50% (corresponding to a mean actual to potential transpiration ratio of 0.95) allowed to reproduce the spatial and temporal distribution of the actual irrigation demand at the district scale. The spatial variability of the crop conditions in the considered area had much more influence to assess the irrigation water demand than the soil hydraulic spatial variability. The proposed approach showed that, under the agro-climatic conditions typical for the Mediterranean region, SIMODIS may be a valuable tool in managing irrigation to increase water productivity.  相似文献   

15.
Water dynamics and salt distribution in the soil were studied under Fixed Partial Root zone Drying irrigation (FPRD) conditions in corn fields in Northern Greece. FPRD irrigation technique was applied without deficit treatment in two calcareous soils, a sandy clay loam and a sandy loam. Soil water content was recorded in the vertical profile of 0.6 m with the use of capacitance sensors in the row and interrow positions of plants. Salt built-up was monitored to the depth of the root zone, bi-weekly, by measuring electrical conductivity (ECe) and the concentrations of soluble cations Ca2+, Mg2+, Na+ and K+ of the saturation extract on irrigated and non irrigated interrow positions. Soil moisture distribution and salt built-up in soil were used to evaluate the potentials and constraints of FPRD efficiency to sustain plant growth and crop production as a low cost drip irrigation technique. The results indicated that FPRD application on both soils was capable of supplying sufficient amounts of water on plant row. Soil analyses showed that salts accumulated to high levels in the soil surface and decreased in depth at the non irrigated interrow positions. Spatial and temporal variability of salt movement and distribution in the soil profile of 0.6 m were ascribed to soil textural differences. The development and yield of corn plants for both soils reached the usual standards for the area with a minor decrease in the sandy loam soil.  相似文献   

16.
CaSO4在改良碱化土壤过程中对其理化性质的影响   总被引:21,自引:1,他引:20  
通过室内土柱混合置换试验探讨了不同CaSO4浓度水平下土壤淋溶液的理化性质的变化规律。试验设置2个处理,CaSO4浓度分别为0.5 g/L和1.5 g/L。结果表明:碱化土壤经过不同浓度的CaSO4溶液淋溶,土壤的pH值、电导率和饱和水力传导度得到了不同程度的降低,同时,CaSO4溶液浓度高的淋溶效果要比浓度低的变化明显。在土壤表层,2种处理的pH分别由初始的9.71和9.26降低到8.06和8.03;电导率分别由初始的14.49ds/m和14.39 ds/m降低到0.82 ds/m和1.67 ds/m。这说明土壤的理化性质得到了改善,碱化土壤改良效果显著。  相似文献   

17.
太湖地区主要水稻土的饱和导水率及其影响因素研究   总被引:9,自引:3,他引:6  
主要研究了太湖地区3种主要水稻土(白土、黄泥土和乌栅土)的原状土和扰动土的饱和导水率,并分析了土壤的有机质含量、土壤质地、土壤容重、土壤团聚度、土壤结构系数等土壤基本性质对土壤饱和导水率的影响。结果表明:原状土的饱和导水率变化于5.16×10-4~11.62×10-4cm/s之间,扰动土饱和导水率变化于0.76×10-4~3.31×10-4cm/s之间;同一水稻土的剖面上的饱和导水率基本呈现由上向下逐渐减小的趋势,且原状土的饱和导水率普遍大于扰动土的饱和导水率。原状土和扰动土的饱和导水率均与土壤的各项主要物理性质之间都存在着一定的相关性。影响原状土饱和导水率的因素主要是土壤容重、团聚度、结构系数和有机质等,而不同类型的土壤饱和导水率之间相差较大。影响扰动土饱和导水率的因素除了容重、团聚度、结构系数和有机质外,还有土壤的质地(即粘粒含量)。为进一步探讨太湖地区土壤水分的合理利用与管理、环境的治理和农业的持续发展提供了参考的依据。  相似文献   

18.
The introduction of polysaccharide producing benthic algae and bacteria could provide a low cost technique for seepage control in irrigation channels. The ability of algae and bacteria to produce polysaccharides proved to be successful in reducing the hydraulic conductivity of irrigation channel soil. Hydraulic conductivity was reduced to less than 22% of its original value within a month of inoculating soil columns with algae. Chlorophyll and polysaccharide concentrations in irrigation channel soil were measured in order to assess the growth of algae and extent of polysaccharide production, and their correlation with hydraulic conductivity of channel soil. Increases in polysaccharide occurred in the top layer (0–5 mm) of the soil column. The reduction of hydraulic conductivity was highly correlated with the amount of polysaccharides produced (r 2 = 0.92). Hydraulic conductivity decreased with increasing algal and bacterial numbers. The first few millimetres of the soil core where microbial activity was concentrated, seemed effective in controlling seepage. Incorporation of extra nitrate and phosphate into algal medium did not increase the production of polysaccharides by algae in channel soil. The effect of salinity and turbidity of irrigation channel water on channel seepage was studied by measuring the effects on hydraulic conductivity of channel soils. When the electrical conductivity (EC) of the water increased above a threshold value, the hydraulic conductivity increased because of the flocculating effects on clay particles in channel soils. A relationship between sodium adsorption ratio (SAR) and EC of the channel water was established which indicated 15% increase in channel seepage due to increases in salinity. Increasing the turbidity of irrigation water (by increasing the concentration of dispersed clay) resulted in lowering the hydraulic conductivity of the channel soil due to the sealing of soil pores by dispersed clay particles. When the turbidity of the water was 10 g clay l–1, the hydraulic conductivity was reduced by 100%. An increase in clay concentration above 1 g l–1 resulted in significant reduction in hydraulic conductivity. Soil bowl experiments indicated that clay sealing with a coating of hydrophobic polymer on the surface could also effectively prevent seepage of saline water.  相似文献   

19.
膜下滴灌田间土壤水分时空变异规律研究   总被引:2,自引:0,他引:2  
在新疆库尔勒市包头湖农场48 m×56 m的范围内,布置土壤水分监测点共计63个,采用经典统计和地统计方法进行了时空变异性分析。结果表明,每次灌水前,整个地块土壤含水率均符合正态分布,呈现中等变异性;沿毛管方向和沿支管方向的田间土壤含水率均呈中等程度的空间自相关性,变异性主要由随机因素引起,变程分别为30.7~37.9 m和10.5~14.2 m;随着时间的推移(灌水次数的增加),土壤水分的空间变异性逐渐减弱,分布更趋均匀。因此,根据第1次灌水前田间土壤水分空间分布情况,设计的监测点布设方案可以满足其后各次灌水的墒情监测要求。  相似文献   

20.
为在土壤分析研究时,制定工作量少、试验设计经济合理,同时采样点具备代表性的野外采样方案,采用GPS与Google Earth相结合的方法,在陕西省泾惠渠灌区研究了土壤水力参数区域尺度的空间变异性,结果表明:土壤饱和含水率与饱和导水率在该区域尺度下属于中等变异,且两者均具有较强的空间依赖性;饱和含水率的最佳拟合模型为球形模型,土壤饱和导水率的最佳拟合模型为指数型;推荐两者的采样间距分别为2.38 km和7.14 km。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号